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REPRESENTATIONS OF INFINITE DIMENSIONAL GROUPS AND 

APPLICATIONS 

A.L. Carey 

This talk reviews some recent work on representations of infinite 

dimensional groups which I have done jointly with Simon Ruijsenaars, Angas 

Hurst, Jill Wright and Keith Hannabuss. The main references are [1-5,8]. 

The point of view adopted here as a result of this work is the following, 

if 9 is a group whose representations one is interested in, then inject 9 

into Aut a, where a is a C*-algebra whose representation theory is reason~ 

ably well understood. Given an irreducible or factorial representation 

of a then, if it is true that g.n and n are equivalent for all 9 in g, the 

Hilbert space of n carries a projective representation g 4 p(g) of 9 where 

pIg) is a unitary for each g in 9 such that 

(1) P(g1 )P(g2) 0(gl,g2)P(gl g2) 

with 0(g1,g2) a unitary in n(a)'. Now 0 is a 2-cocycle which may in general 

be difficult to compute. However for the groups we consider here (loop or 

gauge groups or the diffeomorphism group of the circle) extra information 

enables this cohomological problem to be overcome. For these cases we 

choose OL to be the C*-algebra of the canonical anti commutation relations 

(variously known as the fermion algebra or the infinite dimensional Clifford 

algebra) over the complex Hilbert space H where H is ei·ther L2(JR,a:N) or 

L2(Sl.~N). This algebra is generated by {a(f),a(g)*lf,gEH} subject to the 

relations. 

(2 ) a(f)a(g)* + a{g)*a(f) <f,g)I; a(f)a(g) + a(g)a(f) 0, 
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where I denotes the identity in a. 

The representations of a. which ~"e \"ill consider are called quasifree 

[6] and are determined by an operator A on H with 0 < A < 1 via the 

following formula for the state WA: 

(3) wA(a(f 1 1*a(f2 1* ••• a(f l*a(g )a(g lL •. a(g1J) () det(g.,Af.) 
n m m- nm 1 J 

The essential fact about these representations which we need is that they 

are factoriaL 

Now introduce the groups QU(N) and AUIN) consisting of functions from 

8 1 (resp. Rl to U(N) such that ~ (resp. ~-1) is in w1,2. (I will not dis-

cuss .the diffeomorphism group of the circle, or equivalently, the Virasoro 

algebra in detail although a treatment analogous to that described here 

exists in [7,8,9J). These groups act as automorphisms of a. via their action 

as multiplication operators on H: 

(4) a(fl ..... a(cpf), fER, cpEQU(N) (resp. AU(N». 

Now if TIA denotes the representation of a. corresponding to the state wA 

then for the A which I consider below one can show that ~.nA and nA are 

equivalent for all cpEQU(N) (resp. AU(N». Thus we have projective repre-

sentations PA of each of these groups on the Hilbert space of nA and I 

denote the two cocycle by GAO One may also show that for those A considered 

below the automorphisms (4.) are weakly inner so ·that in fact 

,qJ2IEnA!al' nnA(al" "'!t. 

Now restrict attention to the subgroups of QU(N) and AU(N) obtained by 

considering functions into a maximal torus of U(N). If <po = exp(if.) 
J J 

(j=1,2) are two such functions we can consider the relation implied by (1) 

for the Lie algebra elements Denoting the Lie algebra representation 

by f ~ JA(f) we find for the operators A which are considered below: 
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( 5) f fdfl (x) J: ' 

[JA(fl),JA(f2)J=2~i' dx Tr~ f 2 (xl 

One should recognise this as the Lie algebra of an infinite dimen-

sional Heisenberg group. (Notice the somewhat surprising fact that the 

right hand side is independent of A. In fact one may show that 0A' as a 

cocycle on the full group, is independent of A for those A listed below). 

Physicists refer to the operators JA(f) as smeared boson fields. The 

fact that starting with a representation of the fermion algebra a, one 

obtains a representation of this Heisenberg or boson algebra is the easy 

part of what is known as the boson-fermion correspondence in the physics 

literature. The hard part arises through the so-called vertex operator 

construction, which from the point of view of this talk amounts to the fact 

that there exist special group elements y '(here:r is either an S 1 or JR 
r,€ 

variable) and constants c€ such that for g in H with Fourier transform of 

compact support. 

(6 ) fg(r'c PA(Y )dr converges to TIA(a(g)*) € r,€ 

as € goes to zero either strongly or weakly (this depends on A) on a dense 

domain. (Actually even when we cannot prove strong convergence we can show 

that products of the operators on the left hand side converge to the corres-

ponding products of the fermion algebra operators.) In other words, 

starting from the representation of the Heisenberg algebra one may recon-

struct the fermion algebra elements in the sense of the limiting operation 

(6 ). 

One is not restricted however to this result alone since one may also 

'twist' the Heisenberg algebra representation by an automorphism M i.e. 

replace PA by PA"li:',in '('0').. Then, while the resulting operators still 

converge, one generally obtains 'interacting' fermions i.e. representations 
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of the fermion algebra which are not quasi free and in some cases inter-

acting 'fields' which are not even fermions (i.e. do not satisfy (2)). 

It is worth emphasizing at this point that detailed information about 

the representations of QU(N) or AU(N) follows only because we have been 

able in some cases to establish in (6), strong convergence on a dense 

domain. While there is a considerable physical and mathematical literature 

on the boson-fermion correspondence the question of convergence is largely 

unconsidered. In those cases where convergence is discussed only far weaker 

results are obtained. 

