Ola Bratteli

The problems addressed in this talk were partly motivated by attempts to classify the *-derivations defined on a class of smooth elements for an automorphic action α of a locally compact group G on a C*-algebra A. It has been proved that such a derivation δ has the form $\delta = d\alpha(X) + \tilde{\delta}$, where X is an element of the Lie algebra g of G and d α is a bounded derivation, under various circumstances, for example the following four:

(i) G is compact and there exists a faithful covariant representation π of A with $\pi(A^{\alpha})' \cap \pi(A)'' =$ (Bratteli - Goodman and Longo, see [1, Theorem 2.9.2] and [8, Corollary 4.3]).

(ii) G is abelian, there exists sufficiently many G - invariant pure states and $\Gamma(\alpha) = \hat{G}$ (Batty - Ikunishi - Kishimoto, see [1, Theorem 2.9.10 and Corollary 2.9.17]).

(iii) G is abelian or compact, A is simple separable and there exists a sequence τ_n of automorphisms of A such that $\tau_n \alpha_g = \alpha_g \tau_n$ for all $n \in \mathbb{N}$ and $g \in G$, and $\lim_{n \to \infty} || \tau_n(x)y - y\tau_n(x)|| = 0$ for all x, $y \in A$. (Bratteli - Kishimoto, see [1, Theorem 2.9.31]) Actually, using (iii) one proves. (iv) G is abelian or compact and there exists an irreducible representation π of A on a Hilbert space & which is strongly non-covariant in the sense that the center of the direct integral representation $\int_{G}^{\bigotimes} dg \ \pi \circ \alpha_{g} \quad \text{on } \mathcal{H} \otimes \ L^{2}(G) \quad \text{is } 1 \otimes \ L^{\infty}(G),$ and this is used in $\text{proving}_{\Lambda}^{\text{the}}$ decomposition of a derivation defined on the smooth elements.

Note that these conditions are typically fulfilled for product type actions of G on a UHF - algebra. Recently it har been realized that these conditions actually are equivalent under general circumstances, and they are also equivalent to the existence of an embedding (in Glimm's sense) of a product type action in (A, G, α) . Results of this sort has been proved for compact abelian groups G in [4], [5], [2], for abelian groups in [6], and for compact groups in [4] [5], [3]. As a sample we cite part of the main result in [3]:

<u>Theorem</u> Let A be a separable C*-algebra, G a compact group with G \neq { e } and α a faithful action of G on A. The following 6 conditions are equivalent

- (1) There exists a $\delta > 0$ such that $\sup \{ ||xay|| | a \in A^{\alpha}, ||a|| = 1 \} > \delta ||x|| ||y||$ for all x, y $\in A$, where A^{α} is the fixed point algebra under α .
- (2) Condition (1) with $\delta = 1$.
- (3) There exists a faithful irreducible representation π of A such that $\pi | A^{\alpha}$ is irreducible. (This is equivalent to condition (iv) above).
- (4) There exists a pure invariant state ω of A such that $\pi_{\omega|_A \alpha}$ is faithful (and thus π_{ω} is faithful and A^{α} is prime).
- (5) If (ξ_n) is a sequence of finite dimensional representations of

5

G, $d_n = \dim(\xi_n)$, $\beta = \bigotimes_{n=1}^{\infty} \operatorname{Ad}(\xi_n)$ is the corresponding product type representation of G on the UHF algebra $C = \bigotimes_{n=1}^{\infty} \operatorname{M}_{d_n}$, then there exists a globally α - invariant projection q in the bidual A** of A such that

- (5a) q∈B':
- (5b) qAq = Bq.
- (5c) $q \in J^{**} \subset A^{**}$ for any nonzero closed ideal J of A.
- (5d) (Bq, G, $\alpha^{**}|Bq$) is isomorpfic to (C, G, β) as C*- dynamical systems.
- (6) For each irreducible representation γ of G of dimension d there exists a $\delta_{\gamma} > 0$ such that for each concrete matrix representative $\gamma_{ij}(g)$ of γ there exists a sequence $y_n = (y_{n_1}, \dots, y_{n_d})$ of d-tuples in A such that $\alpha_g(y_n) = y_n [\gamma_{ij}(g)], n \neq y_{n1}$ is a central sequence, and $\lim_{n \to \infty} \sup ||a|y_{n1}|| > \delta_{\gamma}||a||$ for any a $\in A$.

For a more detailed survey of these results, see [7].

References

- Bratteli, O., Derivations, Dissipations and Group Actions on
 C*-algebras, SLM 1229, Springer Verlag, Berlin Heidelberg New York (1986).
- [2] Bratteli, O., Elliott, G. A., Evans, D. E., Kishimoto, A., Quasiproduct actions of a compact abelian group on a C*-algebra, Tohoku Math. J., to appear.
- [3] Bratteli, O., Elliott, G. A., Kishimoto, A., Quasi product actions of a compact group an a C*-algebra, in preparation.

6

- [4] Bratteli, O., Kishimoto, A., Robinson, D. W., Embedding product type actions into C*-dynamical systems, J. Functional Analysis 75 (1987), 188 - 210.
- [5] Evans, D. E., Kishimoto, A., Duality for automorphisms on a compact C*-dynamical system, J. Ergodic Theory, to appear
- [6] Kishimoto, A., Type I orbits in the pure states of a C*-dynamical system, Publ. RIMS Kyoto Univ. <u>23</u> (1987), 321 336; II, ibid.
 517-526.
- [7] Kishimoto, A., Compact group actions on C*-algebras, RIMS lecture note (1988)
- [8] Longo, R., Restricting a compact action to an injective subfactor, Roma preprint 15-1987.

Institute of Mathematics The University of Trondheim N-7034 Trondheim - NTH NORWAY