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SOME REMARKS ON INVERSE AND EXTREMAL 

EIGENVALUE PROBLEMS 

Michael L. Overton 1 

This paper gives a broad outline of recent work on both theoretical and 

numerical aspects of inverse and extremal eigenvalue problems, especially the 

developments that have taken during my 1986-87 visit at the Centre for 

Mathematical Analysis and Mathematical Sciences Research Institute of the 

Australian National University. I would like to start by thanking all my hosts at the 

for their warm hospitality, especially Dr, Mike Osborne. 

Let A(x) be a smooth real n x n matrix function of a parameter vector 

x E !Rm , and let i = l, ... ,n , be the eigenvalues of A(x) . The inverse eigenvalue 

problem is: 

* /\. E {, i = l, ... ,n , and a domain 
l 

D.Q x E D such that the sets IEP: Given 

* {A..(x), i = l, ... ,n} 
I 

and {A., i = l, ... ,n}, 
1 

are the same. (We have not written 

* = \ to avoid difficulties with inconsistent orderings.) 

The most common version of the extremal eigenvalue problem is : 

EEP: Given a domain D .Q IRm, find x E D so that the spectral radius 

is minimized over D . 

p(x) = max I A..(x) I 
l:Si:Sn 1 

The relationship between IEP and EEP is thus similar to the usual 

relationship between solving nonlinear systems of equations and nonlinear 

optimization. In particular, IEP may have no solution, while EEP must have a 

solution if D is compact, since p(x) is continuous. The feature of IEP and EEP 

lVisiting A.N.U., 1986-87. On leave from Courant Institute of Mathematical Sciences, New York 
University. This work was supported in part by the National Science Foundation under Grant 
DCR-85-02014. 
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which makes them much harder to solve than many systems of nonlinear equations and 

optimization problems is that the eigenvalues {.A.(x)} are not differentiable at points 
I 

where they coalesce. 

Let us first discuss IEP in the symmetric case, i.e., A(x) = A(x) T for all x . 

Because the eigenvalues are real, we may use the ordering \ (x) 2: ... 2: \ (x) and 

* * * also .A 1 2: ... 2: ,\ . Assume first that { ,\.} are distinct, and that IEP has a solution 
n 1 

* * x . Because the eigenvalues .A.(x) are each differentiable near x , it makes sense to 
l 

assume n = m . Indeed, this is natural in many applications; for example, often A(x) 

has fixed off-diagonal elements and variable diagonal elements {xk} . Because the 

eigenvalues are differentiable, Newton's method is applicable. There are at least three 

possible systems of nonlinear equations to which Newton's method might be applied; 

let us write these as f(x) = 0 , g(x) = 0 and h(x) = 0 . The first and most natural is 

defined by 

* f.(x) = .A.(x)- J\. , i = 1, ... ,n. 
I I I 

(1) 

This formulation has been used by many people; the earliest reference may be [1]. The 

second formulation is 

* g.(x) = det(A(x)- .A. I), i = 1, ... ,n; 
I I 

(2) 

see (2]. The third, due to Osborne (3], is more complicated to explain but may be the 

most computationally attractive in many situations. The reason for this is that 

obtaining the Jacobian of f(x) and g(x) requires computing the complete 

eigensystem of A(x) , which the third method avoids. Let { w.} be a set of n fixed 
l 

independent vectors, which are supposed to be the best approximation to the 

eigenvectors of A(/) known, say, at the vth iteration. Define h(x) by 

* (A(x) - ,\. I)v.(x) = h.(x)w. , i = 1, ... ,n, 
I I I I 

(3) 

and 

v.(x)Tw. = 1 , i = 1, ... ,n. 
I I 

(4) 
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Here 1 
hi(x) is the vector obtained by applying a single step of inverse iteration 

for each i, using the required eigenvalues {A~} to shift A(x) and the vectors {w.} 
l l 

for the right-hand sides. The quantity h.(x) is the scalar factor required to normalize 
l 

v.(x) according to 
l 

hi ( x) is in fact an approximation to ( 1). Note that since { w) 

depends on the iteration count v , the function h(x) is differently defined at each step 

of the iteration, but this is not an unusual situation in the formulation of Newton's 

method. It turns out (see [3], [4], [5]) that differentiating (3), (4), gives a Jacobian of 

h(x) whieh is closely related to the Jacobian of f(x) , the difference being that the role 

of the eigenvectors of A(x) is replaced by the eigenvector approximations { v.} 
l 

obtained from the inverse iteration steps. It is natural to set w.(v+l) = v.(x(v)) , to 
l l 

define h(x) at the beginning of the next iteration. 

