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ULTRAPRlME GROUP ALGEBRAS 

G. A. Willis 

Let A be a Banach algebra and for each pair, (a,b), of elements of A define a 

map M b : A -tA M b(x) = axb. Then A is said to be prime if M b j 0 
a, a, a, 

whenever a and b are non-zero, and to be ultraprime if there is a constant, K > 0, 

such that liM bll 2': Kllallllbll for every (a,b), see [5]. The centre of A will be 
a, 

denoted Z(A). 

Let G be a discrete group and let i( G) denote its group algebra. It is easily 

checked that a function, f, belongs to Z( i( G)) if and only if f is constant on the 

conjugacy classes of G, that is, if and only if f(x) = f(yxy -l) for every x,y E G. 

Hence 8, the point mass at the identity element, belongs to Z(el(G)), and Z(i(G)) 
e 

has dimension greater than one if and only if G has a finite conjugacy class other 

than { e}. These observations will be useful in the proof of the following. 

PROPOSITION. (i) If Z(i(G)) has dimension greater than one, then i(G) is not 

prime. 

(ii) If the dimension of Z(J;l(G)) equals one then t(G) is ultraprime. 

Proof. (i) Z(el(G)) is semisimple because it has a faithful * -representation on 

r( G). Hence, if Z(el( G)) has dimension greater than one, then there are two distinct 

points, p and q, in the space X of multiplicative linear functionals on Z(i( G)). 

Since X is Hausdorff there are open sets U,V c X such that p E U, q E V and 

U n V = 0. By Theorem 1.8 in [4], Z(i(G)) is a regular Banach algebra and so there 

exist a,b E Z(i(G)) such that a(p) = 1 and a is zero outside U, b(q) = 1 and b 

is zero outside V. Hence a and b are non-zero and ab == 0. Since a,b E Z(i(G)), 

M b = 0 and so .el( G) is not prime. 
a, 

(ii) The second part will be proved in a sequence of lemmas. 



346 

LEMMA 1. Let G be an infinite group and H. , i = 1,2, .. ,n be subgroups with infinite 
I 

n 
index in G. Then any set of the form U A. , where each A. is the union of a finite 

i=1 I I 

number of cosets of H. , is a proper subset of G. 
I 

Proof. The proof is by induction on n. The statement of the lemma is true when 

n = 1 because G cannot be the union of a finite number of cosets of a subgroup, H1, 

which has infinite index in G. 

Suppose the lemma is true when n = k. For each i = 1,2, ... , k + 1 let A. be a 
I 

union of finitely many cosets of a subgroup H. of infinite index in G. In particular, 
I 

l 
there exist x1' ... ,xl E G with Ak+1 = .u Hk+1x., where Hk+1 has infinite index. 

J=1 J 
-1 

Then we may choose y E G such that y ~ Ak+1. Since Ak+l is a union of cosets, 

it follows that hy - 1 ~ Ak+ 1 for every h E Hk+ 1. 

k+1 -1 k 
Suppose, for a contradiction, that G = U A. . Then hy E U A. for each 

i=1 I i=1 I 

k l l k k 
hE Hk+1. Hence Hk+1 ~ _u Al and so Ak+l = .u Hk+1x. ~ _u (_u Aiy)x. =_uBi, 

1=1 J=1 J J=1 1=1 J 1=l 

where each B. is the union of a finite number of cosets of H. . It follows that 
I I 

k 
G = U C. , where each C. is the union of a finite number of cosets of H. , which 

i=1 1 I 1 

contradicts the induction hypothesis. It follows that the result is true for each n ~ 1. 

LEMMA 2. Let G be an infinite group which has no finite conjugacy classes other 

then { e}. Then for every finite set A contained in G \ { e}, there is x E G such that 

x-1AxnA=0. 

