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BANACH ALGEBRAS OCCURRING IN SPECTRAL THEORY 

Igor Kluvanek 

L THE STONE THEOREM 

The algebras referred to in the title will be specified at the end of the following 

section. This section is devoted to a few fairly simple observations about the Fourier 

LP -multipliers. I hope that in the light of these observations the notions introduced in 

the following section will seem naturaL At any rate, it will be apparent that the realm 

of mathematical objects to which these notions pertain is sufficiently rich to warrant 

our attention. 

The algebra of all bounded linear operators on a complex Banach space, E , is 

denoted by BL( E) . The identity operator is denoted by I. The norm on E is 

denoted as modulus and the operator (uniform) norm of an element, T, of BL(E) by 

II Til = sup{ I Txl : I xl ::S 1, x E E} . 

To avoid complicated notation and circumlocution, we shall identify subsets of a 

given basic space with their characteristic functions. 

Let A be Lebesgue measure on IR . Let 1 < p < oo • Let J,(P be the family of 

all (individual) functions on IR which determine Fourier multiplier operators on the 

space E = LP(JR) . That is, f E J1 if and only if there exists an operator T1 E BL(E) 

such that ( T1rpr = f(p, for every rp E LP n L2(1R) . Here, of course, (p denotes the 

Fourier-Plancherel transform of an element, rp, of L2(1R) and f(p is the point-wise 

product of f and (p . 

Let '£P be the family of all sets X c IR such that X E ),(P . Let pP(X) = Tv, 
A 

for every X E 1,P . 

PROPOSITION 1. Let f be an absolutely continuous function on IR , or else, let 

w > 0 and let f be a w- periodic function on IR which is absolutely continuous in an 

interval [s,t) with t- s= w. 

Then there exist numbers c. and Borel sets X., j = 1,2, ... , such that 
J J 
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00 

Ilc.l<oo, 
j=l J 

the sets X. belong to 1/l for every p E ( 1 ,oo) , and there is a constant C > 1 such 
J p -

that 

(2) 

for every j = 1,2, ... , and 

00 

(3) f(w) = I c.X.(w), 
j=l J J 

for every w E IR . 

Proof. If K is an interval with end-points a and (3 , -oo < a < (3 < oo , and a is a 

complex number let a.A( .h) = b and 
1jJ 

cp( w) = f_oo K d.A , 

for every wEIR. Then rp(w) = 0, for every wE (-oo,a), rp(w) = b(w-a)((3-ar 1 , for 

wE [a,,B) , and cp(w) = b, for wE [(J,oo). Let, further, Yf] = [(J,oo) and, given an 

integer n 2:: 1 , 

Then 

for every w E IR • 

Assuming that s::; a< (3:::: t, let Z~ be the w-periodic function such that 

z13(w) = 0, for wE [s,(J) , and z13(w) = 1, for wE [(J,t). Furthermore, for any 

integer n 2:: 1, let z Q,(3,n be the w- periodic function such that 

Z "' (w) = Y "' (w), for every wE [s,t). Let 
a,~--'' n o., 1J, n 

1/J be the w-periodic function such 

that 

1/J(w) = Jw K d.A' 
s 

for every wE [s,t) , where, again, J( is an interval with end-points a and (3. Then 
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for every w E IR . 

By a classical theorem of M. Riesz (see, for example, [2], Theorem 6.3.3) all 

intervals of all kinds belong to jP, for every p E (l,oo) , and there exists a constant 

A ::::: 1 such that IIPP(X)II :S A , for every interval X c IR. Furthermore, let us call 
p p 

a set X c IR a periodic interval, if there exists a real number x and a connected subset, 

J, of the unit circle, T = { expit : t E IR} , such that X= { w : expiwx E J} . By a 

lemma of A. Gillespie (see [6], Lemma 6, or [3], Lemma 20.15), every periodic interval 

belongs to jP, for every p E (l,oo) , and there exists a constant B ::::: 1 , such that 
p 

jjPP(X)II ::; B , for every periodic interval X c IR. 
p 

Let us now note that every set of the form Y13 is an interval, every set z13 is a 

periodic interval, every set Y is the intersection of an interval and a periodic 
o.,f},n 

interval and every set Z ac,i3,n is the intersection of two periodic intervals. 

