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BEHAVIOUR OF NOOPARAMETRIC 

SOUITIOOS AND FREE BOUNDARY RE.GULARITY 

Fang Hua Lin 

§0 Introduction 

0.1 We shall study the boundary behaviour of solutions of the 

nonparametric least area, or area-type problems in this paper. The main 

strategy is to reduce the problems to some free boundary problems so 

that the known regularity theory for free boundaries applies. We will 

restrict ourselves to the two-dimension case. Since the asymptotic 

behaviour of free boundaries at their singular points are 

well-understood in two-dimension, see [C,R], the proofs for this case 

are particularly simple. 

0.2 Let us consider first the Dirichlet problem for the minimal surface 

equation in a bounded c2 - domain n of m2 -

(0.1) 0 in n 

on an . 

It was well-known, see for example [GT, chapter 13], that when n is 

convex, the Dirichlet problem (0.1) has a unique solution 

and that if n is not 

convex, then one can construct a smooth ~ for which (0.1) is not 

solvable. These boundary datas for nonsolvability of (0.1) have a 

common nature that they are higher oscillatory near a point where an 
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is concave. In fact, it has been studied by several authors, 

particularly by C. P. Lau [La] and G. Williams [Wl] recently, that even 

when n is not convex the Dirichlet problem (0.1) is solvable for all 

boundary datas which are close to zero or linear in Lipschitz norm. See 

also [L,§4] for the related discussions for the minimal surface system. 

0.3 In general, one studies instead the solution of the following 

variational problem: 

(0.2) min I(v) for v € BV(n) , 

I(v)=J.Jl+IDvi2 +J lv-cpl. 
n an 

Here BV(n) denotes the set of functions v having bounded variation 

on n in the sense that 

1 im sup I IDv. I < 00 
. 1 
1 n 

for some sequence vi of Lipschitz functions converge to v in the 

L1(n) norm. 

Geometrically, in (case v is a Lipschitz function on 0 I(v) 

is just the 2-dimensional area of the Lipschitz surface obtained by 

taking the union of the graph of v over n and that part of the 

boundary cylinder an X ffi Which is enclosed by the curves {(x,cp(x)) 

X € an} and {(x,v(x)) : X € an } . 
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In [Gl] it is shovm that one can always find a unique solution 

u E <?(n) n BV(O) , which satisfies the minimal surface equation in ll , 

of the problem (0.2). Furthermore, if we decompose Brl into 

. 3) 

where 

an a+ (n) u a_(n) u r . 

a+(n) interior of {x € an : H00(x) i' 0} , 

a_(D) {x E an : H80 (x) < o } and 

r an~ (a+(O} u a_(n)} . 

mean curvature of an with respect to inward normal at 

Then u = <P on 8+(0) , and u is Holder conti.nuous at each 

point of a+(D) provided <P is Lipschitz continuous. 

In [SLl] , L. Simon proved the following remarkable theorem. 

Theorem (L. Simon) If an is c4 then u is Holder continuous at 

each point of a_(O} . and the restriction of u to a_(O) is locally 

Lipschitz continuous provided <P is also Lipschitz continuous there. 

The behaviour of u near r has also been studied, see for 

examples [SL2] and [W2]. 

0.4 Several years ago, Lau and I [LL] had made an observation that the 

nonparametric solution of {0.2) is actually the unique solution to a 

parametric obstacle problem. This enabled us to reduce the study of the 

boundary behaviour of the trace of u on an to the study of the free 

boundary in a variational inequality for the minimal surface operator. 

By combining the regularity theory for the free boundary, see [CJ, and 
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the .above cited theorem of L Simon, we show the higher regularity of 

the trace u over the part of a_(O) where u t 'f' and the c 1/ 2 

Holder estimate of u near such points. 

These studies suggest the following two general problems: 

It is desirable to have a proof of L. Simon's theorem the main 

result of [LL]) by the free boundary method. 

The technique of L. Simon may suggest a new method for studying the 

free boundary problems. Of particular interest is when the free 

boundary intersects the prescribed boundary. 

0.5 The present work is a preliminary report of our studies along these 

_2,a 
lines. In section 1, we show that if B_(O) is c- (concerning the 

minimum smoothness hypothesis on Brl , [SLl] seems to require at least 

c3·a ) then the restriction of u to the part of a_(rl) where 'P 1' u 

is locally c1 ·a The higher regularity follows as in [LLJ provided 

that ao is of a higher smoothness class. 

In section 2, we consider the equation for surfaces with prescribed 

mean curvature in a c2 , bounded domain 0 ~ m2 

(0.4) H(x) . 

