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ADDITIVE SET FUNCTIONS OF BOUNDED <P-VARIATION 

Igor Kluv{mek 

The notion of a function of finite p-variation was introduced by N. 

Wiener in [5]. It was extended by LC. Young who considered, in [6], functions 

finite (_!}-variation, where <J:l is an increasing function on [O,oo) . Young also gave 

sufficient conditions for the existence of the Stieltjes integral 

(0.1) 
b J fdg 
a 

in terms of the <D-variation of the function j and W-variation of the function g in 

the interval [a, b] . Such integrals vvere from this point of view subsequently studied 

by several authors including Young himself. Using a very interesting idea, A. Beurling 

improved Young's condition in [1]. However, this idea does not seem easy to generalize 

so as to cover additive set functions in abstract spaces; it uses the fact tha.t (0.1) is 

essentially integral with respec.t an additive set functions defined on sub--intervals of 

[a,b]. In this note, methods remotely akin to that of Beurling are presented for 

introducing and studying integrals with respect to set functions on semialgebras in 

abstract spaees. The interest in such enterprise stems from various, seemingly 

unrelated, sources: stochastic fields (processes with multidimensional time--'pa.rameter), 

spectral theory, Feynman integral and, possibly, others. 

1. Let Q be a semialgebra of sets in a spaee n . That is, Q is a sen1iring 

( cf. [2],4.6) such that n E Q . By a partition will be understood a finite family of 

pair-wise disjoint sets from Q whose union is equal to n . The set of all such 

partitions is denoted by TI . If the partition P' is a refinement of the partition 1 , 

we write 1 -< 1' . 

We shall abuse the notation by writing f(X) = {f(w): w c X} for any function 

f on n and a set X c n . Furthermore, the same symbol will be used to denote a 
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subset of n and its characteristic function. 

Let 1' t II . By a 1'--simple function is meant a function f on n which is 

constant on every set belonging to 1' , so that, in the introduced conventions, 

(1.1) != L f(X)X. 
Xt1' 

If 3 c II , then by sim(3) is denoted the family of all functions f for which there 

exists a partition 1' t 3 such that f is 1'--simple. If the set of partitions 3 is 

directed (by the relation of refinement) then sim(3) is an algebra of functions on n . 

We write sim(Q) = sim(II) . 

Let E be a Banach space and let p: Q--+ E be an additive set function . 

. For a function f t sim(Q) , given by (1.1), let 

p(f) =I fdJ-t = L f(X)p(X) . 
n Xt1' 

The additivity of f-t implies that the element p(f) of the space E, called of course 

the integral of f with respect to J-t , is uniquely determined by the function f. The 

set function fp,: Q--+ E defined by (fp,)(X) = p(Xf) , X t Q , is called the indefinite 

integral of f with respect to f-t. Clearly, if the function f is given by (1.1), then 

(!J-t)(X) = L J(Y)p(XnY) 
Yt1' 

for every X t Q. Also, p(f) = (fp)(n) . 

By a Young-Orlicz gauge we shall mean a continuous, strictly increasing and 

convexfunction, 4> , on [O,oo) such that 

(i) s-14>(s)--+ 0 as s--+ 0 + , and s-14>(s)--+ oo as s--+ oo; and 

(ii) there exists a number k > 0 such that 4>(2s) s k 4>(s) for every 

S t [O,oo) . 

The requirement (ii) represents what is called the (.6.2) condition for both the 

small and the large s . 
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Let <I>(s) = s for every s E [O,oo), or else let <I> be a Young-Orlicz gauge. For 

a set X E Q and a partition 1' E II , let 

v<I>(p,,1';X) = L <I>(Ip,(XnY)I). 
Yf.1' 

Let, further, 3 c II and 

v<I>(p,,3;X) = sup { v<I>(p,,1';X): 1' f. 3} 

for every X E Q . 

The set function v<I>(p,,3) , that is, X H v<I>(p,,3;X) , X t: Q , is called the 

<!>-variation of p, with respect to the family of partitions 3 . 

