TRIGONOMETRIC SUMS AND POLYNOMIAL ZEROS

Gavin Brown and David C. Wilson

1. INTRODUCTION

This is a preliminary report on work in progress on an ARGS project concerned with positive trigonometric sums and their applications.

Consider the cosine series

$$G_{m}(\theta) = \sum_{j=1}^{\infty} j^{-m} \cos j\theta, \quad m \in \mathbb{N},$$

and its partial sums

$$G_{m}^{n}(\theta) = \sum_{j=1}^{n} j^{-m} \cos j\theta.$$

We establish the following

- THEOREM (i) $G_{m}(\theta)$ is decreasing on $(0,\pi)$,
 - (ii) the unique zero of $G_m(\theta)$ lying in $(0,\pi)$ increases with m,
 - (iii) $G_m^n(\theta)$ is decreasing on $(0,\pi)$ for $m \ge 2$,
 - (iv) the unique zero of $G_{\mathfrak{m}}^{n}(\theta)$ lying in $(0,\pi)$ increases with $\mathfrak{m}(\geq 2)$ for fixed n.

Apart from the obvious connection with the Riemann zeta function, such series arise in the context of a quadrature-based method for solving boundary integral equations currently being developed by I.H. Sloan and W.L. Wendland [3]: the zeros of $G_{\overline{M}}(\theta)$ in $(0,2\pi)$ correspond to the quadrature points, and a consequence of (ii) is the stability of some forms of the method.

The special values $m=1,2,4,\infty$ give an idea of the general behaviour of $G_m(\theta)$:

$$G_{1}(\theta) = -\frac{1}{2}\log(2(1-\cos\theta)),$$

$$G_{2}(\theta) = \frac{\theta^{2}}{4} - \frac{\pi\theta}{2} + \frac{\pi^{2}}{6},$$

$$G_{4}(\theta) = -\frac{\theta^{4}}{48} + \frac{\pi\theta^{3}}{12} - \frac{\pi^{2}\theta^{2}}{12} + \frac{\pi^{4}}{90},$$

$$G_{\infty}(\theta) = \cos\theta;$$

note that up to a constant $G_{2m}(\theta)$ are the Bernoulli polynomials.

2. PROOF OF THEOREM

(i) For m = 1 we see immediately from the explicit formula that $G_1(\theta)$ is decreasing on $(0,\pi)$. For m > 1, the series may validly be differentiated termwise [2, 196, 199.4] so that we reduce to proving $H_{\beta}(\theta) = \sum_{j=1}^{\infty} j^{-\beta} \sin j\theta$ positive on $(0,\pi)$, $\beta > 1$, $\beta \in \mathbb{N}$. In fact that result is valid for all positive real β and Dick Askey showed us how to prove it using the correct kernel: write $j^{-\beta} = \frac{1}{\Gamma(\beta)} \int_0^{\infty} t^{\beta-1} e^{-jt} dt$ so that

$$\begin{split} H_{\beta}\left(\theta\right) &= \frac{1}{\Gamma\left(\beta\right)} \sum_{j=1}^{\infty} \sin j\theta \int_{0}^{\infty} t^{\beta-1} e^{-jt} dt \\ &= \frac{1}{\Gamma\left(\beta\right)} \int_{0}^{\infty} t^{\beta-1} \sum_{j=1}^{\infty} \sin j\theta \left(e^{-t}\right)^{j} dt \\ &= \frac{1}{\Gamma\left(\beta\right)} \int_{0}^{\infty} t^{\beta-1} \frac{e^{-t} \sin \theta}{1 - 2e^{-t} \cos \theta + e^{-2t}} dt \\ &> 0 \quad \text{for} \quad \theta \in \left(0,\pi\right). \end{split}$$

(ii) Denote by z(m) the unique zero of $G_m(\theta)$ lying in $(0,\pi)$. Notice that $z(1)=\frac{\pi}{3}$ and that for m>1 we have $G_m(\frac{\pi}{3})=\frac{1}{2}(1-2^{1-m})\,(1-3^{1-m})\,\zeta(m)>0 \text{ and } G_m(\frac{\pi}{2})=-2^{-m}(1-2^{1-m})\,\zeta(m)<0.$

Thus $z(m) \in \left[\frac{\pi}{3}, \frac{\pi}{2}\right]$, and it is enough to show that $(G_{m+1} - G_m)(\theta)$ is positive on $\left[\frac{\pi}{3}, \frac{\pi}{2}\right]$, $m \in \mathbb{N}$, for then $G_{m+1}(z(m)) > G_m(z(m)) = 0$ which implies z(m+1) > z(m) by (i).

