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Induced Representations of Crossed Products 

by Coact ions 

KEVIN MANSFIELD 

§O Introduction 

Let 6 : A -+ M(A Q9 C;(G)) be a coaction of a locally compact group G on 1), 

C*-algebra A. Then for any closed normal amenable subgroup H of G we define a 

coaction 51 : A -+ lIf(A Q9 C;( G / H)) of G / H on A. We present dense *-subalgebras 

of the crossed products A x 6 G and A X 81 (G I H) and use these to obtain a process 

whereby representations of A. X6 G may be constructed from those of A. X81 (G / H). We 

then classify those representations ofAx8 G which can be obtained in this way. In 

other words we exhibit an induction process and formulate an imprimitivity theorem 

for it. Finally we examine an elegant reformulation of Green's imprimitivity theorem 

suggested by the above results. 

Proof of these results is to be found in my doctoral thesis, [8 J. 

§1 Background 

Firstly we establish some notation. B("7--l) will denote the bounded linear opera­

tors on the Hilbert space 'H. and K('H.) the closed ideal of compact operators on 11.. 



182 

G will be a locally compact group with )..a and Pa the left, respectively right regular 

representations of G and Ll(G) on B(L2(G)). C*(G) will denote the group C*-algebra 

of G and C;(G) the closure of Aa(Ll(G)) in B(L2 (G)). For a C*-algebra A, Cb(G,A), 

Co(G,A) and Ce(G,A) will denote the continuous functions from G to A which (i) 

are bounded, (ii) vanish at infinity and (iii) have compact support. If A is the com­

plex numbers we will denote the above simply as CbC G), CoC G), Ce( G). Finally, the 

multipler algebra of a C*-algebra A will be denoted M(A). 

Let j3 : G ~ AutA be an action of a locally compact abelian group G on a 

C* -algebra A. Then there is a natural action j3' : G ~ A utA x f3 G, called the dual 

action, of the dual group G on the crossed product A xf3 G. Regarding Cc(G,A) as a 

subalgebra of Ax (3 G in the usual way, this action is determined by 

(j3~(y))(s) = o-(s)y(s) 0- E G, y E Ce(G,A), s E G , 

and we have the following duality theorem: 

Theorem (Takai [14]) Let ,8 : G ~ AutA be an action of a locally compact abelian 

group G on a C* -algebra A. Then there exists an isomorphism 

(A xf3 G) Xf31 G ~ A i8l K(L1.(G)) 

such that the second dual action j3" of G = G on 

action j3 i8l Ad Pa . 

x f3 G) X f3' G is carried to the 

Takai's theorem enables us to recover the action j3 from A xf3 G and establishes 

an important duality between abelian group actions and their crossed products. This 

duality has been of fundamental importance in the study of abelian group actions on 

C* -algebras and the theory of coactions and their crossed products was motivated by 
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. a desire to realize a similar duality for non-abelian groups. Before giving the definition 

of a coaction we need to introduce the algebra 

M(AQ9B) ={x E M(AQ9B): xCI Q9z), (1 Q9z)x E AQ9B V Z E B} 

and the comultiplication map 

5G : C;(G) -+ M(C;(G) Q9 C;(G» , 

which is the homomorphism determined by : AG( s) -+ AG( s) Q9 AG(8). Spatially 5G is 

given by 

5G(z) = WG(z (91)Wa , 

where WG E UB(L2(G x G)) is defined by 

(WGE)(s,t) = ~(S,s-lt) E E Cc(G x G) . 

(1) 

Definition A coaction of a locally compact group G on a C* -algebra A is an injective 

homomorphism 5 : A -+ M(A Q9 C;( G» such that 

(i) there is an approximate identity (ej)jEJ of A such that 5(ej) -+ 1 strictly 

in M(A Q9 C;( G», 

(ii) (5 Q9 i) 05 = (i Q9 oG) 05. 

We say 5 is non-degenerate if in addition 

(iii) for each ( E A * there exists 'IjJ E C;( G)* such that «( Q9 'IjJ) 0 5 i= O. 

Condition (i) ensures tiQ9i extends to the multiplier algebra M(AQ9C;(G». iQ95G 

also extends and hence condition (ii) makes sence. The essence of the definition resides 

in condition (li). To see why, suppose G is abelian, a : G -+ AutA is an action of the 

dual group G on A and that the multiplication map 

aG : Cb(G) ~ M(Co(G)) -+ Cb(G x G) ~ M(Co(G) Q9 Co(G» 
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is defined by (D:aU))(I7,r) = f(l7r). Spatially D:a is given by 

D:a(z) = Va(z @ l)Va , (2) 

where Va E UB(L2(G x a)) is defined by 

(Va~)(CT,T) = e(CTr-I,r) eECc(axG). 

