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FREDHOLM MODULES ASSOCIATED TO BRUHAT-TITS BUILDINGS
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1. INTRODUCTION

In his Opus Magnum [Co], Connes defines an even unbounded
Fredholm module over a C*-algebra A as a pair (K, D), where
~9( is a Z/2-graded Hilbert space carrying a terepresentation.
of A of degree 0, and D is an unbounded self-adjoint operator
on 7(, of deqgree 1, such that:

i) (1 * D’)_1 is compact

ii) The subalgebra Ol= {a& A: [D,a] is bounded } is norm-
dense in A. '

Following [COZ], we say that an unbounded Fredholm module
(K, D) is $-summable if, for any t > 0, the operator eftD2
is trace-class.

This condition is rather natural if one remembers the
heat equation proof of the index theorem: Connes simply requi-
res the "heat kernel" to be trace-class. In the case of the

Dirac operator D on a compact riemannian spin manifold M, one
even has p-summability in the sense of [cal: (1 «+ D’)—p/z'is
trace-class for p > dim M. In particular Tr e—tD’ = O(t-p/z)
for t =.0. . However,. as .shown in ﬁoZ], this cgndition of p-
summability "is itoo restrictive,. as being too related to
finite dimension :and commutativity.

‘ If G is a iocally compact group, we define an unbounded
G-Fredholm module as a pair (¢, D), where X is now a Z/2-
graded Hilbert space carrying a unitary representation of G,

and D is as above, with condition ii) replaced by:
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ii') For any g € G, the operator ng_1 - D is bounded, and
the map g =+ ng'l - D is strongly continuous.

It is easy to see that an unbounded G-Fredholm module
gives rise to an unbounded Fredholm module over the C¥-algebra
of any closed subgroup of G.

_In this.paper,swe associate a § -summable unbounded Fred-
holm module to any simple algebraic group G over a non-archi-
medean local field F (the reader is urged to think of F as Qp,
the p-adic field, and of G as SLn(Qp)). The construction is
geometric, and uses the so-called Bruhat-Tits building of G.
When the bui;ding is a tree (e:g. for SLZ(QP)), we get nothing
but the unbounded version of the Fredholm module that we
associated to a tree in [JV]. The construction is quite
reminiscent of the construction of the dual-Dirac operator on
riemannian symmetric spaces of the non-compact type (see [Co],
[003], [Ka)): if also involves the choice of an origin x, and
the existence of a unique geodesic between x, and a point X£X g

Remember that, for any locally compact group G, Kasparov

[Ka] organized the G-Fredholm modules into a unital abelian
ring KKG«D,C) which, for compact G, is nothing but the repre«:
sentation ring. If G is a connected Lie group, Kasparov has an
idempotent Y& KKGGC,C) (the celebrated Kasparov obstruction)
which embodies both the Dirac and dual-Dirac operators on G/K
(K a maximal compact subgroup of G). The above remarks lead us
to believe that the Fredholm module described in this paper
will be a kind of p-adic analogue of Kasparov's y; it is easy
to see that, for G a simple algebraic group over F, the rest-
riction of our Fredholm module to any compact subgroup is 1.
Moreover, if the split rank of 6 is at least 2 (e:g. SLn(F),
n 2 3), then because of Kazhdan's property (T) (see [DK]), our
module is not equal to 1 in KKG(C,C); in particular it gives a
new element in KKG(C,C) (when G is split (e.g. G:SLn(F)), the
only elements of KKG(C,C) previously known were the multiples
of 1). However, we do not know whether or mot y? =y in KKGGDAC).

