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HANKEL OPERATORS ON THE PALEY-WIENER SPACE IN DISK

Peng Lizhong

1. INTRODUCTION

In [12], Rochberg has studied the Toeplitz and Hankel operators on the Paley-
Wiener space in one dimension, and has got the characterizations for the Schatten-
von Neumann class S, criteria. In the end of [12], Rochberg proposed what are
analogs of the results in several dimensions. In [11], Peng has studied the case of
cube I* = {£ e R?: —w < {; <, j=1,...,d}. In this paper, we study the case of
disk D = {{ e R?: [¢| < 1}.

Let D denote the unit disk in IR?, and let x, denote the characteristic function
of D. The Paley-Wiener space on the unit disk, PW(D), is defined to be the image

of L*(D) under inverse Fourier transformations F~1, i.e.
(1.1) PW(D) = {F (xof): f € I¥D)} .

Let P, P, denote the projections defined by (P1g)” = x5§ and (P2g)” = X2pd,
separately.

The Toeplitz operator on PW (D) with symbol b is defined by
(1.2) To(f) = Pi(bf), for fe PW(D).
And the Hankel operator on PW (D) with symbol b is defined by
(1.3) Hy(f) = Py(bf), for f € PW(D).

Because PW(D) is preserved when taking complex conjugates, these two operators
on PW(D) are unitary equivalent. But as they have properties similar to those of
classical Hankel operators (see below), we prefer the name Hankel operators in both

cases.
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Note that Ty = T'p,p, so we assume that suppi) C 2D throughout this paper.

Taking Fourier transform, we get

(1) O = [ 5 = nxo(@xotmFon dn

This turns out to be a paracommutator. But as in the case of cube, it can not be
dealt with in the framework of Janson and Peetre [4].

Our idea is the same as that in [11], that is to give a decomposition of D, then to
define a kind of the Besov spaces B;'?(D) so that they characterize the Schatten-von
Neumann class S, of Tj.

As is well known, the disk multiplier is bounded only on L?(IR?). It is quite
different from the cube multiplier. Our results on the Schatten-von Neumann class
criteria of Hankel operators on PW(D) are also different from either classical case
or the case of cube. In fact we get the necessary and sufficient condition of T € S,
only for 1 < p <2, that is Ty € S, if and only if b € Bﬁ’p(QD). For 2 < p £ o0, we
get only the necessary condition. (See below Theorems 3.1 and 4.1.)

Note that

etlel ezl

(1.8) ﬁ($)=a'|xi3—/2+b|x|—3/z+0(lwl_5/2), || = oo,

it is interesting to point out the index % is different from either that of classical case
or of the case of cube, but is same to the degree of principal part of X, (z).

The sufficient conditions of 2 < p < oo are still open.

In §2, we give a decomposition of D, define a kind of Besov spaces of Paley-
Wiener type B (D), and discuss their elementary functional properties. In §3, we‘

prove the sufficient conditions for 1 < p < 2. In §4, we prove the necessary conditions

for 1 <p<oo.

2. BESOV SPACES B34(D)
Let Sp = {f € S(IR?) : supp f C D}, S = {f € §'(IR?) : supp f C D}, and

let I denote a kind of fractional integration operators defined by

(I €)= 1= KN /&), foroecR, feSy.
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Definition (2.1). For 1 <p< oo, S€R,

Hy(D) = {f € Sh |l = I fllz» < 0} .

It is obvious that I° maps Hj(D) isomorphically onto H;~?(D), and that
HY(D) = PW(D).

To define a kind of Besov spaces of Paley-Wiener type on D, we give a decom-
position of D as follows.

Let Qji, = {re’® € D : 4971 < 1—r < 4/, (kj — 1)2x < 6 < k;20x}, for
i=-1,-2,..,k €{1,2,...,277} Qop, = {re?? € D:0<r <2, (kg —)mr <
0 < kom}, ko =1,2, thus
2.1) D= | Qi vheeZ_={0,-1,-2,..}.

kje{lif.?z_-i+1}
Each @Qj; has its height 3 x 47—1 which is comparable to the distance from the
boundary, and has its length r2/7 which is comparable to the square root of the

distance from the boundary.

Definition (2.2). Let ®(D) be the collection of all test function systems {w; x; }
such that

(i) supp@jk; C Qjp, ={re? € D: 3 x 41 <1—r <3 x4, (kj—3)2/n <6<
(kj + 3)27x},
(i) @jr; 20, Px;(6) > C > 0for £ € Qjix;, Pjik € C5°,
(iii) C1 < 3 @jk; (€) < Cp for £ € D.

Moreover, we can also require that ) 3; . (§) =1for £ € D.

Definition (2.3). Let s € IR, 0 < p,g < o0, {pj;} € B(D).

1

B:4(D) = {f € S - | fllsecm) = [ T @ w] " < oo} .

JE€Z_
Ej€{1,.. 2—i+1y

The followihg Theorem contains some of the elementary functional properties of

B29(D).
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THEOREM (2.1).
(i) ByU(D) is a quasi-Banach space if s € IR, 0 < p,¢ < oo (Banach space if
1< p,q < ), and the quasi-norms "f”g;,Q(D) with ¢ € ®(D) are equivalent.
(i) By*(D) = Hy(D).
(iii) Sp C Bp¥(D) C Sp.
(iv) If p,q < 0o, Sp is dense in By4(D).
(v) Yo € IR, I? maps B;'%(D) isomorphically onto By~%(D).
(vi) (By9(D))' = B;*¥(D), for SER, 1<pg<oo, L+ =1, 14 L=
(vii) (Bjo®(D), Byt (D)) = B2" (D), for so,81 € R, 1< po,p1,90,¢1 < 00,

0<0<1,s"=(1-06)s+ sy, 1_’1'7=15_5£+}%’ ql_*=l:‘i+_9_'

Proof. All of the conclusions can be proved similarly to the ones of classical case.