Then if we define Ci: A ~ Cb(G,A) ~ MCA@ Coca»~ by (Ci(a))(a) = D:,,(a) we have 

that 

@i)Oa)(a))(CT,r) = D:UT(a) 

= D:".CD:r(a)) 

= (((i@D:a)oCi)(a»)(CT,r) V 17,7 E G, a E A. 

1.e. (Ci @ i) 0 a = (i @ D:a) 0 Ci , (3) 

and a moment's reflection sh.ows that this equation captures the multiplicative nature 

of the action. 

Now for any locally compact abelian group G, let 

Fa ~ 

be the inverse Gelfand transform and let 

{j = (i @ Fa) 0 Ci : A -} l1i(A @ C"( G») . (4) 

Then from and (2) it can be checked that 

Sa = (Fa@Fa)OOiaoFa:l . (5) 
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(Ii @ i) 0 Ii = (( (i @ Fa) 0 a) @ i) 0 (( i @ Fa) 0 a) 

= (i@Fa@Fa)o(a@i)oa 

= (i@Fa@Fa)o(i@aa)oa 

= (i @ ((Fa@ Fa) oaa oFa l )) 0 ((i @Fa)oa) 

= (i@lia)oli 

(by 3) 

(by 5) 

showing Ii satisfies condition (ii) of the definition of a coaction. It can be shown that 

the technical condition (i) is also satisfied so that Ii is a coaction of G on A. Hence 

every action of the dual group G on A gives a coaction of G on A. Further it can be 

shown this correspondence is bijective. 

As was mentioned earlier one of the main purposes of introducing coactions is in 

the hope that they will pave the way to a generalisation of the duality theorem. But 

before this hope can be realised it is necessary to have a non-abelian analogue of a 

crossed product by an action of the dual group. 

Definition Suppose 7r : A -+ B('H.) is a faithful representation of A on the Hilbert 

space 'H., Ma is the representation of Co(G) on L2(G) by multiplication operators 

and Ii : A -+ M(A@ C;(G)) is a coaction of G on A. Then the crossed product 

A X6 G of A by Ii is the C*-subalgebra of B('H.@ L2(G)) generated by the elements 

(7r @i)(Ii(a))(l @Ma(f)), a E A, f E Co(G). 

It can be shown that A X6 G is independent of the choice of 7r. In fact it can be given 

a non-spatial definition [7 def. 2.4]. To motivate the definition, suppose G is abelian, 

a: G -+ AutA is an action of the dual group G on A, Ii is the corresponding coaction 
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of G on A and:F: L2(G) ~ L2(G) is the Fourier transform, then the isomorphism 

Ad(l ®:F): B(1i ® L2(G)) ~ B(1i ® L2(G)) 

maps the generators ('II" ® i)(c5(a))(l ® Ma(J)) of the crossed product A x6 G to the 

elements ('II" ® Ma)(a(a))(l ® AG(/)). Now it can be shown that elements of the form 

('II"®M)(a(a))(l®AG(g)), a E A, g E C*(G) generate'll"xAG(Ax",G) C B(1i® L2(G)) 

and hence that 

A x6G~Ax",G. 

So in the abelian case crossed products by coactions correspond to crossed products 

by actions of the dual group. 

Now if f3 G ~ AutA is an action of G on A then there is a natural coaction 

(3: A xp G ~ M«A xp G) ® C;(G)) , 

called the dual coaction of G on A xp G, determined by (3(ia(s)) = ia(s) ® AG(S) 

and (3(iA(a)) = iA(a) ® 1, where ia and iA are the natural inclusions of G and A in 

M(A xp G). Also if 15 is a coaction of G on A then there is a natural action, the dual 

action, of G on A x Ii G defined by 

68 = Ad(l ® PG(s)) s E G, 

and we have the following duality theorems, the first of which generalises Takai'~ 

theorem. 

Theorem (Imai-Takai [3]) Suppose a : G ~ A utA is an action of a locally compact 

group G on A. Then there exists an isomorphism 

(A x", G) X& G ~ A ® K(L2(G)) , 

which carries & to the action a ® Ad pa. 
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Theorem (Katayama [4]) Suppose 0 : A -+ M(A Q9 C;(G)) is a non-degenerate 

coaction of G on A. T.hen there exists an isomorpbism 

(A X8 G) x,j G ~ A Q9 K(L2(G) . 

which carries 6 to 1; where 

8(x) = (1 Q9 Wa)(i Q9 17)«0 Q9 i)(x)))(l Q9 WG) 

and 17 is tbe flip map ofC;(G) Q9 K(L2(G)) onto K(L2 (G)) Q9 C;(G). 

