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SPECTRAL SYNTHESIS OF ORBITS OF
COMPACT GROUPS

Detlev Poguntke

This talk is a contribution to the spectral synthesis in L1 convolu-
tion algebras of noncammutative groups. Let us begin by recalling same ideas
and results from the much better understood case of cammitative groups. One
way to consider spectral synthesis is as the attempt to classify the closed
ideals in L1 () for a locally campact abelian group G (or even in more
general cammutative Banach algebras).

With each closed ideal I in L1 (G) there is associated a closed sub-
set of the structure space ! "= e , namely the hull h(I) := {)(Eél
Kern

1
L (G) A
hand, to each closed subset A of G one may form the kermel k(a) :=

x 2 I} . This is clearly an invariant of the ideal. On the other

A A

M Kern X = {f(—:L1 (G); £=0 on A} where f denotes the Fourier
X €A L1 @

transform of £ . It is easy to see that k(Aa) is the largest ideal I in
L1 (G) with h(I) = A . There is also a less cbvious way to associate an

ideal with A , namely
. 1 A A -
j@) := {f€L (G)|supp(f) is a campact subset of G~A} .

It turns out that Jj(A) is the smallest closed ideal I with h(I) =A .
The classification problem reduces to: Describe (the ideal structure of)

the algebra k(2)/j(a) for closed subsets A of é . The best possible
situation is, of course, that k(a)/j(a) is zero. In this case A is called

a set of synthesis or a Wiener set. The next better situation is that
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k(A)/j(a) is of finite degree of nilpotency.

The following is a sample of "classical results":

i) The empty set is a set of synthesis.
This is one way to formulate Wiener's approximation theorem, proved by him
is the case G =R .

ii) All sets A with "scattered" boundary are sets of synthesis.

iii) The 1-sphere S1 in ]R2 is a set of synthesis (C. Herz).

© iv) The 2-sphere S° in R is not a set of synthesis (L. Schwartz).

N. Varopoulos showed, more generally, that the n-sphere s in Rm'1 has
the property that k(s™)/j(s™) is of finite degree of nilpotency, and the
degree is [g] +1.

v) For each non campact G the dual e contains at least one closed
subset which is not a set of synthesis (P. Malliavin). |

Later, Y. Domar and other Swedes as well as D. Miller from Bielefeld
considered various submanifolds of R .

The investigations of spectral synthesis in the case of nilpotent Lie
groups were started by my colleagues H. Ieptin and J. Ludwig. The "hull h"
(of a closed two sided ideal) and the_"kernel k" can be defined for the
convolution algebra L1 (N) of a noncommtative group N as soon as one
agrees what the structure space of L1 (N) should be. In the case of a simply
comnected nilpotent Lie group (and this is the only case in which we will
present some results) there is only one reasonable candidate: The space
Max L1 (N)  of maximal closed two sided ideals coincides with the space
Priv L' (N) of primitive ideals, and Max L' (N) is in bijective correspond-

A A
ence to the unitary dual N via the map N3 [n]->ker T € Max L1(N) .

i)

For a closed two sided ideal I in L1 (N) one defines

h(I) = {[n] €N | Icker ;T
L
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and for a closed subset A of ﬁ one defines

k@) = [V ker

T .
[nl1€a il ™)

The first result is due to Leptin, [4], who showed. that L‘I (N) is the
only closed two sided ideal I such that h(I) is empty. In other words,
the empty set is a set of synthesis. While it is txivial that k(Aa) is the
largest ideal I with h(I) = A it is much less cbvious that for each
closed subset A of I/\} the set of closed two sided ideals I with
h(I) = A contains a smallest element. The existence was established by
Tudwig, [5], using Dixmier's symbolic calcuius, see below. This smallest
element is again denoted by j(A) . Ludwig also proved, [7], that k(B)/j(a)
is of finite degree of nilpotency for each one point subset A of f\\l .
Examples showed that the degree can be larger than one. In other words, it
is not even true that points are always sets of synthesis; finite degree
of nilpotency seems to be the best result one may hope for.