Consequently, every set, X, which is of one of these four kinds belongs to 1? , for 

every p E (l,oo) , and IIPP(X)II :S C , for some constant C depending on p alone. 
p p 

Now, let g be a .A--integrable function on IR , and let 

<.il 

f(w)=J gd),., 
-oo 

for every wE IR . Then there exist numbers ak and bounded intervals Kk, k = 1,2, ... , 

such that 

(4) 

and 

(5) 

00 

L laki)I.(Kk) < oo 
k=l 

00 

g(w) = L a/<t}w) 
j=l 

for A-almost every w E IR , so that 
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for every wE IR . Let bk = ak>..(Kk) and let a:k and {3k , a:k < {3k , be the end-points 

of the interval Kk, for every k = 1,2, .... Then 

for every wEIR . The desired representation (3) of f is obtained by rearrangement, 

because, by ( 4), 

Similarly, let f be a w--periodic function on IR and g a >..-integrable function 

in the interval [s,t) such that 

LC 

f(w) = J gd>.., 
s 

for every wE [s,t) . Then there exist numbers ak and intervals Kk c [s,t) , k = 1,2, ... , 

such that (4) holds and (5) holds for >..-almost every wE [s,t) , so that 

for every wE [s,t) . If bk = ak>..(Kk) and a:k and {3k, a:k < {3k, are the end-points of 

the interval Kk, for every k = 1,2, ... , then 

for every w E IR . 

To draw some consequences of this proposition, let us recall that 11/11 00 ~ II r111 , 

for every function f E Jf and every p E (1,oo) , where 11!11 denotes the >..-essential 
00 

supremum of the function If I . Moreover, the map f 1-1 T1 , f E Jf , is >..-essentially 

injective, that is, the equality r1 = T implies that 11/-giJ = 0 . 
g 00 

So, if f is a function satisfying the assumptions of Proposition 1, then f E Jf , 

for every p E (1,oo) , and 
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00 

T = L c.PP(X.) , 
f -I J J )-

where the c. are numbers and the X. sets, j = 1,2, ... , whose existence is guaranteed 
J J 

by Proposition 1. Because the operator r1 does not depend on the choice of the 

numbers c. and the sets X., j = 1,2, ... , we may even write 
J J 

l f(w)pP(dw) = l fdpP = I c.PP(X.) , 
IR IR t=l 1 1 

so that 

In particular, if x E IR and f(w) = expixw, for ev.ery wE..\, then T1 is the 

operator of translation by x and is denoted simply by T . Thus, given an x E IR , we 
X 

have 

T = J (expixw)pP(dw), 
X IR 

for every p E (1,oo) . For p = 2 , this is of course a case of the Stone theorem. 

By way of concluding these introductory remarks, we re-iterate that, for every 

x E IR , there exist numbers c. and sets X., j = 1,2, ... , such that the inequality (1) 
J J 

holds and for every p E (1,oo) , the sets X. belong to 1/.P, and there exists a constant 
J 

C such that the inequality (2) holds for every j = 1,2, ... , and the operator, T , of 
p X 

translation by x in the space LP(IR) is given by 

00 

T = L c.PP(X.) . 
X p::l J J 

2. CLOSABLE SPECTRAL SET FUNCTIONS 

In this section, we summarize some definitions motivated by the considerations 

of the previous section. More detail can be found in [8]. Also the statements, which are 

presented here without proofs, are proved in [8]. 

Let Q be a quasialgebra of sets in a space n . That is, Q is a family of subsets 

of n such that 0 E Q , n E Q and, for any X E Q and Y E Q , the sets X n Y and 
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X\ Y can be expressed as the unions of finite families of pair-wise disjoint elements of 

Q. The family of all Q-simple functions is denoted by sim(Q) . That is, f E sim(Q) , 

if and only if, f is a complex linear combination of a finite collection of elements of Q . 