Ref. [5] gives a comprehensive study of methods for solving IEP, emphasizing 

four in particular. The ones known as Methods I and IV are simply the 

aforementioned Newton methods applied to (1) and (2). The one known as Method II 

is slightly different from Osborne's method just described. One difference lies in the 

choice of right-hand side of the linear system to be solved at each iteration (the 

left-hand side having the same Jacobian coefficient matrix). The other difference is 

the choice of normalization condition following the inverse iteration steps. Ref. [5] uses 

v.(x)Tv.(x) = 1, i = l, ... ,n, 
l 1 

(5) 

instead of ( 4). Although in many ways this is more natural, the resulting method is 

not actually Newton's method applied to (3), (5), although it is quadratically 

convergent. 

The other method, Method III of [5], was an original contribution. In some 

ways it is the most interesting, since it leads directly to the correct formulation of the 

methods when multiple eigenvalues are present. However, we shall not discuss it since 

it is described at some length in [6] as well as [5]. It is not known to be Newton's 

method applied to any particular function, although again it is quadratically 

convergent. 
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Practical experience shows that all of Methods I, HI are superior to Method IV. 

The main contribution of [5] was to show how to properly formulate IEP when 

the set {A. 
! 

i = , .. ,n, contains multiple entries. In this case (1) is not differentiable, 

(2) is not a distinct set of equations and is not 1111ell defined. Suppose for simplicity 

* * that one multiple eigenvalue is imposed, say .A. 1 = ... = \ . The most important 

observation to make is that the resulting restricting set of equations on the parameter 

of dimension, not t , but t(t+l 0 This fact goes back to von 

Neumann and Wigner in 1929 [7] and, in the context of requiring a symrnetric matrix 

to have a given rank, Ledermann in 1937 [8], although it is not vvidely known. 

Consequently, to be well posed, a generic IEP problem must have the number of 

parameters, m , chosen to re:1:1ect this i.e. m = t( t+ 1) /2 + n - t if all eigenvalues 

are prescribed. 

It turns out [5] that the appropriate generalization of (1) to which Newton's 

rnethod should be applied is 

(6) 

0 ) * 
f( 2 (x) = q.(x)T A(x)q.{x)- ,\. , t + 1 :'S i :'S n. 

1 l 1 1 
(7) 

Here consists of two parts, both to be set to zero, with t( t+ 1) /2 and n - t 

components respectively. The vectors { q.(x)} 
l 

are an orthonormal basis of 

eigenvectors of A(x). Note that (1) and are actually the same, i = t + l, ... ,n. One 

must be careful about what exactly is meant differentiating ( 6); see [5]. 

We still do not know how to generalize formulation to allow multiple 

eigenvalues. The key may be in the Ledermann arguement [8], which is as follows. We 

* require M = A(x) - /\0 I to have rank n - t . This is true if there is a principal 
l 

submatrix M1 of M with dimension n - t and nonzero determinant, and if each 

principal. submatrix of M with dimension n - t + 1 or n - t + 2 and leading block 

M1 has zero determinant [9, p.79]. The last requirement consists of t + (~) 

conditions, which is the correct number. The difficulty in exploiting this fact to apply 

Newton 1s method is that one does not generally know a suitable submatrix M1 . In 
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any case generalizing formulation (2) is only of academic interest since, when the 

eigenvalues are distinct, Method IV is inferior to the others in practice. 

Ref. [5] also generalized Method II to allow multiple eigenvalues. Here we 

comment on a possible corresponding generalization of formulation (3). Let W 1 be an 

n x t matrix whose columns are t independent vectors approximating eigenvectors of 

* * * A(x ) corresponding to ,\ = ... = \ . Define H1 (x) by 

(8) 

where 

(9) 

and H1 (x) is t x t upper triangular. The idea is that V 1 (x)H1 (xr 1 is a QR 

* -1 factorization of ( A(x) - .X 1 I) W 1 . A QR factorization of this matrix was also used 

in the generalization described in [5]. The point we are making here is that it is 

possible to consider applying Newton's method directly to the inverse triangular factor 

H1 (x) , noting that it has the right number of equations to be set to zero, namely 

t(t+l)/2. However, the normalization equation (9) is a generalization of (5), not (4), 

and hence the relevant Jacobian does not nicely simplify as in Osborne's method [3]. A 

generalization of (4) would be 

which would seem to be an invalid normalization condition, giving the wrong number 

of equations. 

So far we have discussed only symmetric inverse eigenvalue problems. These 

methods generalize without too much difficulty to the nonsymmetric case provided 

* A(x) is not defective at a solution x . We shall not pursue this further here, deferring 

the discussion of nonsymmetric problems to the end of the paper where we comment on 

the nonsymmetric EEP . 

