SINGULAR INTEGRALS ON BMO

Douglas S. Kurtz

Let f be a locally integrable function on ${\rm I\!R}^n.$ We say f has bounded mean oscillation, $f\in BMO$, if

(1)
$$\sup_{\mathbf{B}} \inf_{\mathbf{c} \in \mathbb{R}} \frac{1}{|\mathbf{B}|} \int_{\mathbf{B}} |f(\mathbf{y}) - \mathbf{c}| d\mathbf{y} < +\infty,$$

where the supremum is taken over all balls $B \in \mathbb{R}^n$. Identifying functions which differ by an additive constant a.e. makes BMO a Banach space with norm $\| \|_{BMO}$ equal to the left hand side of (1). Note that L^{∞} is a proper subset of BMO, since $\log |x| \in BMO$.

Let K be a locally integrable function on $\mathbb{R}^n \setminus \{0\}$ such that $Tf(x) = \lim_{\epsilon \downarrow 0} \int_{\{|y| > \epsilon\}} K(y)f(x-y)dy$ is a bounded operator on L^2 . We say K satisfies condition H_r , $1 \le r < \infty$, if there is a non-decreasing function s on (0,1) such that $\sum_{i=1}^{\infty} s(2^{-j}) < +\infty$ and

$$\left[\int\limits_{\{x:R<|x|<2R\}} |K(x-y)-K(x)|^r dx\right]^{1/r} \le s(\frac{|y|}{R}) R^{-n/r'}, \text{ for } |y|$$

Define H_{∞} by the obvious modification.

If $f \in L^{\infty}$ is supported on a set of finite measure and $K \in H_1$, then Tf exists a.e. (i.e., the limit exists and is finite), $Tf \in BMO$, and $\|Tf\|_{BMO} \leq C \|f\|_{BMO}$ [2]. On the other hand, if f is merely bounded, then without a suitable modification Tf may fail to exist on a set of positive measure. For example, if $f(x) = \chi_E(x)$ is the characteristic function of $E = \{x \in \mathbb{R}^n : x_i > 0, i=1,...,n\}$, then the Riesz transforms of f, defined by the kernels $K_j(x) = \frac{x_j}{|x|^{n+1}}$, j=1,...,n, are infinite a.e.

Let I(x) be a constant function on \mathbb{R}^n . We say $K \in H_r^+$, $1 \le r \le \infty$, if $K \in H_r$, TI = 0, and $\sum_{j=1}^{\infty} js(2^{-j}) < +\infty$.

THEOREM: Suppose $K \in H_r^+$, $1 < r \le \infty$, and $f \in BMO$. Either Tf fails to exist almost everywhere or $Tf \in BMO$ and

$$\|Tf\|_{BMO} \leq C \|f\|_{BMO}$$
.

The constant C is independent of f.

Given $x \in \mathbb{R}^n$ and $\delta > 0$, set $B(x,\delta) = \{y \in \mathbb{R}^n : |x-y| \le \delta\}$. For $B = B(x,\delta)$, let $f_B = \frac{1}{|B|} \int_B f(y) dy$. The proof of the theorem is based on the following lemma. (See [4].)

LEMMA: Let $1 \le p < \infty$. There is a constant C depending on n and p so that for $f \in BMO$, $B = B(x, \delta)$, and $k \ge 1$,

$$\left[\int_{B(x,2^k\delta)}|f(y)-f_B|^p\mathrm{d}y\right]^{1/p}\leq \mathrm{Ck}(2^k\delta)^{n/p}\|f\|_{BMO}.$$

We now sketch a proof of the theorem. (See [6,4].) Suppose $E = \{x \in \mathbb{R}^n : Tf(x) \text{ exists}\}$ has positive measure. Let x_0 be a point of density of E and $\delta > 0$. Set $B = B(x_0, \delta)$ and $\tilde{B} = B(x_0, 4\delta)$. Write $f(x) = f_B + [f(x)-f_B]\chi_{\tilde{B}}(x) + [f(x)-f_B]\chi_{\mathbb{R}}n_{\tilde{B}}(x) = f_B+g_B(x)+h_B(x)$. Since f_B is constant, $Tf_B = 0$. By the lemma, $g_B \in L^2$ and

(2)
$$\int_{B} |Tg_{B}(y)| dy \le |B|^{1/2} ||Tg_{B}||_{2} \le C_{1} |B|^{1/2} ||g_{B}||_{2} \le C_{2} |B| ||f||_{BMO}.$$

It follows that Tg_B exists a.e. so that Tf exists at almost every point such that