It is conceivable that our Fredholm module could be useful
to prove particular cases of the Kaplansky-Kadison conjecture
(see [BC]): let I be a countable torsion-free group; then any

idempotent in the reduced C*-algebra C;(P) is trivial (either
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0 or 1). Our friend Paul Baum likes to say that this conjecture
is probably false, because of a principle of Gromov("any non-
trivial statement about the class of countable groups has to
be false"). But it should be true in interesting cases (e.qg.
linear groups). Anyway, itiis known from work of Pimsner-
Voiculescu [PV], Cuntz [Cu], Connes [Co] on the free groups,
that this conjecture would follow from the fact that the cano-
nical trace T is integer-valued on projections of C;(P).
Assume T is a discrete subgroup of G, a p-adic group as above.
Let Q= {a eZC*(F) [D,a] is bounded}; this is a dense sub~-
algebra, stable under helomorphic functional calculus (see
[Co]). So any projection in C;(F) is equivalent to a projece
tion in Q. Fer such a p, the Fredholm index of

pDp: pX T » p
is a well- defined integer which, by the heat equation methed,
is equal to the super-trace Tr (p exp(- tD )) for any t > O
(here D_ = pDp + (1 - p)D(1 - p)) Then the conjecture would
follow if we could prove something like

lim Tr_(p. exp(-tD? )) = 1(p)

t+0

Both -authors thank the CMA for its invitation in partici-

pating in the Special Year on Harmonic Analysis.

2. THE BUILDING OF G

Let G be (the group of rational points of) a simple
algebraic group defined over a non-archimedean local field F.
Let A® be the set of maximal compact subgroups of G (a coun-=
table set), acted upon by conjugation. Note the following
results of Bruhat and Tits [BT], giving information on this
action of G:

i) Every maximal compact subgroup coincides with its
normalizer.

ii) The number of coniugacy classes of maximal compact
subgroups is finite, equal to £+1, where £ is the split rank

of G.
EXAMPLE: G = SL_ GD y; here the split rank is n-1; representa-

tives for conJugacy classes of maximal compact subgroups are
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K, =GN lp P T,

k
plp Zp
where the top left block of this matrix is k x k (0s ks n-1);
here Z_ denotes as usual the ring of p-adic integers. Note
that K, = SLn(lp).

We say that two elements K, K' of A° are incident, or de-
termine an edge, if KN K* is maximal both in K and K'; next,
for 2 S k S &, we say that k+l elements of A° determine a

building is the resulting simplicial complex. More precisely,
it is a contractible simplicial complex of dimension %, carry-
ing a ﬁroper action of G. A simplex of dimension L is a
chamber (see [BT]).

The building is not a purely combinatorial object: an
important feature is the presence of a metric, for which it
is complete and G acts by isometries (see [e1], [Ti]). More-
over two points are joined by a unique geodesic.

In the Bruhat-Tits philosophy, a buiiding is a p-adic
analogue of a riemannian symmetric space of the non-compact
type (we already publicized this philosophy in [JV]). Note
that in these spaces, there are certain distinguished sub-
spaces, namely maximal flat subspaces, which are euclidean in
the induced metric. In the building, this r6le is played by
the so-called apartments ("an apartment is a flat"); apartments
are euclidean spaces, triangulated according to the action of
the affine Weyl group of G, the induced metric being the
euclidean metric (see [BT], [Ti2], [Ti3]). Any two chambers
belong to at least one apartment, so that the building can be
- seen as a bunch of apartments glued together (in a complicated
way). At this point, we feel that some examples will be wel-

come.

EXAMPLES:

i) G = SLz(Gp); the building is a homogeneous tree of
order p+l (see figure 1 for p=2); here chambers are edges, and
apartments are straight lines. We refer to [Se] for a dis-
cussion.

ii) G = SLS(Qp); an- apartment is a euclidean plane with
the usual tessellation by equilateral triangles (figure 2).
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Flgure 2

According to [Ti2], one has to figure out the building ramify-
ing along every edge, each one belonging to p+1 apartments.
It defies any attempt of drawing.

iii) G = SLh(ap); here we can only describe a chamber (it
will not surprise anyone familiar with the root system A3).
It is a tetrahedron made up of four isosceles triangles look-

ing like figure 3.

Figure 3

/T

Py
<

N
v

3. THE FREDHOLM MODULE

Fix an origin x, & A°. For any simplex x, denote by p(x)
its barycentre; and by B(x) the unique simplex containing x

with interior meeting the geodesic[ x, u(x)] (see figure 4).