Now $G_m(0) = \zeta(m)$ and $G_m(\pi) = -(1-2^{1-m})\zeta(m)$ both decrease (to 1 and -1 respectively), whereas $G_m(\frac{\pi}{3})$ and $G_m(\frac{\pi}{2})$ increase with m. In particular, $(G_{m+1} - G_m)(\theta)$ has an even number, at least 2, of zeros in $(0,\pi)$. It is easily verified that $(G_2 - G_1)(\theta)$ and $(G_3 - G_2)(\theta)$ have exactly 2 zeros in $(0,\pi)$; we proceed inductively. Since $(G_{m+3} - G_{m+2})''(\theta) = -(G_{m+1} - G_m)(\theta)$, $(G_{m+3} - G_{m+2})(\theta)$ has precisely 2 points of inflexion in $(0,\pi)$, and since it is negative and concave up at 0 and at π , $(G_{m+3} - G_{m+2})(\theta)$ cannot have more than two zeros in $(0,\pi)$.

Hence $(G_{m+1}-G_m)(\theta)$, $m\in\mathbb{N}$, has exactly two zeros in $(0,\pi)$: one in $(0,\frac{\pi}{3})$ and the other in $(\frac{\pi}{2},\pi)$; in particular $(G_{m+1}-G_m)(\theta)$ is positive on $\left[\frac{\pi}{3},\frac{\pi}{2}\right]$.

- (iii) For the partial sums it does not seem possible to mimic the elegant use of the gamma-function kernel. However the classical Jackson-Gronwall result on the positivity of the partial sums of $H_1(\theta)$ gives all the information required (and that result has been given many pretty proofs over the years).
 - (iv) $z_n(m)$ increases with m_ℓ $m \in \mathbb{N}_\ell$ $m \ge 2$.

Note first that the assertion is trivial for n=1 since $G_m^1(\theta) = \cos \theta \quad \text{and} \quad z_1(m) = \frac{\pi}{2}, \quad \text{so we suppose} \quad n \geq 2. \quad \text{Then}$

 $z_n(m)\in\left[\frac{\pi}{4},\frac{\pi}{2}\right]$ since $G_m^n(\frac{\pi}{2})<0$ ($G_m^n(\frac{\pi}{2})$ is an alternating sum of terms decreasing in absolute value, the first of which is negative) and since $G_m^n(\frac{\pi}{4})>0$ (to see this, pair the jth term with the (j - 4)th, j = 3,4,5 mod 8, j \geq 11). As before it suffices to prove

$$(G_{m+1}^{n} - G_{m}^{n})(\theta) > 0$$
 on $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$, that is, to prove $\sum_{j=2}^{n} \frac{j-1}{j^{m}+1} \cos j\theta < 0$,

 $\theta \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right], n, m \ge 2$. Summing by parts we see that it is enough to prove

$$C_{n}(\theta) = \sum_{j=2}^{n} \frac{j-1}{j^{2}} \cos j\theta < 0, \ \theta \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right], \ n \ge 2.$$

Since $\cos 2\theta$, $\cos 3\theta$ and $(\cos 2\theta + \cos 4\theta)$ are negative throughout $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ we have $C_n(\theta) < 0$ on $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ for n = 2, 3, 4. For $n \geq 5$ we sum twice by parts to see that

$$2 \sin^2 \frac{\theta}{2} C_n(\theta) = \frac{1}{4} \sin^2 \frac{\theta}{2} - \frac{5}{18} \sin^2 \theta - \frac{1}{144} \sin^2 \frac{3\theta}{2}$$

$$+ \sum_{j=3}^{n-2} \left(\frac{j-1}{j^2} - \frac{2j}{(j+1)^2} + \frac{j+1}{(j+2)^2} \right) \sin^2 \frac{(j+1)\theta}{2}$$

$$+ \left(\frac{n-2}{(n-1)^2} - \frac{n-1}{n^2} \right) \sin^2 \frac{n\theta}{2}$$

$$+ \frac{n-1}{n^2} \sin(2n+1) \frac{\theta}{2} \sin \frac{\theta}{2}$$

$$\leq \frac{1}{4} \sin^2 \frac{\theta}{2} - \frac{5}{18} \sin^2 \theta - \frac{1}{144} \sin^2 \frac{3\theta}{2} + \frac{5}{144}$$
$$+ \frac{n-1}{n^2} \sin(2n+1) \frac{\theta}{2} \sin \frac{\theta}{2}$$