A map P : Q _, BL( E) is called a spectral set function if it is additive, 

multiplicative and P(f!) =I. A spectral set function P: Q _, BL(E) has a unique 

linear extension, also denoted P, to the whole of sim(Q) with values in BL(E) 

which is an algebra homomorphism. Let A(P) denote the closure in BL(E) , with 

respect to the operator-norm, of the algebra of operators { P(f) : f E sim(Q)} . 

Given a spectral set function P: Q _, BL(E) , a set Y c n will be called 

P-null if it can be covered by countably many sets X E Q such that P(X) = 0 . Let )/ 

be the family of all P-null sets. For the sake of simplicity, we have not indicated the 

spectral set function, P , in this notation, even though )I depends on it. The same 

licence is used in denoting other objects, such as the following one. 

For a complex valued function, f , on n , we define 

11/11 =inf{sup{lf(w)l :wEO\Y}: YEA!}. 
00 

By [~p is then denoted the class of all functions, g, on n such that 11/-gll00 = 0. 

By the P-essential range of the function f is understood the set 

n {!( w) : w E n \ Y}- , 
YEJf 

where the bar indicates closure in the complex plane. 

The family of all functions, f , on n such that, for every t: > 0 , there exists 

a function g E sim(Q) with 11/-gll < £, will be denoted by e"(P) . Then we define 
00 

L00(P) = {[flp: f E e"(P)}. It turns out that L00(P) is a Banach algebra with respect 

to the operations induced by the natural operations in e"(P) and with respect to the 

norm induced by the seminorm f H 11/11 , f E e"(P) . 
00 

The spectral set function P : Q _, BL( E) will be called closable if, for any 

functions f. E sim(Q) , j = 1,2, ... , such that 
J 

00 

(6) L IIP(/.)11 < 00 

j=l J 
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and 

00 t f.(w) = 0 
j=l J 

for every w E fl for which 

00 

(7) I I f.( w) I < oo , 
j=l 1 

it follows that 

00 

I P(/.)=0. 
j=l 1 

Let P: Q __. BL(E) be a closable spectral set function. We say that a function f 

on n is P-integrable if there exist functions f. E sim(Q) , j = 1,2, ... , satisfying 
1 

condition (6) such that 

00 

(8) f(w) = I f.(w) , 
j=l 1 

for every wEn for which the inequality (7) holds. We then define 

P(f)=J f(w)P(dw)=J fdP= ~ P(f.), 
n n 1=1 1 

where f., j = 1,2, ... , are Q-simple functions, satisfying condition (6), such that the 
J 

equality (8) holds for every wE n for which the inequality (7) does. By the 

assumption that the spectral set function P is closable, this definition is unambiguous. 

It then follows that 

00 

liP(/) II = inf I liP(/.) II , 
j=l J 

where the infimum is taken over all choices of such Q-simple functions f., j = 1,2, .... 
1 

LEMMA. If f is a complex valued function on n , then IIIII = 0 if and only if f is 
00 

P- integrable and P(f) = 0 . 

The family of all P-integrable functions is denoted by C(P) . We define 

L( P) = {[!] P : f E C( P)} . By the lemma, the seminorm f H II P(f) II . f E C( P) , induces 

a norm in the space L(P) . The space L(P) is complete in this norm. 
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PROPOSITION 2. Let P: Q -) BL(E) be a closable spectral set function. Then 

C(P} c e(p) and Ilfll ~ liP(/) II , for every f E C(P} . 
00 

If f E C(P} and 9 E C(P) , then E C(P} and PUg) = P(f)P(g). So, C(P) is 

an algebra functions and L{P) is a Banach algebra with respect to the operations 

induced by those of C( P} 0 

The range of the integration map P: C(P) -) B(E) is equal to A(P) 0 The 

Banach algebra A(P) is semisimple. The integration map P: L(P) -) A(P) is an 

isomorphism of the algebra L(P) onto the algebra A{P) . 

If f E l(P) , then the spectrum of the operator T = is equal to the 

p- essential range of the function f. 

PROPOSITION 3. A spectral set function P: Q -) B(E) is closable if and only if there 

exists an injective map if»: A(P) -) Loo(P) such that 11<li( T)II ~ II Til, forevery 
00 

T E A{P} , and (fP(P(f)) = (jlp for every f E sim(Q) . 

