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TRIGONOMETRIC SUMS AND POLYNOMIAL ZEROS

Gavin Brown and David C. Wilson

1. INTRODUCTION

This is a preliminary report on work in progress on an ARGS project

concerned with positive trigonometric sums and their applications.

Consider the cosine series
<o
-m .
Gm(e) = X 3 cos j8, me N,
and its partial sums
n o -m
Gm(e) = 3 3 cos jeo.

We establish the following

THEOREM (1) Gm(e) is decreasing on (0,z),

(ii) the unique zero of Gm(e) lying in (0,=)

increases with m,

(iii) G;(e) is decreasing on (0,zn) for m 2z 2,

(iv) the unique zero of G;(e) lying in (0,n) increases with

m(2 2) for fixed n.

Apart from the obvious connection with the Riemann zeta function,

such series arise in the context of a quadrature-based method for

solving boundary integral equations currently being developed by I.H.

Sloan and W.L. Wendland [3] : the zeros of Gm(e) in

(0,2r) correspond

to the quadrature points, and a consequence of (ii) is the stability of

some forms of the method.
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The special values m = 1,2,4,~ give an idea of the general

behaviour of Gm(e):

Gl(e) = - % log(2(1 - cos 8)),
2 2
(] 0 =
G8) = =T+ T
G.(8) = - of ,med s%? + xt
4 Y 12 12 90’

G“(e) = cos 8;

note that up to a constant G m(9) are the Bernoulli polynomials.

2
2. PROOF OF THEOREM
(i) For m =1 we see immediately from the explicit formula that
Gl(e) is decreasing on (0,=m). For m > 1, the series may validly be
differentiated termwise [2, 196, 199.4] so that we reduce to proving
s B

Hﬂ(e) = 3 3 sin j® positive on (O,x), B > 1, B e N. In fact that
j=1

result is valid for all positive real B and Dick Askey showed us how
to prove it using the correct kernel: write j_B = F%ET JN tP_l e—jt dt
0

so that

H (0) = —— sin je J“ Pt eIt g
1 0

z
r .
B ®
- rtT r 1 5 sin j0e™HI at
0 3=1
1 p-1 e—t sin @
T J: t 2t 9t

1 - 2e-t cos 6 + e

>0 for 8 € (O,m).

(ii) Denote by z(m) the unique zero of Gm(e) lying in (0,xm).

Notice that =z(l) = and that for m > 1 we have

6 & =20 - 2"

ua
3
m 3 1

- 3™ (m) > 0 and Gm(‘;") =21 - 2™ em < o.
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Thus z(m) e [

B

- Gm)(e) is

14

Wi

J, and it is enough to show that (Gm+1

positive on [ , ], me N, for then Gm+1(z(m)) > Gm(z(m)) = 0 which

wia
(NG

implies z{(m + 1) > z(m) - by (i).

Now Gm(O) = {(m) and Gm(n) = = (1 - 21—m)§(m) both decrease (to

1 and -1 respectively), whereas Gm(%) and Gm(g) increase with m.

In particular, (G

- G )(8e) has an even number, at least 2, of zeros
m+1 m

in (O,m). It is easily verified that (G2 - Gl)(e) and
(G3 - Gz)(e) have exactly 2 zeros in (0,x); we proceed inductively.

Since (G - Gm+2)"(9) == (G

m+3 m+l Gm)(e)' (©

m+3 ~ Cmez) (8) bas

precisely 2 points of inflexion in (0,z), and since it is negative and

concave up at 0 and at =, (G

3 Gm+2)(0) cannot have more than

two zeros in (0,=m).

Hence (G

el Gm)(e), m e N, has exactly two zeros in (0,xn)

. T : I : _
one in (0,3) and the other in (2,n), in particular (Gm+1 Gm)(e)
is positive on £z
P 372"

(iii) For the partial sums it does not seem possible to mimic the
elegant use of the gamma-function kernel. However the classical

Jackson-Gronwall result on the positivity of the partial sums of Hl(e)

gives all the information required (and that result has been given many
pretty proofs over the years).

(iv) zn(m) increases with m, me N, m2 2.
Note first that the assertion is trivial for n = 1 since

1
Gm(e) = cos 8 and zl(m) = so we suppose n 2 2. Then

n
E:
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LA . n,x, n,m . .
zn(m) € [4,2] since Gm(2) <0 (Gm(z) is an alternating sum of terms

decreasing in absolute value, the first of which is negative) and since
G:(%) > 0 (to see this, pair the jth term with the (j - 4)th, j = 3,4,5

mod 8, j 2 11). As before it suffices to prove

n .
n _n T T . i-=-1 .
(Gm+1 Gm) (8) > 0 on [4,2], that is, to prove .): ot 1 cos j8 < 0,
=2 3
0 e [%,%], n,mz2 2. Summing by parts we see that it is enough to prove
By - 1 LA 1
c® =3 T—cos38<0,0¢€|EE, nz 2.
n . .2 4’2
j=2 3
Since cos 26, cos 30 and (cos 28 + cos 40) are negative
throughout |Z%,% h C (8) <0 LE ¢ =2,3,4. F
roughou e we have - on e or n=2,3,4. or
n 2 5 we sum twice by parts to see that
. 28 _1 .28 5 _ .2 __1 . 2 38
2 sin 2 cn(e) =3 sin 2 18 sin” ® —'144 sin 2
n=2 (4.1 21 i+ 1 2 (1 + 1)e
+):('1-3- 11—+ = stin .
j=3 J (3 + 1) (i +2) 2
N ( n-2 __n- 1] oin? DO
o - 1)2 n2 2
n-1_, 8 _, 8
+ > sin(2n + 1)2 sin 2
n
S'I‘SinZQ'——s inze -l sin2-3-£+—5
4 218 ° 144 2 " 144
n-1 . 8 . 8
+ > sin(2n + 1)2 sin 2
n
. 28 n-1 . 8 . 8
= f(sui 2] + nz sin(2n + 1)‘,2 sin D)
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where f(t) = 1%2(5 - 133t + 184t2 - 16t3) . Because £ 1is concave up

] (2]
we have f[:s:i.n2 %] < max{f(sxin2 —1), f(sin2 —2']} on [91,92], and

8
2 _1
Cn(e) <0 on [91,92] whenever F(el,ez,n) —max{f[s:.n 2],

] [:]
f:{sin2 -—2']} + 2= lsin —2 < 0. Also, since f(sinZ%) < 0 on [Eg

e
we have Cn(e) < 0 on any subinterval where sin(2n + 1)'2' < 0.

z

For n 2 9 we have F[4,%,n] < F[%,%,Q] < 0; for 5< n< 8 it

is necessary to subdivide the interval:

n 6m 8n m . 178
for n = 8 we have E{4,17,8] < 0, F(17,2,8) < 0 and sin 2 <0
bz 8z
°on l17717)”
4 6n . 156
for n = 7 we have 5{15,17,7] < 0 and sin 2 <0

n |Z 4z &z z
° 4'15 15°2]"

,%,6] < 0 and

£

for n = 6 we have E{%,%,G) <0, F(3

for n =5 we have F[4—"£ ]<0 andsin%"‘SOon [L-iJ

3. REMARKS

Statement (i) of the theorem is valid for arbitrary real numbers
@ 2 1, as the proof shows. We will discuss the extension of the
remainder of the theorem to non-integral m on another occaéion, [11.

For o < 2 no even partial sum is decreasing; nevertheless it seems
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that these partial sums still have a unique zero in (0,zx). If a 2

@ o

this can be proved using Vietoris’ methods (see [1], [4]).
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