A necessary condition fer (0.4) to have a solution u E c2(o) is 

that 



100 

(0.5) IJtdxl < Hl (BA) 

for every Caccioppoli set A c 0 , 0 <A i- fl , see [G2]. 

In [G2], E. Giusti studied the extremal case, i.e., H satisfies 

.5) and 

His wain result can be roughly described as follows. 

If [I is a rJl , bounded dorna.in, and if H is a Lipschitz 

function on n which satisfies .5), (0.6). Then there is a unique 

solution u of (0.4} (up to an additive constant) such that 

(i) lim Du 

uniformly for x0 E 80 , v(x0 ) being the exterior unit normal to BO 

at 

(ii} if in a neighbourhood of xo € an we have 

Harl"') < H(x) 

then u(x) is bounded there; and 

(iii) if instead we have 

H80(x) = H(x) in an open arc 2 c BO , then 
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lim u{x) + oo 
X""*xo 

uniformly in in any compact set K of 2 . 

It should be noted that (0.5) and .6) already imply that 

By the similar method as in section 1 of this paper, Yle will 

recover a part of the Giusti "s theorem. Furthermore we will show the 

smoothness of u restricted to the part of an where Ha0 (x) < H(x) 

provided H and an are smooth there. 

In section 3, we generalize to some problems for a general class of 

elliptic equations which comes from a parametric elliptic integral. 

L. Simon has informed us that his proof in [SLl] can be generalized 

to the ·equation of prescribed mean curvature with 5ome additional 

technical complexity. Besides various curvature integral estimates, his 

proof relies crucially on a Sobolev - type inequality on these surfaces. 

This inequality does not seem to be available for surfaces which 

minimize an elliptic parametric integral. 

Author wish to thank Professor L Simon and Professor N Trudinger 

for their invitations to the Centre for Mathematical Analysis at the 

Australian National University, and Cl'I!A for their warm hospitality. He 
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also would like to thank Dr J Urbas for many interesting conversations 

on the related problems for the Monge-Ampere Equation. Finally I would 

like to thank Professor R Hardt for his continuous assistance. 

§1 The Iinimal Surface Olse 

1.1 Let 0 be a bounded c2 domain in m2 and ~ € c0 (aO) . We are 

here interested in the behaviour of the trace of the unique solution u 

of the nonparametric least area problem (0.2). The trace of u over 

an is defined by the requirement that 

(1.1) lim 
p-'IJ+ 

-2s. p lu(f)- u(x)ldf = 0 
n n {f: lf-xl < p} 

for all points x € an where such a value u(x} exists. 

(1.2} 

Let ~ = ~- U ~+ , where 

{x € a_(n} 

{x € a_(n) 

~(x) > u(x)} 

~(x) < u(x)} 

Up to linear measure zero sets, ~+ , ~ , and ~ are 

well-defined. Suppose x0 € ~+{~_) • and an n B (x0 ) ~ ~+ 
ro 
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(an n Br (x0 ) ~ ~- , respectively) is a set of H1 - measure zero the 
0 

aim of this section is to show the following. 

Theorem 1 Let n be a c2·a , 0 < a < 1 , domain in m2 , and Let 

u , ~+ (~_) be as above. Suppose x0 € ~+(~_) so that 

an n B (x0 ) ~ ~ (an n B (x0 ) ~ ~ , respectiveLy) is a set of 
ro + ~o 

H1-measure zero, for some ~0 > 0 Then u restricted to an n 

B (x0 ) is a c1·a function. Furthermore its Cl,a- norm depends 
~0/2 

onLy on c2·a - norm of an , L00(an) - norm of ~ , ~0 , and 

inf {IHan<x)l : x € ann B~0(x0)} . 

Corollary 1 Under the same hypothesis is in Theorem 1, u is HoLder 

continuous in B (x0 ) n 0 with Holder exponent exactly equaL to 
~0/2 

If, in addition, an is of cLass Ck·a or anaLytic, then u 

restricted to B (x0 ) n an is Ck-1 ,a or anaLytic, respectiveLy, 
~0/2 

for k = 3,4, ... , and 0 <a< 1 . 

Corollary 1 follows from Theorem 1 as in [LL]. 

1.2 We need some preliminary reductions. Let ~. u, n be as above. 

We refer to [L,§4] for the proof of the following. 

1 
2 

LEMMA 1 Let Q be the muLtipLicity one integraL 2-current in m3 with 

spt(Q) ~ an x ffi and aQ T - Tu where T = {(x.~(x)) : X € an} 

Tu = {(x,u(x)) : X € an} Then A = graph(u) + Q is the unique area 
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minimizing integral current whose bouxW.aqJ is the giuen T and whose 

support Lies in n X m . 