My interest in questions of spectral synthesis comes from attempts to
classify the algebraically irreducible representations of L‘I (G) for a
solvable connected Lie group G or, more general, to classify the so-called
topologically campletely irreducible representations, TCI fof short. One
can attack this problem by doing a "Mackey type analysis" using the restric-
tion of the representation to the nilradical N of G . To be more specific,
one tries to describe the kernels of such representations in L1 (N) . Origi-
nally, I planned to apply the following result of Dixmier, [2], which is
true, by the way, in much larger generality:

If m <s a TCI representation of G in E then the annihilator
® of the ¢ vectors of E 1in the universal emveloping algebra it of

N <s a prime ideal and the hull h(p) of § in the primitive ideal space
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of Wn is the closure of a T-orbit where T denotes the (complex) Zariski

closure of the adjoint group of G .

If in addition n is uniformly bounded and hence a representation of
L1 (G) then clearly § * D(N) is contained in ker T where D(N)
denotes as usual the compactly supported c ﬁmct?or(g)on N . I wanted to
show that § * D(N) is a "substantial part" of kerL1 (N)n - whatever that
means. The weakest useful information in this direction, as far as I can
see, would be that h(yx) is the closure of a I'-orbit through a point in
1/\\1 . Observe that I/\\I can be canonically embedded into the primitive ideal
space Priv iin of 1ln , the image consists of the self-adjoint primitive
ideals. I was unable to prove even this weak assertion directly. In full
generality, it is still an open problem, see also below. Therefore, I was
locking for other methods. I discovered that by same other considerations
I could prove what I first wanted namely that for each algebraically irreduc-
ible representation m of L'(G) the annihilator ker , m in L'(N)
is the kernel of the closure of a G-orbit in 1/\\1 providgd(li])would know the
following result:
THEOREM Let N be a simply comnected nilpotent Lie group, let T be a
eompact abelian group of automorphisms of N , and let U be a connected
group of unipotent automorphisms (i.e. unipotent as transformations on 1)
of N . Suppose that T mnormalizes U . There exists a natural number
m depending only on N with {k(a)/j(B) =0 for each T < U-orbit A
in I/\\I .
A detailed proof of the Theorem can be found in [8].

Concerning the above stated "open problem" it is finally true that
h(p) is the closure of a I'—orbit through a point in 1/\\1 in the case of an

algebraically irreducible representation. But the proof is anything else but

"direct". Moreover, it doesn't work in the case of general uniformly bounded
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TCI representations.

In the following I will try to explain the strategy of the proof of the
Theorem. This strategy leads to certain properties, later called (I) - (IV),
of closed subsets of I/\} which can be studied separately. I will formulate
these properties and I will give some comments to them. A always denotes
a closed subset of I/\} .

PROPERTY (I) k(A) N D(N) is L'-dense in k(a).

The main reason to introduce (I) is the following

OBSERVATION  For every connected nilpotent Lie group N there exists a
nurber m such that {k(a)/j(a) ¥ =0 for all closed subsets A of I/\\I
satisfying (I).

Iet us recall the basic facts of Dixmier's symbolic calculus, [1], which
is crucial for the proof of the observation. There exists a number d depend-
ing only on N such that for every campact neighborhood V of the identity
in N the Haar measure of V® is O(m%) as n -« (the Haar measure is
of polynomial growth). Each r-times, r :=d + 4 , continuously differentiable
function ¢ : R - ¢ with compact support and with ¢(0) = O operates on
selfadjoint functions £ = £* in D(N) in the following sense: There exists
a unique element «¢{f} € ! (N) with t(p{f}) = @(r(f)) for all =t € 1/\\1
where o(+) is the usual functional calculus in C* algebras. Moreover,
it was shown in [1] that for each f£ = f* €D(N) there exists a family F
of compactly supported r-times continuously differentiable functions
@ : R-» ¢ vanishing in a neighborhood of - O such that the rth convolution
power £f5 can be approximated by o{f}, @ € F .

Now, suppose in addition that £ = £5€D(N) is contained in k() .

The construction of j(B) , see [5], shows that {£} is in j(a) for
©€F . It follows that £ € j(&) for all £ = £*€D(M) Nk(a). Then a

little algebra gives that the same is true for all £ € D(N) N k(&) . Since
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D(N) N k(a) is dense in k(A) by assumption one gets f£°€7j(a) for all
f € k(A) . Finally, a purely algebraic theorem of Nagata-Higman implies that
K@/ =0 with m=25-1=2%_ 1,

It is very easy to establish property (I) in the case that N is com-
mutative, i.e. isomorphic to R , and that A is the orbit of any compact
group, say K . Since this fact is not contained in the literature as far
as I know I include the short trivial proof although at present I see no
way to generalize it to the noncommutative case. The method doesn't work
already in the case of K 1< U-orbits where U is, in the spirit of the
Theorem, a connected group consisting of unipotent autamorphisms normalized
by K . Evidently, the assumption in the Theorem that T is abelian is very
unnatural.