Proof. For each y E A, let H = {g E G I g - 1yg = y}. Then, since the conjugacy class 
y 

of y is infinite, H is a subgroup with infinite index in G. Let 
y 

A = {g E GIg - 1yg E A}. Then A is the union of a finite number of cosets of H . 
y y y 

Suppose that, for every ·x E G, x-1Ax n A f. 0. Then for every x E G, there is 
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y E A such that x -lyx E A, that is, for every x E G, there is y E A such that 

x E Ay. It follows that G = U A , but this contradicts lemma 1. Therefore there is 
yEA y 

xEG suchthat £ 1AxnA=0. 

LEMMA 3. Let G be an infinite group which has no finite conjugacy classes other 

that {e}. Then for every pair, C, D, of finite sets contained in G, there is an x E G 

such that the map 

1r : C x D-+ G ; (c,d) H cxd 
X 

is an injection. 

PROOF. Suppose that 7rx(c1,d1) = 7rx(c2,d2) for some x, ci and di where 

(c1,d1) # (c2,d2). Then c1xd1 = c2xd2, which is equivalent to x-1c2- 1c1x = d2d~ 1 . If 

{ -1 -1 }\{ } we let A = c2 c1, d2d2 I ci E C and diED, i = 1,2 e , then this shows that 

1r : C x D-+ G is an injection if x-1Ax n A= 0. Now, since A is finite there is, by 
X 

lemma 2, an x E G such that x-1Ax n A= 0. Therefore, for this x, 1r is an 
X 

injection. 

Proof of Proposition (ii). Now let G be an infinite group such that the dimension of 

Z(t{G)) is one. Then G has no finite conjugacy classes other than {e}. Let a, 

bE .el(G) with finite support, and denote their supports by C and D respectively. 

By lemma 3, there is x E G such that the map ( c,d) H cxd is an injection of CxD 

into G. It follows that IIMOx*bll 1 = llall 111bll 1 and so IIMa,bll = llall 111bll 1. Since the 

functions with finite support are dense in r(G), this holds for all pairs, a,b E r(G). 

Therefore h G) is ultraprime. 

Remark. The group algebra of a discrete group is weakly amenable, see [3], and so the 

above proposition confirms a special case of a conjecture by the author that every 

prime, weakly amenable Banach algebra is ultraprime . This is a non-commutative 
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version (and strengthening) of the conjecture that an amenable integral domain must 

be the algebra of complex numbers, (. 

There is some evidence that the commutative version of the conjecture is true. 

Essentially the only method used to date to show that a commutative Banach algebra, 

A, is amenable is to produce a continuous homomorphism from L 1( G), for some 

locally compact group abelian G, into A which has dense range. If A is the target 

of such a homomorphism and has dimension greater than two, then A has divisors of 

zero. Since the empty set and singletons are sets of synthesis for L 1( G), A will have 

at least two distinct multiplicative linear functionals, and the construction of divisors 

of zero then goes as in part (i) of the proposition. From the other direction, the 

standard examples of integral domains, such as weighted convolution algebras on the 

positive half-line, have non-zero continuous derivations into their duals and so are not 

weakly amenable. Further, there are methods for constructing derivations (usually 

discontinuous) from integral domains, see [2], section 4, for example. 

However, there is not much evidence for the non-commutative version of the 

conjecture other than the examples of ultraprime algebras given in section 3 of [5] and 

in the above proposition. 

The conjecture for commutative algebras has a consequence for automatic 

continuity, but its non-commutative extension does not have any obvious 

consequence. If ( were the only amenable integral domain, then no commutative, 

amenable Banach algebra could have a closed prime ideal with codimension other than 

one. Since every ideal with finite codimension in a commutative amenable Banach 

algebra is closed and has a bounded approximate identity, it would then follow from 

theorem 4.2 in [1] that derivations from amenable commutative Banach algebras are 

automatically continuous. The automatic continuity of derivations from amenable 

algebras which are not commutative would not follow immediately if it were known 

that every amenable prime algebra was ultraprime, because not enough is known 
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about derivations from amenable ultraprime Banach algebras. Indeed, it is not known 

in general whether derivations from .el(G) are continuous if .el(G) is amenable and 

ultraprime. 
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