To exploit the duality theorems it is essential to have an understanding of the 

representation theory of the crossed products. Such a theory was investigated and 

determined by Landstad-Phillips-Raeburn-Sutherland [7] in terms of "covariant rep-

resentations" and updated somewhat by Raeburn [10]. To make this precise we give 

the following definitions. 

Let G be any locally compact group. Then we define a unitary element W G of 

ct(G,M(C;(G)), the bounded strictly continuous maps from G to M(C*(G», by 

WG(S) = AG(s) for all s E G. For future reference we note that: 

(i) if p, : Ca( G) -+ B(H) is a representation of Co( G) and f is an element of the 

Fourier algebra A( G) [1] considered as an element of vN (G)* then it can be shown 

that 

(1 Q9 f)(p, Q9 i(wG» = p,(J) . 

(ii) if G is abelian, FG is as above and 

FG Q9 F:::.l : M(Co(G) Q9 C*(G» ~ Cb(G,M(C*(G)))-+ 
G 

(6) 

M(C*(G) Q9 C,,(G» ~ q(G,M(C*(G»)) 
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Fa @F.:::1(wa) = wa· 
G 

(7) 

Note: WG is being considered an element of M(Co(G) @ C*(G)), and wa as an 

element of M(C*(G) @ Co(G). 

Definition Let 8 : A -+ M(A @ C;(G)) be a coaction of G on A. Then a covari-

ant representation for the system (A, 8) on 1{ is a pair (7r,!),) of non-degenerate 

representations of A and Ca ( G) on the Hilbert space H such that 

(7r @ i)(8(a)) = ((Il @ i)(wa»(7r(a)@ l)(Cu @ i)(wa*)) \f a E A 

Them'em (Landstad-Phillips-Raeburn-Sutherland [7]) The non-degenerate represen-

tations of Ax 8 G on 1{ correspond bijectively to the covariant representations of 

(A, 8) on 'Ii. 

Once again we turn to the abelian case for movitation. Let 15 be a coaction of an 

abelian group G on A with a the corresponding action of G, then A X8 G ~ A XCi G 

and thus the representation theory of Ax 5 G is already understood in terms of covari-

ant U) of the covariant system G, That is in terms of a non-degenerate 

representation 7r of A on H and a unitary representation U of G on 1-{ such that 

= Uu 1r(a) U; . (8) 

Now U determines a representation {! of on H by fJ, = UoFG where U is the 

tp!>TR,pn form of U, Now if ii is as above and (j E G then 

@ i)( ii( a)))( (j) = 

7r(a) (by 8) 
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= U(Aa(O"))7r(a)U(A&(O")) 

= U(Wfj(O"))7r(a)U(wa*(O")) 

= «U 0 i)( wa))(O") 7r( a) «U 0 i)( wa»(O") 

= ((U 0 i)(wfj))' (7r(a) 01). «U 0 i)(wa*)))(O") ' 

where 7r( a) 0 1 is the constant function with value 7r( a) and . denotes pointwise 

multiplication. So 

(7r 0 i)(a(a)) = «U 0 i)(wa))· (7r(a) 01)· «U 0 i)(wa*)) 

and we have that, 

(7r 0 i)(8(a)) = (7r 0 Fa)(a(a» (by 4) 

= (i 0 Fa)((U 0 i)(wa ))· (7r(a) 01)· «U 0 i)(wa*))) 

= «(UoFa) 0 i)(wa))(7r(a) 01)«(UoFa) 0 i)(wa'")) (by 7) 

= «JL 0 i)( Wa ))( 7r( a) 0 1)«JL 0 i)( wa*)) , 

so each covariant representation (7r, U) of the system (A, G, a) corresponds to a 

covariant representation (7r, JL) of (A, G, 8). Further this correspondence is bijective. 

The duality theory presented above has its roots in a similar theory for von 

Neumann algebras. The original duality theorem, analogous to Takai's, being due to 

Takesaki [15]. The von Neumann algebra counterparts which led to Imai-Takai and 

Katayama's theorems were shown independently by Landstad [5, 6], N akagami [9] 

and Stratila-Voiculescu-Zsid6 [13]. 