If v<I>(p,,3;n) < oo, then the set function p, is said to have finite <!>-variation 

with respect to the set of partitions 3 . The family of all additive set functionf! 

~: Q -1 E which have finite <!>-variation with respect to 3 will be denoted by 

BV<I> (3,E) . 

In the case when <I>(s) = csP, for some real constants c > 0 and p ~ 1 and 

every s f. [O,oo) , we shall write simply vp(p,,1';X) , vp(p,,3;X) and BVP(3,.E) instead 

of v<I>(p,,1';X), v<I>(p,,3;X) and BV<I>(3,.E) , respectively. Similar conventions will also 

be used, without explicit mention, in other symbols denoting some objects depending 

on <I> introduced later on. 

Finally, by BV00(3,E) is denoted the vector space of all additive set functions 

p,: Q -1 E for which there exists a constant k (depending on p, ) such that ltt(.X) I ~ k 

for every X belonging to a partition 1' from 3 . 

Let v1 (3,~) = v1 ( ~,3;!1) for every ~ f. BV\3,.E) . Then the functional ~ H 

v1 (3,~) , ~ f. BV1(3,E), is a norm under which the space BV1(3,.E) is complete. 

Similarly, let 

V (3,~) = sup{ I {(X) I: X f.1' f. 3} 
00 . 

for every ~ f. BV00(3,E) . Then the functional { H V (3,~), ~f. BV00(3,.E) , is a norm 
00 
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making the space BV00(3,E) complete. 

If <I> is an arbitrary Young-Orlicz gauge, then a norm can still be naturally 

introduced in the space BV<P (3,E) . In fact, it is usually done in at least two ways. 

Thus let 

for every e t BV<P (3,E) . Secondly, given a set function e t BV<P (3,E) and a 

partition 1 , let 

v;(1,e) = sup L (J(X) I tJ(X) I , 
Xt1 

where the supremum is taken over all functions (3: 1-) [O,oo) such that 

L w(fJ(X)) ~ 1 , 

X£P 

w being the gauge complementary to <I> (cf.[4],0) , and then 

According to the following proposition (c£.[4],3.31), the introduced norms are 

equivalent. 

PROPOSITION LL 

BV<P (3,E) such that 

The functionals 

for every e c BV<P (3,E) . 

and are norms on the space 

The space BV<P (3,E) is complete in each of these norms. 
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2. Let 3 c II be a directed set of partitions and 

Q::; = {0} u u p. 
~ Pt.3 

Let tt f. BV<P (3,E) . Then fiJ, c BV(j? (3,E) for every function f £ sim (3) . The closure 

of the vector space {fit : f f sim (3)} in BV<D (3,E) is denoted BV0 (3,tt) . Then 

BV(j? (3,t£) is a Banach space, being a closed subspace of BV,:p (3,E) . 

In the case of a (positive) measure, ,\ , the space BV1(TI,..\) consists of all 

measures absolutely continuous with respect to ). . Furthermore, the elements of 

BV1(II,..\) are canonically associated with certain functions (more accurately, 

equivalence classes of functions) on n , namely the ,\-integrable ones. So, the space 

BV\II,,\) is identified with L . In this section, those set functions tt , belonging 

to BV0 (3,E) , are isolated for which an analoguous identification of BV<D (3,t•) with 

a space of (equivalence classes of) functions on n is possible. 

PROPOSITION 2.1. Let L a.nd a be constants such that 0 < L < oo , 0 < a ~ oo and 

.:P( s)(j?(t) ~ L~( st) 

for every s E [O,oo) and t t [O,a) . 

Let tt E BV<D (3,E) be a set function such that Itt( X) I < a for every X r: Q3 . 

Let /\ be a measure in the space n such that ,\(X) ~ v0 (tt,3;X) for every .X e Q3 . 

Then 

(2.1) 

for every function f f sim(S) . 

The set function It will be called ( IP ,:::)-closable if the following statement 

holds: 
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If 0 £ sim(3) , j = 1,2, ... , are functions such that 

(2.2) 

and 

(2.3) 

for every WED for which 

(2.4) 

then 

00 

:E v i!J(=:,.t1 tt) < oo 
j=1 

00 

L f.(w)=O 
J 

j=1 

00 

L l~(w)l<oo, 
j=l 

n 
l . lf ·~ "I" f liD I (pl.::,, L .. 
n->oo . J 

J=l 

= 0. 