To describe the representations which arise is the object of the 

remainder of this talk. First I want to explain how to obtain the repre-

sentations lTA• 

The Fermion Fock space over H is the Hilbert space obtained by 

completing the exterior algebra AH over H in the obvious Hilbert space 

topology. We define an action of a(g)* by 

a(g)* gl Ag;{ ••• Agn gAg1Ag2A ••• Agn 

for g. in H (j=1,2, ••• ,n). Then a(g) may be identified with the Hilbert 
) 

space adjoint of a(g)*~and the relations (2) hold. When A is a projection, 

say P, then the representation lTp is constructed in terms of this action by: 

lTp(a(g)) = a( (l-P)g) + a(CPg)* 

where C is a conjugation on H commuting with P (C is essential because 

a(g) depends conjugate linearly on g). 

When A is not a projection we let K H E9 H, form the fermion algebra 

over K, denoted ~(K), and define a projection K by 

P(A)""( 1/2A ) 1/2 
A (l-A 

A1/ 2(1_A) 1/21 

l-A J 
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Then the representation TIA is the restriction of the representation TIp(A) 

of ct(K) tothesubalgebra a.(He(O»). The action of <p in QU(N) or AU(N) 

on a(K) is given by 

a(h1 eh2 ) -+ a(<ph 1 eh2,· 

In this context one may also consider represen"tations of QU(N) eQU(N) 

or AU{N) eAU(N) via the obvious diagonal 2x2 matrix action on K. 

To distinguish the various operators A.which have been considered I 

will introduce the following notation. 

- denote by P the projection on L2(~,OCN) (resp. L2S1,OCN» onto 

functions which are boundary values of functions holomorphic in the lower 

half plane in a: (resp. exterior of the unit disc). 

- let AIBl denote the operator on L2(Sl,OCN) (resp. L2(~,a:N» which is 

given by multiplication by the function 

-13k -Bk 
k -+ e / ( 1 +e ) , kE2Z(resp. kE~) (8) 0) 

on the Fourier transform, 

let A(m) denote the operator on L2(~,~N) given by multiplication on 

the Fourier transform by the function 

2 2 1/2 
P -+ (l-p/(p +m) )/2, lm;, 0). 

These operators arise respectively as 

(i) the spectral projection of the massless Dirac hamiltonian 

corresponding to the negative part of 'che spec"trum. 

(ii) from the K.M.S. states on the Fermion algebra for the one 

parameter group of automorphisms generated by the massless Dirac operator 

and finally 

(iii) P(A(m» is the spectral projection of the massive Dirac 
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hamiltonian corresponding to the interval (-co,-ml. 

In the following table I summarise the results of the analysis 

described above for the representations of the groups QU(N) and AU(N). 

The table should be read as follows. The first column denotes the Hilbert 

space H, the second the choice of A, the third the properties of the 

resulting representations of QU(N) or AU(N), the fourth the consequences 

of considering the limiting operation (6) both in the absence and presence 

of a 'twist'. 

L 2 (8 1 ,a:N ) p 

L 2 (]R,itN ) p 

L2 (S',itN ) A( 13) 

This gives the basic 

representation of the 

Rae-Moody algebra 

A (1) 
N-1 

The limiting procedure (6) 

gives free fermions in the 

P representation. 

This is equivalent via the Cayley. transform to the 

previous case. 

This gives a K.M.S. One recovers fermions in the 

state on the C*-algebra '!fA(SI representation bu·t in 

generated by operators such a way as to obtain iden-

representing QU(N). tities between theta functions 

The representation PAIS) and between Jacobi elliptic 

is quasi-equivalent to functions. These are remini-

that given by P scent of the identities 

obtained using the Kac-Moody 

character formula. In fact it 

seems that the analytic 

continuation to imaginary time 

given by the K.M.S. state is 

precisely that arising in the 

Kac-Moody character formula 
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L2(S1,~) PlAtS»~ Form, for a suitable 

~ L2(S1'~) }t,. the representation 

L 2 (JR,(CN) A(B) 

L 2 (JR,~N) A(m) 

Pp{A(S» o}t of 

rlU(N) ~QU(N) 

PAtS) is a type IIIl 

factor representation 

of AU(N). 

PA(ml is a type IIIl 

factor representation 

of AU(N). 

suggesting a direct repre-

sentation theoretic inter~ 

pretation of it. 

One constructs interacting 

fields corresponding to the 

Luttinger model of statistical 

mechanics. The correlation 

functions of the model may be 

rigorously calculated. 

This returns ferrnions in the 

TIA(S) representation: 

This returns fermions in the 

TIA(m) representation. 

L2(JR,~) P(A(m» The bosons may be inter- This returns fermions in the 

~ L2 (JR,(l;) 

L 2 (JR,(C) 

~ L2 (JR,a:) 

preted as sine-Gordon 

fields at the critical 

value of the coupling 

constant where the 

theory is free. 

P(A(m» Form, for a suitable 

}t, the representation 

Pp(A(m) ) o}t of 

AU(N)~l\.U(N) 

·TIp(A(rn» representation. 

When m=O one obtains inter-

acting massless Thirring 

fields. wnen m is positive 

we conjecture that one obtains 

massive Thirring fields. 

Some comments in the right hand column represent work in progress, in 
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Note particular those involving PAtS) and PP(A(m»oK for m positive. 

that the first two cases of the above table are considered, using a 

slightly different viewpoint by Segal and Pressley [8] from which I have 

borrowed some notation. There is also a large literature on these first 

two cases from a Lie algebra viewpoint and this may be traced from IS]. 
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