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Remarks on Non-Commutative Banach Function Spaces

P.G. Dodds and B. de Pagter *

The purpose of this note is to outline an approach to the duality theory of non-
commutative Banach function spaces which extends earlier work of Yeadon [Y1],[Y2]. The

details will appear elsewhere.

Let M be a semifinite von Neumann algebra with a semifinite normal trace 7 and let
M be the *-algebra of 7-measurable operators (in the sense of Nelson [N]) affiliated with
M. For each z € M and 0 <t € IR, the generalized singular value y;(z) is defined to be

pi(z) =inf{A >0:7(1 —e,) < ¢}

where {ex} denotes the spectral resolution of |z|. Our approach is based on the following

result.

Proposition 1. If z,y € M, then

sup { [ (o) = pulw)l: 51 < up < [Cute -y

for each u > 0.

The preceding result is a common generalization of the well known inequality of
Markus ([M], Theorem 5.4) for compact operators and that of Lorentz and Shimogaki
[LS] for the case that M is abelian. A similar inequality has been established by Hiai and
Nakamura [HN] via the real interpolation method. Our present approach however is direct

and is not based on interpolation methods.
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Suppose now that L, C L°(IR* ,dm) is a rearrangement invariant Banach function
space for which p is an invariant Fatou norm (see, for example [KPS], Chapter II). The

non-commutative space L (M) is defined by setting
L,(M)={z¢€ M:p(z) e Ly}

and for £ € L,(M), ||z||, is defined to be p(p(z)). The generalized Markus inequality
given by Proposition 1 may be used to show that the spaces L,(M) are Banach spaces.
We define the space

LM)*={zeM:zye L*(M) forall ye L,(M)}.

The space L,(M)* may be identified with a subspace of the Banach dual L,(M)*. If
L% denotes the (Ko6the) associate space of L, and if L,(M)* is equipped with the norm

induced by L,(M)*, then we have the following identification.

Proposition 2.

Lp(M)* = Lj(M)

In turn, the non-commutative associate space L (M) may be identified via a Radon-
Nikodym type theorem as that subspace of the Banach dual L,(M)* consisting of normal

linear functionals.
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