(See, e.g. Peetre [7], Triebel [15], also cf. Peng [11] for (vi) and (vii)). D
We can also define By?(2D) similarly according to the decomposition of 2D:
2D = Z Q;,kj 9
i€z

kj€{1,2,.., 23 1}
where Q) . = {ree2D:2x 41 <2-r<2x4/ (k;-1)27r<6< k;2ir} for
J==1,-2,..., kje{L,2,...,277}, @, ={re? €2D:0<r< %, (h—1)7 <
6 < kom}. And By?(2D) have the properties in Theorem (2.1).

3. SUFFICIENT CONDITIONS FOR 1 <p<2.

We adopt the notation of Janson and Peetre [4] for ||k(¢,7)||s,(wxv). Extending
the definition of T}, we consider T;** defined by

G FTE= [ Ke-na - - Do @xet i dn,

for s,t € IR.

THEOREM (3.1). Suppose that 1 <p <2, b€ By?"(2D). Then Ty € Sp and
(3.2) ITlls, < Cllell

LR

‘We need two lemmas.



177

LEMMA (3.1). Forbe S, T, € S; if and only if b € 33'2(2D) and that

(33) ITols, = 1l 3., -

Proof. According to Janson and Peetre [4], we have
I3, = [ 16 - mxo(©xotml aéan
= / |i)(§)l2(2arcsin%w/4 —Jé? - J_S.L J4— |§|2> de
2D

= [ o a—leh? ag
2D

=[oll? s
HE(2D)

~ |I5||? .
1% 4

LEMMA (3.2). Fbe B 9'(2D), 5t > —1. Then T € S, and that

. Sie < C|b .
(3.4) 1T, lls, < Cl ”B;“"“;‘"(zo)

Proof. Let {¢;1;} € ®(2D) such that } jez_ @ik;(§) =1 on 2D. Then
}

kje{l,z,.“,z—.i+1

3 [15(¢ = )5 (€ = m)(1 = [€])* (1 — 11| 5, (o 1y

j€z_
kj €{1,2,...,2—i+1}

= E : Ij)kj °
JEZ_
kj€{1,2,...,2—i+1}

175115,

IA

If 7 < =10, let us estimate I. j,k; as follows. Note that
supp Bk, C Qi

= {rewGZD:gXALj"l <2—-4< g ><4j, (kj—g-)szSGS(kj+%)2jﬂ'} ,
if & {rie?® 1 1—r; <492 (k;—4)277 < 6; < (k;+3)277} orn & {rae’® : 1—ry <
492 (kj —4)2m + 7 < 0, < (kj +3)27m + 7} then ¢ — Q—’-;’kj.

Thus we have, by Lemmas 3.1 and 3.3 of Janson and Peetre [4],

i+2 2
Ligy <Cllbx ikl > > A—1eD°(1—- 7D*15, 01, 0, x@1y 000
*

li=—0 lg=—00

(where Ql,kj = {Tew 4t <1 < 41, (kj — 4)2j7l' <8< (kj + 3)2j7r}, k; =277 4 kj)



178

42 42 . .
< Cllb* pjn; Z Z ghe ., gbt, (411 . 2])1/2 . (412 . 2])1/2

ly=—o00 lg=—00
= C4j(s+t+§)"b* @ikl -
If j > —10,
0 0 . ’
Lig SCllbxgsnln D, Y 44045 (2m-48)72 . (2r - 42)1/7
li=—o0 lyg=—00

< Clb* Pi,k; ll1

< Dbx ol -
This completes the proof. D

The proof of Theorem (3.1). Theorem (2.1)-(vii), Lemma (3.1) and Lemma (3.2)

give the proof of Theorem (3.1) by complex interpolation. D

4. NECESSARY CONDITIONS FOR 1 < p < oo.

The necessary conditions can be treated in more generality.

THEOREM (4.1). If 1 < p < oo, b € Sy such that Ty"* € S,, then b €

s o
BV % P(9D), and

4.1 Ol ,ae o< oTs, -
(4.1) I “B,+ iy S 1T, " |ls,

Proof. Suppose that {p;r} € ®(D). Let Pj;; denote the projection defined by
(Pik;9)" = Xg,,, §-
Since {P ~,kj} are joint at most 9 times we have
62 IR 2C Y IPmT Pl . (= k427,
JEZ._

kje{1,2,.“,z—j+1}

Let

B (©) =47 [y (€)1 = I+~ )iy ()

It is easy to show that
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@) suppzﬁj,ki Clre?®:Ex471<2-r< Exd4l, (kj—32)2m <6 <(kj+ 5)2in},

(i) Pjx; € O, ik =0 and

Pin; ()2 C >0 forée{re®:2x471<2-r<2x4,

(kj — 2)29m < 6 < (kj + $)2n},

(i) Cy <Y sem. ik, (€) < Cyfor £ € 2D,
1}

kj €{1,...,273F
therefore {1;k; } can be used to define Bj»4(2D).

Now we claim that

8 i(s 2.
(4.3) Pik; T Piis s, > 47020 [b b Il -

" In fact, for p = 1, it is true by Lemma 3 of Timotin [16]. For p = oo,

4 b o 1 ()

—25
=475 ok, Ty s -

< CllPj; T, P Nl s

So by interpolation, (4.3) holds.
Finally, (4.2) and (4.3) imply (4.1).
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