§2 Induced Representations of Crossed Products by Coactions 

Given an action (:J : G -t AutA of G on A it is possible to define an action of any 

closed subgroup H of G on A by restriction. The analogous result for coactions is j 
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Definition Suppose S : A -t MeA ® C;(G» is a coaction and H is a closed nonnal 

amenable subgroup of G. Then one can define a coaction 81 : A -t M( A ® C; (G / H» 

of G/Hon A by 

SI(a) = (i ® !Ii)(S(a» , 

where !Ii : C;(G) -t C;(G/H) is the map obtained by lifting the integrated fonn' of 

: s -t AsH to the quotient C;(G). 

When S is a coaction of an abelian group G and O! is the corresponding action of 

G we have that 

A X61 (G/H) ~ A XI> Hi. and A XI> H ~ A X61 (G/Hi.). (9) 

One of the reasons the development of the theory of coact ions has been less 

tractible than that of actions is that hitherto there has been no dense *-subalgebra 

ofAx6 G analogous to the subalgebra Cc(G,A) of A XI> G. I now present such an 

analogue which I hope, despite its complexity, will facilitate research in the area. 

Theorem 1 Suppose S : A -t M(A ® C;(G» is a non-degenerate coaction of G on 

A, H is a closed nonnal amenable subgroup of G, SI is as above and 'DH is the set of 

norm limits of sequences (x j )~1 in B( 1i ® L2 (G / H», of the form 

,nj 

Xj = L:(7r ® i)(SI«1 ® u)(S(a;j»»(1 ® MG/H(Jij» , 
;=1 

where aij E A, lij E C c( G / H) with the support of the lij contained in some fixed 

compact subset of G / H for all i, j and u is a fixed element of A( G) n Cc( G) considered 

as an element of vN(G)*. Then 'DH is a dense *-subalgebra ofAx61 (G/H). In 

particular if H is the trivial subgroup 1, 'D1 = 'D is a dense *-subalgebra ofAx6 G. 
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Now we wish to consider the question of how the representations ofAx61 (GjH) 

/relate to those ofAx6 G. Once again direction is given by investigating the abelian 

case. In this case A X 61 (G j H) ~ A X 0/ H 1. and A X 6 G ~ A x 0/ G, so a representation 

ofAx61 (GjH) (i.e. of A XO/ H1.) can be induced, by the theory of Green [2], to a 

representation ofAx6 G (i.e. of A XO/ G). SO for G abelian we have an induction 

process. It turns out that this induction process is still possible when G is any locally 

compact group and H is a closed normal amenable subgroup of G. The induction 

process is given by the following theorem. 

Theorem 2 V is a VH-rigged V module with the V action being by "bounded opera-

tors. 

That is V has a VH-valued inner product ( . , . )'D which satisfies certain com­

patibility conditions regarding the actions. For a fuller account see Rieffel [11]. 

Recall that if 1/ : A X 61 (G j H) --t B(1i) is a representation of Ax 61 (G j H) then 

given a left V, right VH bimodule which is VR-rigged, such as say V, we can equip 

the tensor product V ®'DH 1i with the pre-inner product 

( x ® e , Y ® 7J ) 'D®-r> H 1£ = ( (x , y) 'D • e , 7J) 1£ 

and obtain a Hilbert space n by factoring out by the vectors of length zero and 

completing. The Hilbert space n comes equipped with a natural action ofAx6 G, 

that is we obtain a representation indl/ of Ax 6 G on n, determined by 

n n 

(indl/(x))(LYi®ei)=L(XYi)®6 x,YiEV, eiE1i. 
i=l i=l 

Of course we call the representation indl/ obtained in this way, the representation 

induced from 1/. " 
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In the action case one has Green's imprimitivity theorem to characterise those 

representations of Ax p G which are induced from representations of A X j3 H. A natural 

question is ; Is there an imprimitivity theorem for the induction of representations of 

crossed products by coactions? If {j is the trivial coaction of G on the complex numbers, 

Le. (lIz) = z01 for all complex numbers z, so that A X8 G ~ Co(G), then the question 

has an affirmative answer in the form of the following strong Morita equivalence due 

to Rieffel [12] 

Co(G) Xu H;;::J Co(GjH), 

where ;;::J denotes a strong Morita equivalence and a is the translation action. 

From this it is easy to guess at a Morita equhralence that will determine an 

theorem for crossed products by coactions. 