Assume that the set function p, is ( (!> ,3)-closable. By C(.u, <I> ,3) is denoted 

the family of all functions f on n for which there exist functions fj t sim(3) , 

j = 1,2, ... , satisfying condition (2.2), such that 

(2.5) 
00 

f(w) = L 0(w) 
j=l 

for every w f n for which the inequality (2.4) holds. By (2.2), the sequence {f.t-t} .00
1 J J=-

is then absolutely summable in the space BV<CP (3,E) and so, we define 

00 

This definition is unambiguous because p, is assumed to be ( <P ,=:)-closable. It is then 

immediate that 



(2.6) 
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00 

V~(:3,f /k) =in£ L V~(:3,fjfk)' 
j=1 

where the infimum is taken over all choices of the functions fj £ sim(2), j = 1,2, ... , 

satisfying condition (2.2), such that (2.5) holds for every w £ n for which (2.4) does. 

Functions belonging to £(f1,,~,3) will be called (f1,,~,3)-integrable. For each 

such function f we define 

Using the definition of £(f1,,~,3) and formula (2.6), the proof of the following 

proposition- the Beppo Levi theorem- is straightforward. (Cf. [3], Proposition 1.5.) 

PROPOSITION 2.2. If fj £ £(f1,,~,3), j = 1,2, ... , are functions satisfying condition 

(2.2) and f is a function on n such that the equality (2.5) holds for every w £ n for 

which the inequality (2.4) does, then f £ £(f1,,~,3) and 

This proposition implies, among other things, that 

{ffk: f £ £(Jt,~,3)} . Hence, if we identify any functions f and g from £(f1,,~,3) such 

that V~(3,(/-g)f1,) = 0, then the resulting space, denoted by L(f1,,~,3) , equipped 

with the norm f H V~(3,/fk) is linearly isometric with BV~(3,f1,) . 

Now, assuming that >. is a finite measure in the space n and f a 

>.-integrable function, let 

M;. (/,X)= - 1-J I d>. 
). (X) X 

if X is a >.-measurable set such that >.(X) > 0 , and M >.(/,X) = 0 if >.(X) = 0 . 

Furthermore, let 
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M). (J,P) = l: M). (j,X)X 
Xt'P 

for any finite partition 1' of n into >.-measurable sets. So, if X is a measurable set, 

then M;.. (j,X) is a well-defined number and, if 1' is a partition of n into 

>.-measurable sets, then M;.. (j,'P) is a 'P-simple function. 

If f is a 'P-simple function and 'P -< 1'' , then M). ( J,T') = f. 

PROPOSITION 2.3. Under the assumptions of Proposition 2.1, if 

for some number K > 0 , every f f sim(3) and every pm·tition 1 E 3 , then 

the set function p, is ( <P ,3)-closable and, for every function f E C(p,, iP ,3) , the equality 

holds in the sense of the norm-convergence in the space BV(!) (3,E) . 

For the description of an interesting class of examples, let p ~ 1 and 

iP(s) = sP , for s E [O,oo) . Let 1 be the algebra of sets generated by Q, that is, 1l is 

the family of sets whose characteristic functions are Q-simple. A set function Jt: Q -1 E 

vvill be termed p-scattered if the set function ). defined by 

for every X E 1l , is u-additive hence, generates a measure in n . In that case, 

(2.7) 

for every f t sim(Q) . It then follows that p, is (p,ll)-dosable, ..C(Jt,p,ll) consists 

precisely of all functions f on n over that flflp-l is ).-integrable and (2.7) holds 



97 

for every such function f. 

3. There are set functions of interest in analysis, belonging to BV(J) (3,E) , which 

are not ( i;!) ,3)-closable. In this an integration scheme, modelled on 

Proposition 2.3, applicable to some such set functions, will be described. 