To prove the above claim it is sufficient to establish that
k(a) (o) NDMRY) is dense in k(a) (o) for all 061/2 where E(c) denotes
the o-isotypic component for each K-space E . We fix o and choose a con-
crete realization of o by matrices, o(k) = (aij k) , i,j = 1];...,D =
dimo . Iet y = Xg 3 K - ¢ be the character of o, i.e. x(k)=‘z aii(k) ’

(0) i=1

and let p := Dy . For f€L1GR11) one has

A |‘ A1
f(x) = Jp(k)f(k x) dk for
K
A A
all x€N=(an) . If A=Kx0 this gives in particular

A B |'> A=
f(mxo) = Jp(k)f(k mxo) for m€EK .
K

D
Since x(@k) = ¥ a,.ma., (k) it follows that
t= 2R



253

A D [ AL -1
f(mxo) =D Z._ aij (m) Jaij x)£(k Xo) dk .
i,3=1 R

(o)

This equation shows that for £ € L1 &™) the finitely many conditions

A -
Jaji(k)f(k 1xo)dk =0 for i,j=1,...,D are equivalent to £ € k(a) .

K
Hence k(a)'?) is of finite codimension in L @) . since D@ () is

dense in L'®) (®) one concludes that k() ) nD@®Y is dense in
k@ .

How can we establish (I) in the case of non-commutative groups? Even
in the case of points it is not evident from the definitions that
kerL1 m ND(N) contains any non-zero function. Here the original idea to
use the universal enveloping algebra enters the scene again. By its help
one can construct elements in k(A) N D(N). As I mentioned above I,\} can be
considered as part of the primitive ideal space Priv lin : If w is an
irreducible unitary representation of N in # then the annihilator
-ker m_ of the associated representation n_ of Im in the space of c® -
vectors in H is a primitive ideal. For A in I,\\T the ideal k_(A) in

in is defined by k_(A) = kerm . We consider

)
[n] €A
PROPERTY (II) k_(A) x D(N) is L'-dense in k(a) .

Clearly, km(A) * D(N) is contained in k(A) N D(N), hence A satisfies
(I) if it satisfies (II). One should take note of the fact that (II) is a
very strong property. In general the hull h(km(A)) in Priv iln will be

1
much larger than A , even the hull of {kw(A) * D(N) } L' ()

A
in N which
A N

is the intersection of h(k _(A)) with N will often be larger than A .

A ;
But the equation A = h(koo(A)) N N is a necessary condition for (II). This

. A
equation means that A is an "algebraic subset" of N , more precisely, via
the Kirillov picture A corresponds to a Zariski closed N-invariant subset

of n* ,



254

To verify (II) in some cases> we introduce the properties (III) and

(IV) where S(N) denotes the space of Schwartz functions on N .

PROPERTY (III) k_(A) * S(N) is S-demse in k(B) N S(N) .

PROPERTY (IV) k(&) N S(N) is L'-dense in k(a).

Tt is evident that if A satisfies (III) and (IV) then it satisfies (II)
and hence (I). To summarize we have reduoéd (I) to property (IV) which is
weaker because there we are dealing with Schwartz functions instead of test
functions. But the prize to pay is that in addition we have to verify the
"smooth-harmonic-analysis-property” (III).

COMMENTS TO (III)

The case of an abelian N (==]Rn) was studied by 6ne of my students. He
proved that (III) is true for all regular algebraic varieties A . If in
addition A is campact one even has that k (A) * S(N) is equal to
k(@) n S(N) .

For arbitrary nilpotent Lie groups N the best result I know is that
(III) is true for A being an orbit of an abelian compact group, see [8] .
The proof goes as usual by induction and is somewhat lengthy and tedious,
hence it is not repeated.The commutativity of the transformation group was
used at several points. It seems to me that the most crucial use was made
in the proof of the following
PROPOSITION ILet u be a real nilpotent Lie algebra, let K be a compact
group acting from the left homomorphically and continuously on 1 by Lie algebra
automorphisms, and let 5 be a non-zero K-invariant subspace of the center
of . Suppose there is given a self-adjoint maximal ideal Q <in the complex
universal enveloping algebra WUn . Let H be the stabilizer in K of the
maximal ideal A :=Q N Wz <n W3 (of codimension 1).