,l surface with the c1 · 1 character 

depending onLy on the L00(80) norm of ~ , the c1 · 1 character of 

an . a:nd the distance to .T . 

L:E1imA 2 Let <p , u , n be as before, we defined <p* as folLows 

'P* = {: 
on 80\B (x0 ) 

ro Let 
+ 2r0 on an n B (x0 ) 

ro 

be the corresponding 

solution of (0.2) Then * u=u 

PROOF The conclusion follows from Corollary 2 and the generalized 

maximum principle of R. Finn, see for example [GT, Thm. 13.10]. 

L3 From now on, we will restrict ourselves to a neighbourhood of each 

point in "'l'* {(x,u(x)) : X E -r n B {x0 )} and to study the local 
+ 7 0/2 

behavior of A near such points. Notice that dist("Y*,BA) i "Y0/2 by 

the virtue of Lem~ 2. For convenience, we fix a point p E "Y* , and 

introduce a new coordinate system (y,y3 ) = (y1 ,y2 ,y3 ) such that 

(i) 3 
p = (0,0,0) E lR 

( ii) the ycaxis is the same as x 3-axis 

(iii) the (y2,y3) plane is the tangent plane of ao X !R at p 

(iv} e3 = (0,0,1) is the unit normal of ao X !R at p hence 

normal to A at p by Corollary 2 
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By Lerrm.a 2, Corollary 2, A locally, say over 

D0 = {y € m2 : lyi < o} , o = o(~0 .an) > 0 , can be represented as the 

graph of a c1 · 1 function u = u(y) (we still use u for the 

convenience). an X iR over Do can be represented as the graph of 

c?·a function w(y) = w(y2) Let us assume that 0 = 1 (This can be 

achieved by a sui table scaling in 
? 

!R'-' around the point p), 8.1!d let 

K v 2: w in 

Then one easily verify that u € K solves the variational inequality 

(1.3) 

where a. (Du) 
J 

(1.4) A(h} 

fl(h) 

h(y) 0} ' 

h(y) > 0 } , and 

F(h) = B(rt(h)) U o(A{h)) . 

One sees immediately that u(F(h)) ,* in B1 x IR . 

The remaining section will devoted to show "Y* is the graph of a 

c1 ·a- function over 

The first step is to 

, n B (x0 ) . 
+ 7 0/2 

show F(h) hence 

This is divided into two steps. 

'1'* is a cl,a - curve. The 

second step is to show 7* is a cl - graph over 7 n B (x0 ) 
+ '1'0/2 
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We recall the following result.due to L. Caffarelli and 

N. Riviere (see [C-R]) : Q € F(h) be as above, then either 

(i) 0 is the isolated point of F(h) and 

and < 2 
- Tj 

(ii) 0 is a point of positive density with respect to A(h) , and 

(iii) 

0 is a regular point of F(h) , i.e. F{h) n B (0) is a 
Tj 

c1 -curve , and h(y) = ay~ + o(yi + y;) for (y1,y2) E O(h) 
2 2 2 

yl + y2 ~ Tj 

Q is a point of zero density with respect to A(h) and in 

B11(0) , A(h) n B11(0) C ~ = {y,8(y,(±l,O)) ~ ~-l(h)) and 
2 2 2 h(y) = ay2 + o(y1+y2) , for (y1,y2 ) E fl(h) ~ C and 

(yl,y2) E BTI(O) . 

Here a, b, 11 are positive constants for the problem (1.3), (1.4}. 

We notice, in particular, that A(h) n B11(0) c ~l in the case 

(iii) where c 1 = {(y1 ,y2 ) E B11(0) : yl ~ ly2 1} · 



107 

1.4 Since u{F(h)) = 7* is the trace of a BV(O) function in our 

problem, we see that first case {i) never occurs. 

Therefore to show the c1 - regularity of F{h) , it suffice to 

show {iii) cannot occur. To do so, we consider the Jocabi-field 

equation on the minimal surfaces: 

{1.5) 

where IAMI 2 = square of the length of the second fundamental form of 

M , AM= the Laplace-Beltrami operator on M . 

In our coordinate system, we have V -u / jl+ldul2 which is a 
yl 

Lip function on O{h) , and such that 

in O{h) , V > 0 in O{h) 

{1.6) 

On cc1 
a we have U0 (y) = r cos a 9 , where a = 2/3 , is 

the angle between vectors (y1 ,y2 ) and (-1,0) such that 

(1. 7) 

0 . 

By the maximum-principle, we have 
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(1. in o:;1 !l BTJ(O) , for some t ) 0 . 