If the spectral set function P: Q -) B(E) is indeed closable, then such a map if> 

is unique, its range is equal to L(P) and the map g> is equal to the inverse of the 

integration map. 

Recall that an algebra of sets is a quasi algebra of sets containing the union of 

any two of its members. 

PROPOSITION 4. Let Q be an algebra of sets in a space n. Let P: Q -) BL(E) be 

a bounded spectral set function such that P{ y) = 0 for every P- null set Y E Q. Then 

P is a closable spectral set function. 

This proposition implies, in particular, that, if Q is a IT-algebra and 

P: Q -) BL(E) is a IT-additive spectral measure (see [4], Definition XV.2.3), then P is 

a closable spectral set function. It is straightforward that, in this case, C(P) = e(p) 

and that the integral in the sense of our definition coincides with that discussed in [4]. 

Let us call a Boolean algebra of projections, We BL(E) , semisimple, if the 

smallest Banach algebra, A( W), such that We A( W) c BL(E), is semisimple. 
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PROPOSITION 5. A Boolean algebra of projections, We BL(E) , is semisimple if 

and only if there exists a semialgebra of sets, Q, in a space n and a closable spectral 

set function P: Q -l BL(E) such that A( W) = A(F) . 

Now we can easily describe the type of Banach algebras referred to in the title of 

this note. They are Banach algebras of the form A( W), where We BL(E) is a 

semisimple Boolean algebra of projections. By Proposition 5 and Proposition 3, such 

an algebra is equal to the range of the integration map with respect to a closable 

spectral set function. So, every element of it can be approximated in the operator norm 

by linear combinations of commuting projections. Elements of such algebras can be 

viewed as generalizations of diagonalizable matrices. Indeed, by Proposition 4, and 

remarks after it, they include all scalar operators in the sense of N. Dunford. What is 

more, all elements of such algebras are decomposable operators in the sense of C. Foia~ 

(see [2], Definition 2.1.1). In fact, if W is a semisimple Boolean algebra of projections, 

then the structure space, .6., of the Banach algebra A( W), is totally disconnected, 

because it can be identified with the Stone space of W, so that W itself is (lattice) 

isomorphic with the Boolean algebra of all open and closed sets in l:!.... Then, by a 

result of E. Albrecht ([1], Corollary 4.7), all elements of such an algebra are 

decomposable operators. 

There is another step to be made in order to obtain a generalization of the whole 

Dunford's theory of spectral operators. Namely, to introduce commutative Banach 

algebras, Be BL(E) , such that B is the direct sum of its radical and an algebra 

A( lIV), for some semisimple Boolean algebra of projections, W. However, such 

algebras will not be considered here. 

3. THE EXTENT OF THE INTRODUCED NOTIONS 

The title of this section is of course not to be taken too strictly. We merely 

make some comments indicating the extent of the notions introduced in the previous 

section. Already the remarks of Section 1 indicate that these notions are neither 

vacuous nor superfluous. They show, for example, that, for every p F (1,00), the 
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operator of translation, T , is equal to the integral of an integrable function with 
X 

respect to the closable spectral set function pP . On the other hand, if p i= 2 , then 

T is not spectral in the sense of N. Dunford and, if p < 2 , not even in the extended 
X 

sense of W. Ricker (see [5]). We may note also that those remarks can be extended so 

as to cover arbitrary locally compact Abelian groups instead of IR (see [8]), since the 

Gillespie lemma used in the proof of Proposition 1 is valid (and originally stated) in 

such generality. Now, we present examples of closable spectral set functions of a 

different kind. We show also that the product of two closable spectral set functions is 

again closable. 

Let Q be a quasialgebra of sets in a space n . Let p : Q -j [O,oo) be a 

a-additive set function. Let cp be a continuous, increasing and concave function on 

[O,oo) such that cp(O) = 0. Let 

p(X) = cp(JJ(X)), 

for every X E Q . 