149

Denote bya K the set of simplices with dimension k; for any
simplex o, define Ag = {xE_u. Ak: B(x) = o}
k
If x, y are simplices, we say that x is well-contained in

y if x € y € B(x); this is denoted by x =« y. One can see that,
if x @ y, then g(x) = g(y). This implies that « is an order

relation. Below, we tacitly assume that ¢ has a nonempty Ao'

We omit the proof of the following lemma.

LEMMA: Ao has a unique minimal element Onin with respect to «.
Let m be the dimension of Omin; denote by I0 the set of
simplices of dimension m+l1l in Ao; then A0 is in one-to-one
correspondence with the power set 6D(I<); in particular, the

cardinality of A _ is pdim g- m

Now, remember that G has ¢ +1 orbits on A°; number these
orbits from 0 to % . Then, any k-simplex x of the building can
be identified with a subset of cardinality k+l1 of { 0,1,..., 8}
this subset is the type of x, denoted by typ x. If x&a K is
well-contained in vy & A¢+l, it is then possible to define a
sign €(x,y) as in simplicial cohomology: consider the unique
increasing bijection typ y =~ {U,l,...,k+l}; then the image of
typ x is {0,1,...,k+1} \ {i} for some i; define € (x,y) =
(-l)i+l; € is clearly a G-invariant function.

Back to the study of Ao’ we may - and will - identify Ig
with typ o \ typ Onin ° For i é:IG, define a map q,* Ao > Ao by

o, (x) =1 x U {i} if i¢ x

x \{i} if i €& «x
So, either x « ai(x) or ai(x) « x. This leads us to symmetrize
the definition of € in the following way:

€ (x,0,(x))) = (o, (x),x)

The proof of the following lemma is obvious, once you realize

it is true:

LEMMA: For i,jE I;, i # j, and xer, one has:
S(X,ai(x))e(x,aj(x)) = 'e(“ij(X)’“i(x))s(“ij(X)"’j(X))

(where %oy o aj = oy 0 ai)

On Q’(Qj), define an operator vy, by y;§ = e(x,ai(x))sai(x)
(GX, X 6AO, is the canonical basis of 27(A))).



150

PROPOSITION: The Clifford algebra relations hold, namely:

v; =1
" 'Yi'Yj + YjYi = 0 (i#j)

oreover y; = v}
Proof: This follows immediately from the preceding lemma and
. : .2 o - :
the.relatlons oy = 1, aij = ay;

This is the first part of the construction of our dual-
Dirac operator. Now, we would like to define something similar
to "Clifford multiplication by a vector pointing from x, to o".
To do that, we choose an apartment containing both x, and o3
viewihg X, as the origin of this apartment, we can speak of the

vector X0 = xqulo ). Remembér that there is a root system

based at xg , suchmtzat any wall of the apartment has equation
<B, X>= k, for some rocot 8 and some integer k. To any ie Iq,
‘'we associate a :set‘Bi of roots by requiring that:

- each root in Bi is constant on the unique simplex of
type typ o \ {i} in 4 ;
v - the scalar product Ai(ﬁj) =z <B, )(o >is positive and
maximal for any g € B, (see figure 5).
Note that for genericg, i.e. dimg =2, the Bi's contain just

one root. The scalar Ai(xf) is independent of the choice of the

apartment involved in the construction.

Figure 5
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Define an operator Dy: L2(8;) > £%(4) by

Dg = L 20Xy
1610 » 4 K
Consider then the Hilbert space = @ lz(AG) =@ 2°(a7) ,
g k=0

Z/2-graded by the decomposition into even and odd dimensional

simplices. Define D = @ D0 s this is an unbounded self-adjoint

operator. g

tD?

PROPOSITION: For t > 0O, the operator e is trace-class.

Proof: We have D% = Zi Ai(Xo)2 because of the Clifford algebra
relations. So, denoting by p, the distance from x, to u(Omin),
we see that there exists a constant c¢ > 0 (depending only on
the building, not on 0) such that Dé 2 coé . Hence

2 2
e—tD -tcpo

s @, e
The trace of the scalar operator e
-tcp;

2 2
-tcP5 js less than 2%, e~tery

is summable, because the

number of simplices at distance s n from x, is in eCn’ where C

Finally, the function ¢ + e

is.a constant only depending on the building.