Then
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N Be= N %o+ am .
heH X €K

In [8], I proved this proposition only for abelian K because I
applied a result of Borho on the structure of certain quotients of universal
enveloping algebras of solvable Lie algebras. Meanwhile, I found that the
proposition is a more or less immediate consequence of a simple lemma. I
include the proofs of the lemma and of the proposition.
LEMMA Let K be a compact group, let H be a closed subgroup of K , and
let E be any complex vector space. Suppose that there <s given a complex
subspace B of the space M(K,E) of all functions from K <into E satisfy-
ing the following conditions:
(7) B <s tnvariant under left translations with elements x € K , Z.e.
if £ €B then also xf defined by (x£)(y) = f(x_1 y) belongs to B .
(72) B <s the union (or sum) of finite dimensional K-invariant subspaces
on which K acts continuously.
(i21) B is invariant under multiplication with elements in the ring
R(K/H) consisting of all representative functions on K which are constant
on cosets modulo H .
Then the subspace By of all functions in B vanishing on H <Zs equal to
RO(K/H)B where RO(K/H) denotes the ideal of all elements in R(K/H)
vanishing at eH .
PROOF  Clearly, RO(K/H)B is contained in BH . S0, let f € BH be given,
and we may assume f # O . By (ii), there exists a finite dimensional K-
invariant subspace W of B containing £ . £ lies» in the subspace
v :=BHnW of . W. On W, there exists a Hilbert space structure <,>
such that K acts by unitary operators, and we may suppose in addition that
<f,f> = 1. Hence there exists an orthonormal basis :E1,...,f

! fr+1""'fn

of W such that f=f1 ; f1,...,fr is a basis of V , and fr+1"“'fn
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is a basis of V.‘LCW. Tet's write down the action of K on W in the
chosen basis:
There is a homomorphism o from K into the unitary group U(n) ,

a(x) = (aij(x))i,j ; such that

n &
xfi =j§1 ajj_(x)fj for all x €K,
or
-1 n
f.{x y)=Xa. (xf.(y) for all x,y €K .
1 =1 Ji J

Putting vy =e and 1= 1 we get in particular

£ =% a., £ ()
b4 —j=1 a.j,lX je .

As fj(e)=o for j <r one even has

-1, _
£(x )—jfr aj1(X)fj(e) .

For £ =1,...,n let

\pﬂ(x) = 34 (x—1)a£k(x) , XEK

n
x
k=r+1

Clearly, ¥ 2 is contained in R(K) . In fact, it is one of the matrix
coefficients of idy € Hom¢ (V‘L,V‘L) considered as a subspace of the K-
module Hcm¢ (W,W) which proves that ¢ 13 sits in R(X/H) . This can, of -
course, also be verified by a direct computation:

1

V,xh) =3 ay ()a wlxh =

k>t
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=3 XXz -1 =1
oor i § 2es®ay M Ha, &)

But ¥ aik(h)akj "y is 1 for i= j > r and zero otherwise. Since
k>r '
31 () =0 forall k>r, ‘”z is even contained in RO(K/H)

The proof is concluded by showing that

0
£=£f =% y,f
17,7, Vete

n -1 -1
r WiE)x) =X £ I (x Na, x)a.,(x )f.(e)
— L Lior 3 K £ %50 j

. -1, _ .
Since iazk(x)ajz(x ) = 6jk , one cobtains

n -1
T WE)x) = T g (x )E (e) = £(x)
1= AL e k

PROOF OF THE PROPOSITION To apply the lemma let E := lin/Q be the quotient
algebra and denote by v the quotient homomorphism Iin - E . Define

po:in - MK,E) by u(u)(x) := v(x—1u) . The image B of u clearly satis—
fies (i) and (ii). Concerning (iii) one cdbserves that u(l2) multiplies B .
Since 9 and hence A is self-adjoint it turns out that u(lls) is equal
to R(G/H) . Pedantically, one has u(liz) = R(G/H) ® e , where e denotes
the unit elements in the algebra E .