Then it is clear that V cannot Lipschitz continuous at 0 , thus 

we obtain a contradiction and hence we have - regularity of F(h) . 

By [K,N] , we have '* = u(F(h}) is a Cl,a- curve. 

1.5 Next we want to show "I*= u(F(h)) is the 

c1·a- function defined on '* 
,a graph of a 

To show this we argue by contradiction. Since 

Moreover u is 

uniformly in O(h) n B112 by If "* is not a uniformly 

- graph over we would obtain a point, say Q , on F(h) n D112 

such that, the second order "blow up" of h at 0 is of form: 

(1.9) 

That is, 

that 

On the other ha.nd, 

av a'#- 0 at 0 . 
y2 

we have, by (1.6) 

a2h 
Hence Byl,By2 (Q) 

and Hopt-boundary point Lemma, 

~ 0 . This contradicts to 

(1.9). Hence we have complete the proof of Theorem 1. 

§2 Surface with prescribed mean curv.ature 

2.1 Let 0 be a bounded c2 domain in R2 , and let H be a Lipschitz 

function on 0 . Consider the unique solution u (up to constants) of 
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(0.4) with H satisfying (0.5), (0.6). Let 01 ~ 0 with 

per (01) ( ro , then the set U = {(x1 ,x2 ,x3 ) € 01 X ffi : x3 ( u(x)} is a 

minimizer for the functional 

(2.1) 

That means that for every set V C 01 x m , coinciding with U outside 

some compact set K C 0 1 x m , we have 

(2.2) tiD~I~ + JK~dxdx3 
~ JK ID~ ldz + J/~dxdx3 

see [G2] for further discussions. 

Moreover, see [G2], if in a neighbourhood of x0 € an we have 

HanCx) < H(x) . then u(x) is bounded above there. Notice that u is 

always bounded below in this case, see also [G2]. Thus we can assume 

that u £ 0 Suppose there are positive numbers c0 , r 0 such that 

(2.3) 

for a point x0 E an . We want to show the restriction of u on 

B (x0 ) n an is smooth in the following sense. 
r0/2 

THEOREM 2 Let n be a bounded ~.a domain in m2 , and Let H be a 

Lipschitz function on 0 which satisfies (0.5), (0.6). Suppose 
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(2.3), then the restriction of u 

OORI.'JLI...i\RY 3 In Theorem 2, (i) 1-f 0 is Jc.a , and if H is 

Jc-2 ,a , then the restriction of u to B (x0 ) nan is Ck-l,a 
ro/2 

for k = 3,4, ... , 0 < a < 1 ; (H) if rl and H o.re ana!.ytic, then 

u is also ana.l.ytic on ann B. (x0 } 
1 0/2 

Corollary 3 again follows from Theorem 2, see [K,N]. To show 

Theorem 2, we follow the same arguments as in Section 1. 

Let Q be the multiplicity one integral. current in with 

spt(Q) ~ (BO n B (xo)) X ffi and aQ = T - Tu , where 
ro 

T = { 

* u (x) 

~·( . ) u x) 

r 
= 1 u(x) 

X € an} . Tu = {(x,u(x)) ; X € 80} . 

+ 1J(x) 

H X E an '\ Br (xo) 
0 

if x E B (x0 ) n a n . 
ro 

Here n(x) is a smooth function such that 0 ~ 1J ~ ?-!0 , and 

1J(x): MO =sup {u(x} : x E ann Br0 (r0 )} for x E Br0/2 (x0 ) n BO 

Then we have that, see [L,4] for the proof. 

LEMMA 3 A = [graph (u) + Q] n (B (xo) X ffi) is the unique integral 
ro 

current which minimizes 
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where ~$(x) is the slice < $,P,x> (~) , see [F,§4.2] , 

and a$ = aA . 

One follows exactly the same procedure as in section 1 to obtain 

the conclusion of Theorem 2. The only difference is the Jacobi-field 

equation, see [L,§5], here we have 

(2.4) 

1 
where V- and 

- ~1+1Dul 2 

However, estimates similar to (1.6) and (1.8) remain true. 

