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Induced Representations of Crossed Products

by Coactions

KEVIN MANSFIELD

§0 Introduction

Let 6 : A —» M(A® C*(G)) be a coaction of a locally compact group G on a
C*-algebra A. Then for any closed normal amenable subgroup H of G we define a
coaction 8| : A — M(A® C*(G/H)) of G/H on A. We present dense *-subalgebras
of the crossed products A x; G and A X4 (G/H) and use these to obtain a process
whereby representations of A X5 G may be constructed from those of A x5 (G/H). We
then classify those representations of A x5 G which can be obtained in this way. In
other words we exhibit an induction process and formulate an imprimitivity theorem
for it. Finally we examine a;n elegant reformulation of Green’s imprimitivity theorem
suggested by the above results.

Proof of these results is to be found in my doctoral thesis, [8].
§1 Background

Firstly we establish some notation. B(H) will denote the bounded linear opera-

tors on the Hilbert space H and K(H) the closed ideal of compact operators on .
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G will be a locally compact group with Ag and pg the left, respectively right regular
representations of G and L'(G) on B(L%(G)). C*(G) will denote the group C*-algebra
of G and C*(@) the closure of A\g(L!(G)) in B(L*(G)). For a C*-algebra A, Cp(G, A),
Co(G,A) and C,(G,A) will denote the continuous functions from G to A which (i)
are bounded, (ii) vanish at infinity and (iii) have compact support. If A is the com-
plex numbers we will denote the above simply as C3(G), C,(G), Cc(G). Finally, the

multipler algebra of a C*-algebra A will be denoted M(A).

Let B : G — AutA be an action of a locally compact abelian group G on a

C*-algebra A. Then there is a natural action ' : G — Autd x g G, called the dual

action, of the dual group G on the crossed product A x g G. Regarding C.(G,A) as a

subalgebra of A X g G in the usual way, this action is determined by

By(w)(s) =o(s)y(s) o €C, yeCe(G,A), s€G,

and we have the following duality theorem :

Theorem (Takai [14]) Let f: G — AutA be an action of a locally compact abelian

group G on a C*-algebra A. Then there exists an isomorphism

(Axg Q) xp G =AQK(L*G))

such that the second dual action 8" of G = G on (A xg G) Xg G is carried to the

action f ® Adpg .

Takai’s theorem enables us to recover the action 8 from A Xg G and establishes
an important duality between abelian group actions and their crossed products. This
duality has been of fundamental importance in the study of abelian group actions on

C*-algebras and the theory of coactions and their crossed products was motivated by



183

_a desire to realize a similar duality for non-abelian groups. Before giving the definition

of a coaction we need to introduce the algebra
M(A®B)={cec M(A®B):s(182), (18z)s€ A® B Vz€ B}
and the comultiplication map
66 : C1(G) » M(CH(G) ® CX(G)) ,

which is the homomorphism determined by : Aa(s) — Ag(s) ® Ag(s). Spatially é¢ is
given by
50(2) = Walz @ DW5 ®

where Wg € UB(L%(G x G)) is defined by
(Waé)(s,t) = £(s,s7't)  £€C(GxG).

Definition A coaction of a locally compact group G on a C*-algebra A is an injective
homomorphism 6 : A — M(A ® C#(G)) such that
(i) there is an approximate identity (e;);es of A such that §(e;) — 1 strictly
in M(A® CG)),
(i) (§®@1)o6=(i®bg)ed.
We say § is non-degenerate if in addition
| (iii) for each ¢ € A* there exists 1 € C}(G)* such that (( ® )06 # 0.
Condition (i) ensures § ® ¢ extends to the multiplier algebra M(A®C}(G)). i®da
also extends and hence condition (ii) makes sence. The essence of the definition resides
in condition (ii). To see why, suppose G is abelian, a : G — AutA is an gction of the

dual group G on A and that the multiplication map

ag : Cy(G) = M(Co(B)) = Cy(G@ x @) = M(C,(G) ® Co(G))
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is defined by (ag(f))(e,7) = f(o7). Spatially ag is given by
ag(z) =Ve(2® 1)V, 2)
where Vi € UB(L2(G x G)) is defined by
(Vab)(o,m) = E(or™',7) € C(Gx ).