Theorem :'t 5: A.-+ o .is a non-degenerate coact-ion of a 

rnmnart group G on a A and Fl is a closed normal amenable subgroup of 

G. Tile1} 

H r;>.:J A )<61 

The map 

: Prim (A X61 -} Prim X 6 G) : kerv --+ ker (indv) , 

18 C01TClilUUHS. 

rrhe .u,tl..pn.HH theorem 'which can be read orr from the strong Morita equiv· 

alence of the theorem says that 11 v of Ax 6 G is induced from a 

U: 11-> 

if and only if there exists a unitary representation 

of H on 1i such that 

UI: V h E xEAx5G. 
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As is usual an investigation of the abelian case is extremely instructive. S'uppose 

,,: A.-+ G C* (G) is a coaction of the dual. group G on A, (X is the corresponding 

action of G, and H is a dosed subgroup of G. Then theoren1. 3 

Xs G) X8 H..l ~ A X5i (GIH..l) , 

and hence bv (9), 

(A XCi G) x&1 (GIH) ~ A X", H . 

Now it turns out that this is true more generally and we have the following theorem. 

Theorem 4 Suppose (X : G --)0 AutA is an action of G on A, Ex is the dual coaction 

on A Xa G and H is a closed normal amenable subgroup ofG. Then 

(A x'" G) )(&1 (GIH) ~ A x'" H . 

The corresponding imprimitivity theorem concerning the induction of representations 

ofAxC! H to those of A)(C! G, says that a representation Jh of A X", G is induced from 

a representation of Ax Of H if and only if there exists a non-degenerate representation 

( of Co ( G I H) such that 

(Jh G i)(ExI(b)) = ((( G i)(WG/H))(Jh(b) G 1)((( G i)(WG/H*)) Vb E A Xc< G (10) 

As you may have guessed by now, this is a reformulation of the following theorem due 

to Green. 

Theorem (Green [2]) Suppose (X : G -+ AutA is an action of G on A, H is a closed 

subgroup ofG, T is the left translation action ofG on Co(GIH) and OCGT is the action 

ofG on AG Co ( G I H) defined on elementary tensors by ((XGT).( a G 1) = oc s ( a) GT.(J) 

then 

(A G Co(GIH») xa0r G ~ A)(", H . 
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The corresponding imprimitivity theorem is ; Let j1 be a representation of Ax c¥ G on 

1l. Split j1 up, i.e. find the covariant representation (11", U) corresponding to j1. Then j1 

is induced from a representation of Ax '" H if and only if there exits a non-degenerate 

representation ( of Ca ( G / H) such that 

(i) 1I"(a)((f) = ((f)1I"(a) 'if a E A, f E Co(G/H). 

(ii) ('Ii ® O«a ® r)s(w) = Us'li ® (w)U; 'if s E G, wE A ® Co(G/H). 

To see that the two formulations are equivalent, let f E A( G / H) c vN( G / H)* 

and a E A. Then 

((J)'Ii(a) = «1 ® f)«( ® i)(WG/H )))j1(iA(a)) 

= (1 ® f)(( ® i)(WG/H»)(j1(iA(a» ® 1») 

= (1 ® f) ((j1 ® i)( al( iA( a ))))( «( ® i)( wGf H») 

= (1 ® f)((p, ® i)(iA(a) ® 1))«( ® i)( wGIH »)) 

= (1 ® f)('Ii(a) ® 1)«( ® i)(WG/H))) 

= 1r(a)«l ® f)«' ® i)(WG/H))) 

= 1r(a)((f) 

(by 6) 

(by 10) 

(by 6) 

which gives (i) and ensures 1r ® ( is a well defined representation of A ® Co ( G / H) on 

'ft. To obtain (ii), let s E G then 

((f)Us = «1 @ f)« (® i)('WG/H »)) Us 

= (1 ® f)(( ® i)(WG/H)(Us ® 

= (1 ® f)(( ® i)(WG/H )(p,(iG(s)) ® 1» 

= (1 ® f)(((p, @ i)( al(iG( s ))))« ( ® i)( WG/H») 

= (1 @ f)((j1 ® i)(iG(s) ® AG/H(sH)))«( ® i)(WG/H))) 

6) 

(by 10) 
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= (1 ® f)((Us ® ).G/H(sH»((( ® i)(WG/H») 

= Us((l ® f)((1 ® ).G/H(sH»((( ® i)( WG/H)))) 

= Us((l ® Ts(J))((( ® i)( WG/H» 

= Us((Ts(J» (by 6) 

This and the fact that (11", U) is a covariant pair, i.e. that 1I"(as(a» = Us 1l"(a) U; gives 

(ii). Similarly (i) and (ii) imply (10). 

A major advantage of the first formulation is that to check whether or not a 

representation I-' of Ax '" G is induced, one uses I-' directly, whereas in the second, 

it is necessary to split I-' up. i.e. it is necessary to find the covariant representation 

corresponding to 1-'. 

The conceptual simplification of Green's theorem resulting from the introduction 

of coact ions suggests that they are in some sense natural, and may eventually playa 

pivotal role in the study of dynamical systems. 
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