
92 

Rema:rks on NonaCommutative Banach Function Spaces 

P.G. Dodds and B. de Pagter '" 

The purpose of this note is to outline an approach to the duality theory of non­

commutative Banach function spaces which extends earlier work of Yeadon [Yl],[Y2]. The 

details will appear elsewhere. 

Let M be a semifinite von Neumann algebra with a semifi.nite normal trace r and let 

Jilt be the *-algebra of T-measurable operators (in the sense of Nelson [N]) affiliated with 

M. For each x E M and 0 < t E JR, the generalized singular value pte x) is defined to be 

I1t(X) = ;::: 0 : 1'(1 - e,\.) :5 t} 

where {e).} denotes the spectral resolution of Ixl. Our approach is based on the following 

result. 

Proposition 1. If x, 11 EM. then 

sup {t1Ilt(X) - J-!t(y)ldt: lEI $ u} $1" Ilt(X - y)dt 

for each u ;::: O. 

The preceding result is a common generalization of the well known inequality of 

Markus ([M], Theorem 5.4) for compact operators and that of Lorentz and Shimogaki 

[LS] for the case that M is abelian. A similar inequality has been established by Hiai and 

Nakamura [HN] via the real interpolation method. Our present approach however is direct 

and is not based on interpolation methods. 
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Suppose now that Lp <;;; LO(JR+ , dm) is a rearrangement invariant Banach function 

space for which p is an invariant Fatou norm (see, for example [KPS], Chapter II). The 

non-commutative space Lp(M) is defined by setting 

Lp(M) = {x EM: p.(x) E Lp} 

and for x E Lp(M), Ilxll p is defined to be p(p.(x)). The generalized Markus inequality 

given by Proposition 1 may be used to show that the spaces Lp(M) are Banach spaces. 

We define the space 

Lp(M)X = {x EM: xy E Ll(M) for all y E Lp(M)}. 

The space Lp(M)X may be identified with a subspace of the Banach dual Lp(M)*. If 

L; denotes the (Kothe) associate space of Lp and if Lp(M)X is equipped with the norm 

induced by Lp(M)*, then we have the following identification. 

Proposition 2. 

Lp(M)X = L;CM) 

In turn, the non-commutative associate space L; (./vi) may be identified via a Radon­

Nikodym type theorem as that subspace of the Banach dual Lp(M)* consisting of normal 

linear fundionals. 
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