The Newton methods just described foriEP are useful as they stand only in a 

neighbourhood of a solution. Finding such a neighbourhood, or ascertaining whether a 

solution exists at all, are always difficult problems in the general solution of nonlinear 
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equations. In this sense minimization problems are generally easier to solve, since one 

can find a 11 lower 11 point and in that sense make progress towards finding at least a 

local minimunL Let us therefore turn to the minimJzation problem EEP. Most of my 

time at A.N. U. has been spent working on EEP, both the symmetric and 

nonsymmetric versions. 

Let us first consider the symmetric version of EEP, i.e., A(x) = A(x) T for all 

x . Let us also assume that A(x) is an affine function, which it is in many 

applications, to avoid the complication of minima introduced nonlinearities in 

A(x) . Then p(x) is convex, since the largest eigenvalue of a symmetric matrix is a 

convex function of the matrix elements [10]. However, is not differentiable at 

points x where the maximum eigenvalue, , is multiple. In fact, p(x) is not 

differentiable even if .A1(x) and ,\ (x) are both distinct with a common modulus, but 
n 

this sort of nondifferentiability, where p(x) is simply a pointwise maximum of two 

differentiable functions, is easily analyzed [11]. Let us suppose that 

p(x) = -\ = ... = \(x) > >.t+1(x) 2: ... 2: A11_ 8(x) > -\-s+l(x) = ... = \(x) =- p(x) 

so that t and s are the multiplicities of the two eigenvalues achieving the maximum 

modulus. If t or s is greater than one, determining whether x is a minimizer of f 

is not an easy task. This contrasts with IEP where, given x , determining whether x 

solves IEP is trivial. Since p(x) is convex, Rockafellar's theory of subgradients [12] 

applies. Even with the help of this powerful theory, however, obtaining a 

computationally verifiable optimality condition is not trivial. In [13] we have given 

such a verifiable optimality condition, closely following the work of Fletcher on a 

related topic [10]. Fletcher's work in turn is based on the Rockafellar theory. The 

optimality condition is as follows : 

THEOREM Assume that A(x) is an affine symmetric matrix function. A necessary 

and sufficient condition for x to minimize p(x) over D = IRm is that there exist 

11 dual matrices" U and V , of dimension t x t and s x s respectively, with U and 

V both symmetric and positive semi-definite and satisfying 



TaA(x) 
--rTxk 

. u-
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tr U + tr V = 1 

TaA(x) 
-OXk 

. v::; 0) k = 

(10) 

(11) 

where Q1 and 

columns which are 

are n x t and n x s matrices with orthonormal 

for the eigenvalues and 

A 1(x) = ... = 
n-s+ 

respectively. The is the matrix inner operator 

defined by 

A:B = 

where A and B are symmetric matrices of the same dimension. o 

The interesting thing about this theorem is that it involves "dual matrices 11 • 

multipliers) familiar from 

linear and nonlinear programming. In such problems the dual variables are 

for optimality. Here we have the generalized condition that 

the dual matrices rrmst be nonnegative have nonnegative eigenvalues. 

The procedure for resolving optimality is simply to solve ( 10), ( 11) below) for 

u = uT v = , , and then check whether U and V are nonnegative definite. 

The main theoretical contribution of [13] was to show further if the 

optimality condition is not satisfied at x , a descent direction may be generated by 

to finding a descent direction, just as it is a negative dual variable ("reduced cost") 

which gives the information required to obtain a descent direction from a vertex in 

linear programming. See [13] for details. 

One important feature of the symmetric EEP is that it is common for problems 

to have a solution where t or s is than one, The reason for this is 

that the goal of EEP is to find a point x such that the eigenvalues of A(x) are 

squeezed into as small an interval [-p,p] as possible. Typically, as the optimization 

proceeds, more eigenvalues coalesce to the values ± p , increasing t and s 
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accordingly" Hovvever, the von Neumann-vVigner argument imposes a generic limit on 

t and s , namely 

t(t+l) + s(s+l) < m + 1 
2 2 - (12) 

where the 11 111 on the right-hand side re±1ects the faet that the common modulus p , 

like the m parameters , is free. Problems for which (12) is violated are said to 

be degenerate. Note that since the linear system (10), (11) is m + 1 equations in 

t(t+ 1 + s(s+l) /2 unknovvns, it is genericaily solvable if holds with equality. If 

holds with and (10), (11) is not a solvable system, it is generically the 

ca,se that a descent direction may be found without splitting a multiple eigenvalue. 