Since
$$x_0$$
 is a point of density of E and Tg_B exists a.e., there is a point $y_0 \in B(x_0, \delta)$ such that $Th_B(y_0) = Tf(y_0) - Tg_B(y_0)$ exists. Suppose $x \in B$. Set $A_j = \{z \in \mathbb{R}^n : 2^j \delta < |x_0 - z| \le 2^{j+1} \delta\}$. By the lemma, since $K \in H_r^+$ and $|x - y_0| \le 2\delta$,
(3) $|Th_B(x) - Th_B(y_0)| \le \int |K(x-z) - K(y_0 - z)| |h_B(z)| dz$
 $= \sum_{j=2}^{\infty} \int_{A_j} |K(x-z) - K(y_0 - z)| |f(z) - f_B| dz$
 $\le \sum_{j=2}^{\infty} \left[\int_{A_j} |K(x-z) - K(y_0 - z)|^r dz \right]^{1/r} \left[\int_{B(x_0, 2^{j+1}\delta)} |f(z) - f_B|^{r'} dz \right]^{1/r'}$
 $\le C \sum_{j=2}^{\infty} s \left[\frac{|x - y_0|}{2^j \delta} \right] (2^j \delta)^{-n/r'} j(2^{j+1} \delta)^{n/r'} ||f||_{BMO}$
 $\le C' \sum_{j=1}^{\infty} s(2^{-j}) j||f||_{BMO} = C'' ||f||_{BMO}.$

As a consequence of (3), Th_{B} exists a.e. in B, which implies Tf exists a.e. in B. By considering only $B(x_{0}, \delta)$ with δ a positive integer, it follows that Tf exists a.e. in \mathbb{R}^{n} .

To show $\|Tf\|_{BMO} \le C \|f\|_{BMO}$, fix $B = B(x, \delta)$ and choose y_0 as before. By (2) and (3),

$$\frac{1}{|\mathbf{B}|} \int_{\mathbf{B}} |\mathrm{Tf}(\mathbf{y}) - \mathrm{Th}_{\mathbf{B}}(\mathbf{y}_{\mathbf{0}})| \, \mathrm{d}\mathbf{y} \leq \frac{1}{|\mathbf{B}|} \int_{\mathbf{B}} |\mathrm{Tg}_{\mathbf{B}}(\mathbf{y})| \, \mathrm{d}\mathbf{y} + \frac{1}{|\mathbf{B}|} \int_{\mathbf{B}} |\mathrm{Th}_{\mathbf{B}}(\mathbf{y}) - \mathrm{Th}_{\mathbf{B}}(\mathbf{y}_{\mathbf{0}})| \, \mathrm{d}\mathbf{y}$$

$\leq C \|f\|_{BMO}.$

Since B was arbitrary, we see that $Tf \in BMO$ and $\|Tf\|_{BMO} \leq C \|f\|_{BMO}$.

Let $\sum_{n-1} = \{x \in \mathbb{R}^n : |x|=1\}$ and ρ be a rotation of \sum_{n-1} with $|\rho| = \sup_{x \in \Sigma_{n-1}}^{\sup} |x-\rho x|$. Suppose $K(x) = \frac{\Omega(x)}{|x|^n}$, where Ω is homogeneous of degree 0 and $\int_{\Sigma_{n-1}}^{\Omega} \Omega(x) d\sigma(x) = 0$. Let ω_r be the L^r modulus of continuity of Ω on \sum_{n-1}^{r-1} , $\omega_r(\delta) = \sup_{|\rho| \le \delta} \left[\int_{\Sigma_{n-1}}^{\Omega} |\Omega(x) - \Omega(\rho x)|^r d\sigma(x) \right]^{1/r}$. (For $r = \infty$, use the L^∞ norm). Then $K \in H_r^+$ if $\int_0^1 \frac{\omega_r(\delta) \ln \delta}{\delta} d\delta < +\infty$. (This is a slightly stronger condition than the L^r -Dini condition, which implies $K \in H_r$.) In particular, if $\Omega \in \operatorname{Lip}(\alpha), \alpha > 0$,

$$|\Omega(\mathbf{x})-\Omega(\mathbf{y})| \leq C |\mathbf{x}-\mathbf{y}|^{\alpha}$$
,

then $\Omega \in H^+_{\infty}$. Thus, the Riesz transforms satisfy the theorem.

REFERENCES

- 1. C. Fefferman and E.M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137–193.
- 2. J. García-Cuerva and J.L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland, Amsterdam, 1985.
- 3. F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–216.
- 4. D.S. Kurtz, Littlewood–Paley operators on BMO, Proc. Amer. Math. Soc. 99 (1987), 657–666.
- 5. X. Shi and A. Torchinsky (oral communication)
- 6. S. Wang, Some properties of the Littlewood-Paley g-function, Contem. Math. 42 (1985), 191-202.

Department of Mathematical Sciences New Mexico State University Las Cruces NM 88003 USA