2.2 If H(x) : Han(x) in an open arc 2 C an , then lim u(x) +oo 

x~o 

uniformly in x0 € K CC 2 . This was shown by E. Giusti [G2]. This can 

be also deduced from Lemma 3 and the regularity of obstacle problems, 

see [L]. For if there is a sequence xi € K , with 

lim u(xi) = u(x0 ) < ro , then (x0 ,u(x0 )) will be a point of the support 
xi~O 

of the minimizer. One chooses a ball ann B (x0 ,t) moving up-wards 
-ro 

from t < 0 towards (x0 ,u(x0 )). (Here -r0 is small enough so that 

B (x,t) C K x ffi) . It must touch the free boundary at some point p 
-ro 

which may different from (x0 ,u(x0 )). Then locally at p we view 

vertical cylinder an X ffi and the graph (u) as graphs over the tangent 

plane of an X ffi at p Applying Hopf-Boundary point Lemma at p to 

obtain a contradiction. 
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2.3 Let us consider the Dirichlet problem 

·~] in !1 

(2.5) 
on ao 

Suppose that <p E c0 (aO) , and H is a Lipschitz function on Q which 

satisfies 

(2.6) IJAH(x)oxl < per(A) . for all <p #A c 0 , 

and 

(2.7) Han(x) L H(x) , for all X E an . 

Then (2.5) has a unique solution u E C0 (ri) n ~(n) . As in the 

case of 1), one asks the question that if (2.7) can be omitted when 

<p and an are smooth, and when <p is almost linear in some sense. 

The answer turns out to be N0 . One can easily construct, by using the 

generalized maximum- principle [GT, Thm 13.10], a smooth positive 

function H on a closed unit ball C ffin which verifies (2.6) 

(0 = B) ,and <p = constant, such that (2.5) is not solvable in the 

classical sense. One can also construct an example for which 

H = constant > 0 , 'I' = constant, and fl smooth such that (2.6) valid, 

but (2.5) is not solvable in the classical sense. This can be achieved 

by a suitable perturbation of spherical cap which contains a closed 

hemisphere, and the generalized maximum - principle of R. Finn. We 
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leave the details to reader, 

§3 The Parametric elliptic integr.al case 

3.1 Let <!i be at! elliptic parametric integral of constant coefficient 

in m3 , and let F = P§ be the associated nonparametric integral, see 

[F. §5,1], We consider the following problem: 

2 
,j_ F (Du) 

{ 
I 0 in Q 

(3, 1) i=l oxi pi 

ulan <P on an 

for a c2 . bounded domain n in m2 . 

The problem (3,1) is solvable, for each <f! E c0 (aO) , in the 

classical sense if and only if an is ~ convex in the sense that, 

when for each p E an X IR . one views an X IR locally as a graph of a 

function V over the tangent plane in the inward normal direction, the 

function V becomes a subsolution of the quasi-linear equation of 

(3,1), See for example [GT, chapter 13]. In general, one can consider 

the solution of the following variational problem : 

min I[u] , for u E BV(O) 

where I[u] = q; (11) ' A = graph (u) + Q ' fu'"ld Q is the part of an X IR 

enclosing by two curves {(x,<P(x)) : x E an} and {(x,u(x) : x E an} , 

(See section 1 for the related discussions), 
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Suppose the functional JnF{DV) dx is regular in the sense that 

(D~) > 0 . Then, as in [L,§4], one can easily show the following. 

LEMMA 4 There is a unique soLution of {3.2). Moreover, A is the 

unique ~ - minimizing integraL current whose support Lies in n X R 

and whose boundary is {(x.~{x)) : X € an} . 

We are here interested in the boundary behavior of u . Let a_(n) 

denote the part of an which is not ~ - convex, and ~+ , 7 be 

defined by (1.2). Then we have the following. 

THEOREM 3 Let n be a c2·a , 0 < a < 1 , bounded domain in m2 , and 

let ~ , 7+ , u (7_) be as above. Suppose x0 € 7+ (7_) so that 

an n B (x0 ) ~ 7 
~0 + 

(an n B7 (x0 ) ~ ~- , respectively) is a set of 
0 

H1 - measure zero, for some 7 0 > 0 . Then u restricted to 

ann B (x0) is a cl.a- function provided ~ is of class 
~0/2 

Furthermore its c 1·a- norm depends only on L00(an) norm of 

c2·a - norm of an . 

in 0 n B (x0) . 
~0/2 

7 0 , and ~- convexity of ~+ <~_) u 

2 

~ . 
is 

If, in addition, an is Ck·a or analytic, is Ck+l,a 

analytic, respectively, for k = 3,4, ... , 0 <a< 1 . Then u 

cl/2 

or 

restricted to ann~ (xo) is Ck-1,a or analytic respectively. 
r0/2 

3.2 For the proof of Theorem 3, Corollary 4 we refer to Section 1. We 

only need to remark that there is also a similar Jocabi-field equation 

which can be written as 
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(3.3) 0 . 

Here V = j1+1Dul 2 (See [SLl].) 

In the parametric setting. we have the following 

(3.4} 

see [A] for the details. 

The c1 • 1 - estimate for the corresponding obstacle problem was 

proven in [LJ. 
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