We denote by C(p,Q) the family of all (individual) functions, u, on Cor 

which there exist numbers c. and sets X. E Q, j= 1,2, ... , such that 
J J 

00 

(9) L I c.lp(X.) < oo, 
j=l J J 

and the equality 

00 

(10) u(w) = L c.X.(w) 
j=l J J 

holds for every w E n satisfying the condition 

00 

(11) L I c .I X.( w) < 00 • 

j=l J J 

For every such function, u E C(p,Q) , we define 

00 

q( u) = inf L I c .I p( X.) , 
j=l J J 

where the infimum is taken over all choices of the numbers c. anrl sets X. E Q, 
J J 

satisfying (9) , such that (10) holds for every wEn for which (11) does. 
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The family of functions C(p,Q) is a vector space and q a seminorm on it such 

that q(X) = p(X) , for every X E Q. The norm induced by this seminorm on the 

quotient-space L(p,Q) = C(p,Q) / q - 1( { 0}) is still denoted by q . The space L(p,Q) is 

complete in the norm q (see [9], Proposition 2.26 and Proposition 2.1). The element of 

the space L(p,Q) determined by a function u E C(p,Q) is denoted by [ u] . 

Let E = L(p,Q) . Given a set X E Q, let P(X)[u] =[Xu] , for every 

u E C(p,Q) , where Xu is the point-wise product of X and u. It is straightforward 

that this defines unambiguously an element, P(X) , of BL(E) and that P(X) is a 

projection. Moreover, we have the following 

PROPOSITION 6. The resulting map P : Q ..., BL( E) is a closable spectral set 

function. 

Proof. It is obvious that P is a spectral set function. So, it suffices to prove that it is 

closable. Before doing that, let us note that P(f)[u] = [/u] , for any function 

f E sim(Q) and any u E C(p,Q) . Now, let f. E sim(Q) , j = 1,2, ... , be functions such 
1 

that 

00 

(6) L IIP(/.)11 < 00, 

;=1 1 

and 

00 

(12) L f.(w) = 0 
;=1 1 

for every wE f! for which 

00 

(7) L 1/.(w)l < oo. 
;=1 1 

Let u be an arbitrary element of C(p,Q) . Then, by (6), 

00 00 

L q(P(!J[u]) = L q(f.u) < oo 
j=1 I j=1 1 

and, by (12), 

00 00 

L (f.u)(w) = u(w) L f.(w) = 0 
;=1 1 j=1 1 

for every wE f! for which 
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00 00 

L 1(/.u)(w)! = lu(w)l L lf.(w)l < oo. 
j=l J j=l 1 

Therefore, by Proposition 2.1 of (9], 

lim q { f P(f.)[uJ] =lim q[ f f.u] = 0. 
n-1 oo j=l 1 n-1 oo j=l 1 

It follows that 

00 

L P(f.) = 0' 
j=l J 

which means that P is closable. 

If the quasialgebra Q is not actually an algebra and t/ <p( t) -1 0 , as t -1 0+ , 

then, in most cases, the additive extension of P to the algebra of sets generated by Q 

is not bounded. In such case, P does not have a a-additive extension on the 

a-algebra generated by Q . 

EXAMPLE. Let fl=(O,l], Q={(s,t]:O:Ss:St:Sl}. Let p>l and 

p(X) = (A.(X) )1/P, for every X E Q, where A. is the one-dimensional Lebesgue 

measure. Let E = L(p,Q) . 

Because C(p,Q) =f. £P(,\) (see Example 4.16(ii) in Section 4C of [9]), the spectral 

set function P: Q -1 BL(E) is surely not a-additive; indeed, its additive extension on 

the algebra of sets generated by Q is not bounded. Nevertheless, if n ;::: 1 is an 

integer and a set X is equal to the union of n pair-wise disjoint sets, Xk , 

k= 1,2, ... ,n, belonging to Q, then IIP(X)II :s n(p-l)/p. In fact, let u be a function 

belonging to C(p,Q). Let c. be numbers and Y. E Q sets, j = 1,2, ... , such that 
J J 