$$= f \left(\sin^2 \frac{\theta}{2} \right) + \frac{n-1}{n^2} \sin(2n+1) \frac{\theta}{2} \sin \frac{\theta}{2}$$

where $f(t) = \frac{1}{144}(5 - 133t + 184t^2 - 16t^3)$. Because f is concave up we have $f\left(\sin^2\frac{\theta}{2}\right) \le \max\left\{f\left(\sin^2\frac{\theta}{2}\right), f\left(\sin^2\frac{\theta}{2}\right)\right\}$ on $[\theta_1, \theta_2]$, and $C_n(\theta) < 0$ on $[\theta_1, \theta_2]$ whenever $F(\theta_1, \theta_2, n) = \max\left\{f\left(\sin^2\frac{\theta}{2}\right), f\left(\sin^2\frac{\theta}{2}\right)\right\}$ on $[\theta_1, \theta_2]$, and $[\theta_1, \theta_2] = \max\left\{f\left(\sin^2\frac{\theta}{2}\right), f\left(\sin^2\frac{\theta}{2}\right)\right\}$, whenever $[\theta_1, \theta_2, n] = \max\left\{f\left(\sin^2\frac{\theta}{2}\right), f\left(\sin^2\frac{\theta}{2}\right)\right\}$ on $[\theta_1, \theta_2]$, whenever $[\theta_1, \theta_2, n] = \max\left\{f\left(\sin^2\frac{\theta}{2}\right), f\left(\sin^2\frac{\theta}{2}\right), f\left(\sin^2\frac{\theta}{2}\right)\right\}$, we have $[\theta_1, \theta_2] = 0$ on any subinterval where $[\theta_1, \theta_2] = 0$.

For $n \ge 9$ we have $F\left(\frac{\pi}{4}, \frac{\pi}{2}, n\right) \le F\left(\frac{\pi}{4}, \frac{\pi}{2}, 9\right) < 0$; for $5 \le n \le 8$ it is necessary to subdivide the interval:

for
$$n=8$$
 we have $F\left(\frac{\pi}{4},\frac{6\pi}{17},8\right)<0$, $F\left(\frac{8\pi}{17},\frac{\pi}{2},8\right)<0$ and $\sin\frac{17\theta}{2}\leq0$ on $\left[\frac{6\pi}{17},\frac{8\pi}{17}\right]$,

for
$$n=7$$
 we have $F\left(\frac{4\pi}{15},\frac{6\pi}{17},7\right)<0$ and $\sin\frac{15\theta}{2}\leq0$

on
$$\left[\frac{\pi}{4}, \frac{4\pi}{15}\right] \cup \left[\frac{6\pi}{15}, \frac{\pi}{2}\right]$$
,

for
$$n=6$$
 we have $F\left(\frac{\pi}{4}, \frac{\pi}{3}, 6\right) < 0$, $F\left(\frac{\pi}{3}, \frac{\pi}{2}, 6\right) < 0$ and

$$\text{for } n = 5 \quad \text{we have} \quad \mathbb{F}\!\!\left(\frac{4\pi}{11}, \frac{\pi}{2}, 5\right) < 0 \quad \text{and } \sin \frac{11\theta}{2} \le 0 \text{ on } \left[\frac{\pi}{4}, \frac{4\pi}{11}\right].$$

REMARKS

Statement (i) of the theorem is valid for arbitrary real numbers $\alpha \geq 1$, as the proof shows. We will discuss the extension of the remainder of the theorem to non-integral m on another occasion, [1]. For $\alpha < 2$ no even partial sum is decreasing; nevertheless it seems

that these partial sums still have a unique zero in $(0,\pi)$. If $\alpha \ge \frac{9}{8}$ this can be proved using Vietoris' methods (see [1], [4]).

REFERENCES

- [1] G. Brown and D.C. Wilson, Positivity results for trigonometric sums, in preparation.
- [2] K. Knopp, Theory and application of infinite series, 2nd English edition, Blackie, London-Glasgow, 1951.
- [3] I.H. Sloan and W.L. Wendland, A quadrature based approach to improving the collocation method for splines of even degree, Preprint, 1988.
- [4] L. Vietoris, Über das vorzeicher gewisser trigonometrischer summen, S-B Öster. Akad. Wiss. <u>167</u> (1958) 125-135; Teil II: Anzeiger Öster. Akad. Wiss. (1959) 192-193.

School of Mathematics University of New South Wales Kensington New South Wales 2033.