The lemma gives
By = R,(G/H)B = u(A)u(lin) = u(hHn)

because RO(G/H) equals to p(A) . Taking preimages one gets Aln +kery =

= u_1(BH) = {uEiInlxu €kerv for all x € H = N¥*a . As kerpu= N *a
X€H XEK
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the desired equality follows.
COMMENTS TO (IV)

As I pointed out in ﬂle discussion of (I), in the case of an abelian N
property (IV) is satisfied by orbits of compact groups. For arbitrary nil-
potent Lie groups, again the best result I know is that (IV) holds true for
orbits of compact abelian groups, [8]. To give some flavour let me briefly
discuss the case of a one element set A = {[n]} . The following considera-
tions are dué to Ludwig, [6]. A basic tool is Howe's description of the
quotient space S(N)/kerm NS(N) , [3]. There exists a realization of =
in LzaRn) such that for f € S(N) the operator w(f) is given by a
kemel Kg € S , (n(D8) () = [ Ko eyEdy for €€ 1*a . The

®

mp f - Kf is a surjection form S(N) onto S(IRzn) , it is continuous
w.r.t. the Fréchet space structure and it allows a continuous inverse. Clear-
ly, the map is multiplicative if S(R?") is endowed with the multiplication

(P * Q) (x,y) = J P(x,z)Q(z,y)dz .
®

To prove that kerw NS(N) is dense in kern we take a bounded linear
functional cponL1 (N) with o =0 on kerm NS(N) , and we claim that ¢
is zero on kermn . First, we regularize ¢ using arbitrary functions
p./g € S(N) , i.e. we consider the linear functional £ - @(p*f*qg) . We claim
that this functional is even C*-continuous. By Howe's theorem there exists

a tempered distribution o' € SC[Rzn)' with
o(f) = o' (Kg)

for all £ € S(N) . From the known structure of tempered distributions, see

e.g. L. Schwartz, Théorie des distributions, it follows that there exist a

continuous function @, € L2 (IRzn) and a differential operator D on ZIR2n
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with polynomial coefficients such that

©'(g) = Jf Dg (x,y)@_ (x,y)axdy
]R2n

for all g € SClen) .

In particular, one gets

e(prfxq) = @' (Kp*f*q) = w'(Kp*Kf*Kq) -

, IIEID (Kp*Kf*Kq) 1, y)o, (x,y)axdy =

P —

J

M3

1 Jzn(Pj*Kf*Qj) (x,¥)o, (x,y)dx dy

with same functions Pj’ Qj € SaRzn) depending on Kp' Kq and D . Now

it is elementary to deduce that
lo(pxfxg) | < E |l n(£) ||

where E is a constant depending on P/d/0, and D . Clearly, this inequal-
ity holds true for all £ € L'(N) , in particular for £ € kern. It follows
that o(ptkern*g) = O for all p,qg € S(N) and hence ¢(kerw) =0 as
desired.

Anapplication of this method to more general A depends heavily on a
description of the quotient S(N)/k(A) NS(N) . This can be done in a satisfac-
tory way for A being an orbit of a compact abelian group, [8], and possibly
for orbits of arbitrary compact groups.

The reader may wonder why I claimed the theorem for T <xU-orbits while

I only said that (III) and (IV) are true for T-orbits. In fact, I can prove
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(ITI) and (IV) only for T-orbits which gives that (II) is txue for T-orbits.
But (II) is also true for Ti<xU orbits in I/\§ . To prove this one applies
(IT) to T orbits in the dual of a certain semidirect product U < (NxN)
and does same camputations in universal enveloping algebra, details can be
found in [8].

Let me summarize and conclude with some remarks. First of all, very
little is known on spectral synthesis in L1 algebras of nilpotent Lie groups,

‘not to speak about more general groups. What we have seen is just the peak
of a possible iceberg. We have discussed a certain strategy to attack the
spectral synthesis problem leading to four properties (I) - (IV) which can
be investigated separately. This strategy is very close to algebraic varie-
ties. By analytic continuation the next step might be the study of orbits
of arbitrary compact groups or of more general algebraic groups. Also the
complement in 1/\\1 of the points in "general position" is a reasonable candi-
date for further investigations.

Since the original problem has nothing to do with algebraic varieties
it is also possible that - as in the case of abelian spectral synthesis -
completely different mathematical weapons give better results.

At the end I would like to mention a related
PROBLEM Let N be a connected nilpotent Lie group on which a connected
solvable Lie group G acts. A closed two sided G-imvariant ideal P in
! (N) <s called G-prime if for all G-invariant two sided ideals 1 and J
in ! (N) the inclusion IJ < P <mplies that I or J s contained in
P . It is true that each such P 1is of the form P = K(Gm) for a certain
me 1/\\1 ?

The answer is affirmative if G is a unipotent group. A positive solu—
tion would have consequences for the classification of uniformly bounded

TCI representations of solvable Lie groups.
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