Let J-t: Q _, E be an additive set function. Let :=: c II be a directed set of 

partitions containing the coarsest partition, { n} . Let ,.\ be a finite measure in the 

space n such that every set belonging to the semialgebra Q is .\-measurable. 

Let lC = lC(J-t,3)) be the family of all functions f t ! 1 ( ,.\) such that 

(3.1) 

Let J =J(J-t,3,A) be the family of all functions f E K such that the net 

{M)\(f,1')J-t}1 E 3 is convergent in the space BVJ)(3,E). For every fc J, the limit of 

the net { M;,. (/,1') J-l} 1' t 3 is denoted by jjJ, , that is, 

(3.2) ftt = lim M\ (J,7')J.t. 
1't3 .1\ 

This notation is legitimate because the following proposition implies that the element 

fJl of the space B~(3,E) is uniquely determined by the function f. 

PROPOSITION 3.1. The family of functions, lC , is a vector space and the functional, 

5, defined by (3.1) for every f f JC is a seminorm which makes JC complete. The 

family J is a closed subspace of JC and sim(3) is a dense subspace of J. The 

correspondence fH jjJ, is a linear map from J into BV00(3,E) such that V (3J/l) ~ 
00 

15(!; for every f.: J . 

Let B be the Banach space of all bounded nets of real or complex numbers, 

indexed by the elements of 3, with the norm defined by 

11!311 = sup{ I .81 1: 1' E 3} , 
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for every /3 = {/3p}p f 3 in B. Let C be the subspace of B . consisting of those 

elements which are convergent. Let LIM be a continuous linear functional on B of 

the norm equal to 1 such that 

LIM/3 = 1 im /3p 
Pc3 

for every /3 = {/3p}pc:=: belonging to C. 

Now, for every f f. K, we define the set function fJ.tLIM: Q3 _, B' by letting 

for every X t Q3 and x' t E' . The element (j1LIM)(fl) of the space £1' may be 

denoted by 

(3.3) ,ULIM(f) = jfdLIMf.t = J f(w)fJ(dLIMw). 
Q Q 

Then, clearly, the map jH ~tLIM(f) of }(, into E 11 is linear and I fJLIM(f) I s; sen for 

every f t K, . Furthermore, it is clear that, if f f J, then (JJJLIM)(X) = , for 

every X E Q3 , where fi! is defined by (3.2). Hence, for the functions in J, it is not 

necessary to indicate the functional LIM in the notation (3.3). 

Assume now that 3 is the set of all terms of a sequence, {1' n} n'::o , of 

partitions such that 10 = and 1 --< P +l , for n = 0,1,2,... . For a function n n . 
f f.£\>-) , let fo = MA (J,'P0) and 

i = n 

for n = 1,2, .... Then 

n 

L iy = MA (J,'P n) 
j=O 
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for every n = 0,1,2, .... Hence, if the partial sums of the sequence {f ntL} ; 0 are 

bounded in the space BV00(3,E) , then f f K(JL,3,A) . If the sequence {f nfL} n:,O is 

(simply) summable in BV00(3,E), then f f J(JL,3,A) . 

To express a sufficient condition for the function f to belong to J , let cp and 

'1/J be monotonic functions on [O,oo) such that cp(O) = '1/J(O) = 0 , and 

for every X f Q3 • If cp and '1/J are the least such functions, it is apt to call them the 

moduli of continuity of JL and f , respectively, with respect to A and Q3 . 

PROPOSITION 3.2. If 

00 

L L '1/J(A(Z)) L cp(A(ZilY)) < oo 

n=O Z€1' n y f1' n+1 

then f f J(JL,3,A) . In fact, the sequence {! nfL} ; 0 is absolutely summable in the space 

BV00(3,E). 

The condition of this proposition is satisfied, for example, if there exists an 

integer k > 0 such that, for every n = 0,1,2, ... , the partition 1' n+ 1 is obtained by 

dividing every set in 1' n into k disjoint parts of equal measure A, and cp(s) = i/P, 

'1/J(s) = i/ q, for every s ~ 0 , where p > 1 , q > 1 and p - 1 + q-1 > 1 . 
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