Then if we define & : A — Cb(@, A) M(A ® Ca(é)) by (&(a))(o) = ay(a) we have

that
(((& ® Z) 06!)(61))(0’, T) = aar(a)
= ag(ar(a))
= ((i®ag)oa)(a))(o,7) Vo,r€G, ac A
ie. (6®@i)oa=(iQag)od, (3)

and a moment’s reflection shows that this equation captures the multiplicative nature
of the action.

Now for any locally compact abelian group G, let

Fg: C,(G) — C*(@)

be the inverse Gelfand transform and let
§=(i1@Fg)os: A— M(A®C*(G)). (4)
Then from (1) and (2) it can be checked that

5G=(F6®F§)°OZG°F51 . (5)
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So (6@ 1) = (i ® Fg)od) ®i) o ((i® Fg)od)
=(i®Fz@ Fg)o(a@®i)od
=(i®@Fz@Fg)o(i®ag)ed (by 3)
= (@ ((Fz®Fg)oagoFg'))o((i® Fg)oa)
=(i®8g)o6 (by 5)

showing § satisfies condition (ii) of the definition of a coaction. It can be shown that
the technical condition (i) is also satisfied so that § is a coaction of G on A. Hence
every action of the dual group Gon A gives a coaction of G on A. Further it can be

shown this correspondence is bijective.

As was mentioned earlier one of the main purposes of introducing coactions is in
the hope that they will pave the way to a generalisation of the duality theorem. But
before this hope can be realised it is necessary to have a non-abelian analogue of a

crossed product by an action of the dual group.

Definition Suppose 7 : A — B(H) is a faithful representation of A on the Hilbert
space H, Mg is the representation of C,(G) on L?(G) by multiplication operators
and 6§ : A —» M(A® C*G)) is a coaction of G on A. Then the crossed product

A x5G of A by § is the C*-subalgebra of B(H ® L*(G)) generated by the elements
(m ®i)(8(a))(1 ® Ma(f)), a € A, f € Co(G).

It can be shown that A x5 G is independent of the choice of 7. In fact it can be given
a non-spatial definition [7 def. 2.4]. To motivate the definition, suppose G is abelian,

a: G — AutA is an action of the dual group G on A, § is the corresponding coaction
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of G on A and F : L*(G) — L*(G) is the Fourier transform, then the isomorphism
Ad(1® F): B(H® L*G)) — B(H® L*(G))

maps the generators (7 ® 1)(6(a))(1 ® Mg(f)) of the crossed product A x5 G to the

elements (7 ® Mg)(&(a))(1® A5( £)). Now it can be shown that elements of the form

(r®@M)(a(a))(1®X25(9)), a € A, g € C*(G) generate 1x A5 (4xoG) C B(H® L*(G))

and hence that

~

AXs G2 A%, G .

So in the abelian case crossed products by coactions correspond to crossed products

by actions of the dual group.

Now if f : G — AutA is an action of G on A then there is a natural coaction

B:AxgG— M((AxsG)®CHG)),
called the dual coaction of G on A Xg G, determined by B(ic(s)) = ia(s) ® Aa(s)

and B(i4(a)) = i4(a) ® 1, where ig and i, are the natural inclusions of G and A in
M(A xg G). Also if 6 is a coaction of G on A then there is a natural action, the dual

action, of G on A xg G defined by
53 = Ad(1 ® pa(s)) seEG,

and we have the following duality theorems, the first of which generalises Takai’s

theorem.

Theorem (Imai-Takai [3]) Suppose o : G — AutA is an action of a locally compact

group G on A. Then there exists an isomorphism
(AxqG) %3G AQ K(LY(G)),

which carries & to the action a ® Ad G-
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- Theorem (Katayama [4]) Suppose § : A — M(AQ® C*(@®)) is a non-degenerate

coaction of G on A. Then there exists an isomorphism
(A x5 G)x; G2 AQ K(L*(@)) .
which carries g to § where
8(e) = (1@ WE)((i ® Z)((6 @ i)(=)))(1 ® Wo)

and X is the flip map of C}(G) ® K(L*(G)) onto K(L*(G)) ® C¥(G).