Note that the inequality D; 2 cp; also implies that
D+:’J(+ ->7(' is Fredholm with index 1, its kernel consisting

precisely of the multiples of Gx .
[+]

1

PROPOSITION: For any g& G, the operator D - gDg™~ is bounded.

Sketth of proof: The operator ng_l is "the same" as D, but
with the origin x, replaced by gx,. More generally, let D' be
the operator analogue of D, but defined with respect to an
origin x!. We claim that D - D' is bounded. This is intuitively
clear: since D0 (resp. Dé) is something like Clifford multi-
plication by Xd (resp. Xé), the difference should be Clifford
multiplication by X0 - Xé = x) - .xy .which is constant. How-..

ever, one has two difficulties to overcomes: " *°

- The construction of Xo involves the choice of an apart-
ment through x, and o. In general, there is- no apartment
containing simultaneously 0, x, and xg,. This can be arranged
by the following trick: since the l-skeleton of the building
is connected, we may assume that x, and x; are incident, and

then find an apartment containing x,, xg and g.
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- The blocks Ao‘depend on the choice of x,, so that D, D'
are not diagonal in the same decomposition of FH. This can be
arranged by noticing that, for x far from x; and xg, the
simplices B(x) and B'(x) are close to each other, allowing one

to give a bound on D - D' (see figure 6).
From the preceding propositions, we immediately deduce:

THEOREM: The pair (91, D) is a $-summable unbounded G-Fredholm
module.

Xo Figure 6

REMARKS ¢

i) Assume for a moment that the building is a tree. Then
the A 's are of two kinds: A = {xo} and, for x € A° \ {xo},
AU = {x, B(x)}. So the decomposition of the buildingAjn'Ac's
is a generalization of the bijection B: A° \ {x,} +Al"exhibited
in [JV]. Note that in the case of the tree, the operator D has
the folldwing forms

D§, pFX)GB(X) (x € A°)

-1 1
o(B (b))éB-l(b)v (be A™)

i

DGB

which is nothing but the unbounded version of the Fredholm
module in [JV]. As an anecdote, let us mention that Connes
noticed that, if the tree is homogeneous (with each vertex of

-tD?

order q+l, say), then Tr e is essentially given by
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<0

n_-tn?
] a'e
n=0
and the asymptotic development of this function may be estima-

ted by means of the Poisson formula: for t—>0, this function
is equivalent to tfé. exp((log g)2/4t) .

ii) The reader may wonder why the authors, who stuck to
bounded Fredholm modules (in the‘sense of [Co]) in their pre=’
vious papers [JV], [JVZ], are suddenly dealing with unbounded
modules. The reason is that an unbounded Fredholm module
contains more information than a bounded one (the Dirac
operator has more to say than its phase). Simply think of the
fact that an unbounded Fredholm module gives for free a dense
subalgebra stable under holomorphic functional calculus (the
subalgebra]), while in the bounded case one has to require
p-summability to get this (see [Co]).

It is easy to turn our unbounded module (P, D) into a
bouﬁded one: simply replace X0 by XO/IlXGII in the construction.
Then, in the case of the tree, one really gets the l-summable
Fredholm module of [JV]. However, as was pointed out to us by
A. Connes and G. Skandalis, our bounded module in rank 2 2 is
not p-summableAfor any p 2 1. So, working with unbounded
modules re-establishes some balance between rank 1 and higher
rank.

iii) To conclude, we mention that our unbounded Fredholm
module is not p-summable for any p 2 1 (in any rank): this
follows from the exponential growth of the building. But our
module cannot even be homotopic to a p-summable unbounded G-
Fredholm module (7(', D'), with the representation of G onﬁw !
‘weakly contained in the left reqular representation of G:
indeed, by restricting the module to a lattice I in G and
using non-amenability for I', one would contradict a result of
Connes [Coz] asserting that there is no p-summable unbounded
fFredholm module over C;(F) when ' is a countable non-amenable
group.

For other examples of $-summable unbounded Fredholm
modules which are not p-summable for any p 2 1, we refer to

[co2].
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