It is also that A(x) has no multiple at the solution. This 

happens, for example, if lS 1Nith fixed nonzero off-diagonal elernents. 

Along with the theoretical contributions just a practical 

algorithm for minimizing case" The method is based on 

successive quadratic using estimates of the multiplicities t and s 

to incorporate the linear constraints in the QP 1s. These linear constraints 

are the same linearizations used in the Newton method applied to (6), (7) in 

the context of IEP 0 If ( holds with equality, the mininmm_ is well-defined 

first-order information and it is sufficient to use successive linear programming instead 

of successive QP. Otherwise, second-order information must be used in the QP 1s to 

a method which is locally convergenL For details and numerical 

examples, see [13]. 

Clearly, (12) is not solvable with equality for all m. Jerry Kautsky of Flinders 

University has pointed out that a nice way to display the integers m for which (12) is 

solvable with equality is the 11 modified Pascal triangle 11 : 
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1 

1 1 ; 

113, 3x 

1 6/9 7 
I 

1 5 1116 13 11 

1 6 17 25 21 18 16 

1 ~ 7 36 31 27 24 22 

Here each number in the diagonal * has the form t( t+ 1 and each number below 

the diagonal * is obtained adding two numbers in the diagonal * . The number of 

such possible integers expressed as a percentage of all integers from 1 to m , say, 

decreases to zero as 1il -; oo • 

Finally, let us comment on the nonsymmetric EEP. In this case, is not 

convex. Furthermore, p(x) is not differentiable or even Lipschitz at points where 

has multiple eigenvalues achieving the maximum modulus. Since A(x) is a real 

matrix, its eigenvalues are either real or occur in complex conjugate pairs, and hence it 

will have (at least one) double real eigenvalue at x where a pair of eigenvalues 

cross from being real to being a complex conjugate pair. It is therefore important, as 

in the symmetric case, to be able to resolve the question of optimality, and to be able 

to find descent directions when 

p(x) tends to be minimized at 

exist, at points of multiple eigenvalues. Whether 

of multiple eigenvalues (as in the symmetric 

is not so clear. Many types of minima are possible, for example, ordinary "max 

function'' minima where several distinct eigenvalues (either real or complex conjugate 

pairs) all achieve the same maximum modulus. In such cases optimnlity can be 

resolved standard min-max techniques [11 ]. If we suppose that D = IRm and that 

only one distinct eigenvalue achieves the maximum modulus, my impression is that 

minima are most likely to occur at points where A(x) has a nonderogatory 
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multiple eigenvalue, that is one where the corresponding part of the Jordan form of 

A(x) is a single Jordan block. It seems to be very hard to resolve optimality, at such 

points, or indeed any points where a maximum eigenvalue (in modulus) has any 

non-trivial Jordan blocks, i.e. the eigenvalue is defective. 

However, my recent work with Rob Womersley of U.N.S.W. [14] does show how 

to resolve optim.ality and, if not optimal, find a descent direction, at points x where 

A(x) has (possibly many, real or complex) multiple but nondefective eigenvalues 

achieving the maximum modulus. Even in this case p(x) is not locally Lipschitz, and 

neither the of subgradients nor Clarke1s theory of generalized gradients [15] is 

applicable. vVe give a necessary and sufficient optimality condition which involves 

dual as in the symmetric case. In the case of one multjple nondefective 

achieving the maximum modulus, the optimality condition is that the 

associated dual matrix must be a multiple of the matrix; otherwise, a descent 

direction may be found. See [14] for details. 

There are still many difficulties to be resolved before an algorithm for the 

nonsymmetric EEP becomes a reality. Not only does the theoretical question of 

optimality remain open in the defective case, but there are many practical and 

numerical difficulties. For example, even computing the Jordan form of A(x) at a 

single point x is well known to be a hard problem numerically. Also, minimizing 

p(x) may not be a reasonable goal, since if A(x) is defective at a solution x , a 

perturbation in x of size E may increase the spectral radius p(x) by O(El/t) , 

where t is the order of the largest Jordan block in the Jordan form of A(x) . Thus 

Jerry Kautsky has suggested that one may really prefer to minimize say p(x) , where 

p(x) = sup p(x+d) 
lldii~E 

and E is a given tolerance. This problem may be even harder to solve than EEP. 

Let us briefly summarize. In the symmetric case, methods are well understood 

for IEP, even in the multiple eigenvalue case, but they are local methods and require a 

reasonably good starting point. Optimality conditions are well understood for EEP, 
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and a practical algorithm is now available [13]. In the nonsymmetric case, defective 

eigenvalues impose great difficulties. However, new necessary and sufficient optimality 

conditions are now known for EEP in the nondefective case [14]. 
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