To exploit the duality theorems it is essential to have an understanding of the
representation theory of the crossed products. Such a theory was investigated and
determined by Landstad-Phillips-Raeburn-Sutherland [7] in terms of “covariant rep-
resentations” and updated somewhat by Raeburn [10]. To make this precise we give
the following definitions.

Let G be any locally compact group. Then we define a unitary element wg of
C:(G,M(C#(G))), the bounded strictly continuous maps from G to M(C*(G)), by
wa(s) = Ag(s) for all s € G. For future reference we note that :

(i) if g : Co(G) — B(H) is a representation of Co(G) and f is an element of the
Fourier algebra A(G) [1] considered as an element of vN(G), then it can be shown

that

(1® ke iwa)) = u(f) - (6)

(ii) if G is abelian, Fg is as above and

Fo ® F5* : M(C,(G) ® C*(G)) = G}(G, M(C*(G))) -

M(C*(G) ® Co(@)) = C3(G, M(C*(Q)))
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then Fg® Fél(wg) =wg . ©

Note : wg is being considered an element of M(C,(G) ® C*(G)), and wg as an
element of M(C*(G) ® Co(G)).
Definition Let § : A — M(A ® C*(G)) be a coaction of G on A. Then a covari-

ant representation for the system (A,G,6) on H is a pair (m, ) of non-degenerate

representations of A and C,(G) on the Hilbert space H such that
(m ®i)(6(a)) = (1 ® )(wa))(r(a) @ (1 ® i)(ws")) VaeA

Theorem (Landstad-Phillips-Raeburn-Sutherland [7]) The non-degenerate represen-
tations of A xs G on H correspond bijectively to the covariant representations of

(A4,G,6) on H.

Once again we turn to the abelian case for movitation. Let § be a coaction of an
abelian group G on A with a the corresponding action of @, then Ax; G2 Ax, G
and thus the representation theory of A x; G is already understood in terms of covari-
ant pairs (7, U) of the covariant system (A4, G ,&). That is in terms of a non-degenerate

representation m of A on H and a unitary representation U of G on H such that
m(az(a)) = Usn(a) Uy . (8)

Now U determines a representation p of Co(G) on H by p = U o Fg where U is the

integrated form of U. Now if & is as above and o € G then

((r @ 9)(&(a)))(0) = m(a0(a))

=Usm(a)U; (by 8)
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= U 5(0)) m(a) UNS(0))

= U(w4(0)) n(a)U(w5"(0))

= (U ®i)(wg))(0) 7(a) (U ® i)(w2))(0)

= (U®i)(wy)- (x(a) @ 1) (U ® )(w5")) (o),

where 7(a) ® 1 is the constant function with value n(a) and - denotes pointwise

multiplication. So

(7 ® i)(&(a)) = (U@ i)(wg)) - (7(a) ® 1) - (U ® $)(w5"))
and we have that,
(7 ®i)(6(a)) = (7 @ Fg)(&(a)) / (by 4)
=(i® Fg) (U ® i)(wg)) - ((a) ® 1) - (U ® i)(w5")))
= (U F) ® i)(ws))(m(a) @ 1)((U e FG) @ 1)(wa")) (by 7)

= ((r ®)(we))(m(a) @ (1 @ ) (wc")),

so each covariant representation (m,U) of the system (4, G,a) corresponds to a

covariant representation (m, i) of (4, G, 8 ). Further this correspondence is bijective.

The duality theory presented above has its roots in a similar theory for von
Neumann algebras. The original duality theorem, analogous to Taka,i;s, being due to
Takesaki [15]. The von Neumann algebra counterparts which led to Imai-Takai and
Katayama’s theorems were shown independently by Landstad [5,6], Nakagami [9]

and Stratils-Voiculescu-Zsidé6 [13].
§2 Induced Representations of Crossed Products by Coactions

Given an action §: G — AutA of G on A it is possible to define an action of any

closed subgroup H of G on A by restriction. The analogous result for coactions is ;
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Definition Suppose § : A —» M(A® C*(G)) is a coaction and H is a closed normal
amenable subgroup of G. Then one can define a coaction é| : A — M(A ® C*(G/H))

of G/H on A by

8l(a) = (i® 2)(é(a)) ,

where @ : C}(G) — C:(G/H) is the map obtained by lifting the integrated form of

18 — Agy to the quotient C¥(G).

When § is a coaction of an abelian group G and « is the corresponding action of

G we have that
Axs(G/H)Y2 Axo HY and AxqH = Axy(G/HY). (9)

One of the reasons the development of the theory of coactions has been less
tractible than that of actions is that hitherto there has been no dense *-subalgebra
of A x5 G analogous to the subalgebra C.(G,A) of A X4 G. I now present such an

analogue which I hope, despite its complexity, will facilitate research in the area.

Theorem 1 Suppose § : A — M(A® C*(G)) is a non-degenerate coaction of G on
A, H is a closed normal amenable subgroup of G, §| is as above and Dy is the set of

norm limits of sequences (z;)%2, in B(H ® L*(G/H)), of the form

nj
zj =y (r @ )(S((1 ® w)(8(a:)))(1 ® Mayu(fis)) »
=1
where a;; € A, fij € Co(G/H) with the support of the f;; contained in some fixed
compact subset of G/H for all 1, j and u is a fixed element of A(G)N C.(G) considered
as an element of vN(G),. Then Dy is a dense *-subalgebra of A x4 (G/H). In

particular if H is the trivial subgroup 1, D; = D is a dense *-subalgebra of A x5 G.
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Now we wish to consider the question of how the representations of A x4 (G/H)
relate to those of A X5 G. Once again direction is given by investigating the abelian
case. In this case A Xg (G/H) = AXq Hl and A x5 G = Ax, 6, 80 a representation
of Axg (G/H) (ie. of A Xo H1) can be induced, by the theory of Green [2], to a
representation of A x5 G (ie. of A X4 é) So for G abelian we have an induction
process. It turns out that this induction process is still possible when G is any locally
compact group and H is a closed normal amenable subgroup of G. The induction

process is given by the following theorem.

Theorem 2 D is a Dy-rigged D module with the D action being by bounded opera-

tors.

That is D has a Dgy-valued innér product ( <y >,D which satisfies certain com-
patibility conditions regarding the actions. For a fuller account see Rieffel [11].

Recall that if v : A x5 (G/H) — B(H) is a representation of A X4 (G/H) then
given a left D, right Dy bimodule which is Dy-rigged, such as say D, we can equip

the tensor product D @p, H with the pre-inner product

<$®§a_y®7l>9®pﬂu=<(l‘, y)p'E’ 17>'H

and obtain a Hilbert space R by factoring out by the vectors of léngth zero and
completing. The Hilbert space R comes equipped with a natural action of 4 x5 G,

that is we obtain a representation indv of A X5 G on R, determined by

(indv(z)) (Z Y ® 5.‘)= Z(ftyi) ®& =,y €D, & EH.
=1

i=1

Of course we call the representation indv obtained in this way, the representation

induced from v. -
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In the action case one has Green’s imprimitivity theorem to characterise those
representations of A X g G which are induced from représentations of AxgH. A natural
question is ; Is there an imprimitivity theorem for the induction of representations of
crossed products by coactions? If § is the trivial coaction of G on the compiex numbers,
ie. 6(z) = z®1 for all complex numbers 2, so that A X5 G 2 Co(G), then the question
has an affirmative answer in the form of the following strong Morita equivalence due
to Rieffel [12]

Co(G) xs H~Co(G/H),
where ~ denotes a strong Morita equivalence and ¢ is the right translation action.

From this it is easy to guess at a strong Morita equivalence that will determine an

imprimitivity theorem for crossed products by coactions.

Theorem 3 Suppose§: A — M(A® C*(@)) is a non-degenerate coaction of a locally

compact group G on a C*-algebra A and H is a closed normal amenable subgroup of

G. Then
(AxsG)xz Hm Axg (G/H) .
Corollary The map
: Prim (A x4 (G/H)) — Prim (A X5 G) : kerv — ker (indv) ,
is continuous.

The imprimitivity theorem which can be read off from the strong Morita equiv-
alence of the theorem says that a representation v of A x5 G is induced from a
representation of A X5 (G/H) if and only if there exists a unitary representation

U:H — UB(H) of H on H such that

v(bu(x)) =Upv(z)Uf VheH, z€ AxsG.
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As is usual an investigation of the abelian case is extremely instructive. Suppose
§:A— M(A® C*(@)) is a coaction of the dual group G on A, « is the corresponding

action of G, and H is a closed subgroup of G. Then by theorem 3
(Axs Q) x; HY ~ Axy (G/HY)
and hence by (9),
(Axoa G)xg (G/H)m Axo H .
Now it turns out that this is true more generally and we have the following theorem.

Theorem 4 Suppose o : G — AutA is an action of G on A, & is the dual coaction

on A Xo G and H is a closed normal amenable subgroup of G. Then
(AxoG)xg (G/H)~ Axq H .

The corresponding imprimitivity theorem concerning the induction of representations
of A Xy H to those of A X, G, says that a representation p of A X, G is induced from
a representation of A X, H if and only if there exists a non-degenerate representation

¢ of Co(G/H) such that

(k@) (&) = (@ )wa/m))(u(®) ® N ®i)we/r")) Vbe AxaG (10)

As you may have guessed by now, this is a reformulation of the following theorem due

to Green.

Theorem (Green [2]) Suppose o : G — AutA is an action of G on A, H is a closed
subgroup of G, 7 is the left translation action of G on C,(G/H) and o ®T is the action
of G on AQ C,(G/H) defined on elementary tensors by (a®7)s(a® f) = as(a) ®7,(f)
then

(A®CL(G/H)) Xagr GR Axq H .
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The corresponding imprimitivity ‘theorem is ; Let 1 be a representation of A X, G on
‘H. Split p up, i.e. find the covariant representation (7, U) corresponding to p. Then u
is induced from a representation of A x4 H if and only if there exits a non-degenerate

representation ¢ of Co(G/H) such that
(1) m(a)¢(f) =<¢(f)m(a) Vae€ A, feCo(G/H).
(i) (1 ® (@ @ )o(w)) = Usr ® C(w)UF Vs €GC, we AR Co(G/H).

To see that the two formulations are equivalent, let f € A(G/H) C vN(G/H).

and a € A. Then
¢(f)m(a) = ((1® F)((¢ ®i)wgyn)))u(iala)) (by 6)
= (18 N ® ) (we/m))(1(ia(a)) ® 1))
= (18 /)(((r® )@ a(@)))( ® ) wa/n))) (by 10)
=18 N(((r@i)iala) ® D) ® i) (wayn)))
= (18 f)((n(a) ® (¢ ® i) (we/n)))
= n(a)(1 ® H)({ @ i)(weyn)))
= n(a){(f) (by 6)
which gives (i) and ensures 7 ® ( is a well defined representation of A ® Co(G/H) on
H. To obtain (ii), let s € G then
(AU = (A @ i)weyn))) Vs (by 6)
=(1® (¢ @) (we/u))(Us ®1))
= (18 NH(((¢ @ i)(weyu))(u(ia(s)) © 1))
= (18 £) (1 ® )(&(ic(s( ® i)(wayn))) (by 10)
=18 N1 ®:)(ic(s) ® Aa/u(sH))N({ @ i)(we/n)))
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= (1@ N)((U: @ Ag/u(sH)((C® i)(Wq/H)))

=U((1® £)((1 ® Ae/u(sH)((C ® i)(wayn))))

= Us((1 @ ()¢ ® i)(weyx))

= Us((7:(f)) (by 6)

This and the fact that (7,U) is a covariant pair, i.e. that m(a,(a)) = Us 7(a) U} gives
(ii). Similarly (i) and (ii) imply (10).

A major advantage of the first formulation is that to check whether or not a
representation of A X4 G is induced, one uses p directly, whereas in the second,
it is necessary to split © up. i.e. it is necessary to find the covariant representa,tion

corresponding to p.

The conceptual simplification of Green’s theorem resulting from the introduction
of coactions suggests that they are in some sense natural, and may eventually play a

pivotal role in the study of dynamical systems.
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