00 

L I c .I p( Y.) < 00 

j=l J J 

and 

00 

u(w) = L c.Y.(w) 
j=l J J 

for every w E fl for which 

00 

L I c.l Y.(w) < oo. 
j=l J } 
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Then 

for every j = 1,2,000' and 

00 

(Xu)(w) = ~ c.Y.(w)X(w) 
j=l J J 

for every w E D for which 

00 

~ lc.I(Y,nX)(w) < oo. 
j=l J J 

Therefore, Xu E £(p,Q) and q(Xu):::; n(p-l)/Pq(u) 0 

Now, let Z be the function on IR which is periodic with period 1 and its 

restriction to n is equal to the characteristic function of the interval ( t,l] . For every 

j = 1,2, ... , let X. be the function (<) H Z(2j- 1w) ' wE n 0 Hence X E sim(Q) and 
J J 

IIP(X.lil S 2(j-l)(p-l)/p, for every j = 1,2, .. 0 • Also, if f(w) = w, then 
J 

00 . 

f(w) = ~ 2-1X.(w), 
j=l J 

for every wE n . Therefore, j E C(P) and 

Let us now consider products of spectral set functions. Let Q£ be a quasialgebra 

of sets in the space and : Qe -1 BL(E) a spectral set function, f.= 1,2, . 

We say that the spectral set functions P 1 and P2 commute if 

P1 (X1)P2(X2) = P2(X2)P/;'{1) , for any sets X1 E Q1 and X2 E Q2 . 

PROPOSITION 7. Let n = nl X n2 and Q = { xl X x2 : xl E Ql, x2 E Q2} . Assume 

that the spectral set functions : Q.e -1 BL(E) , £ = 1,2 , are closable and that they 

commute. Let P(X1xX2) = P1(X1)PlX2), for every X1 EQ1 and X2 EQ2 . 

Then P: Q -1 BL(E) is a closable spectral set function. 
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Proof. It is obvious that P is a spectral set function. Also, a set Y c n is P-null if 

and only if there exist a P1-null set Y1 and a P2-null set Y2 such that 

Yc ( Y1xn2) U n1x Y2). 

Given any functions, g and h, on the spaces n1 and n2 , respectively, let 

us denote by g®h the function, f, on n such that f(w) = g(w1)h(w2) , for every 

w = (w1,w2), w1 E n1 and w2 E n2 . Let, further, [g]p ®[h]p = [g®h]p, for any such 
1 2 

functions, g and h . 

If 11e · is the structure space of the Banach algebra L00(Pf) , l = 1,2 , then 

11 = 111 x L12 is the structure space of the Banach algebra L00( P) . For, a function, f , 

on n is Q-simple if and only if 

k 

!= L g.®h., 
p:l J J 

with some k = 1,2,... and functions gi E sim(Q1) and \- E sim(Q2) , j = 1,2, ... ,k. 

Furthermore, by definition, the family of elements of the form [~ P, where 

f E sim(Q) , is dense in L00(P) . 

Let A0(P) = {P(f): f E sim(Q)} . Because the map P: sim(Q) --7 BL(E) is 

linear and 11/11 ::::: liP(/) II , for every f E sim(Q) , there is a linear norm-decreasing 
00 

map ii>0 : A0(P) --7 L00(P) such that (!)0(P(f)) = [~p, for every f E sim(Q). Because 

A(P) is the closure of A0(P) and the space L00(P) is complete, there is a linear 

norm-decreasing map il>: A(P) --7 L00(P) such that (!)(P(f)) = [~p, for every 

f E sim(Q) . To prove that the spectral set function P is closable, by Proposition 3, it 

suffices to show that the map <I> is injective. 

Let <I>£: A( PC) --7 L00(Pe) be the injective map, whose existence is guaranteed by 

Proposition 3, such that 

il> i P jJ e)) = [/ el P , for every feE sim(Q) , e = 1,2 . A simple argument based on the 
.e 

density of A0(P) in A(P) then shows that (!)(T1 T2) = il\(T1 )®~2(T2), for every 

T1 E A(P1) and T2 E A(P2) . Furthermore, because <I> e is an injective 

homomorphism with range dense in L00(P) , the structure space of the algebra A(Pg) 
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can be identified with 1:1£, e = 1,2 . Consequently, the structure space of A(P) can 

be identified with .6. . Thus, if we identify elements of the algebras A(P) and L00(P) 

with their respective Gelfand transforms, q> becomes the identity map on a dense 

subalgebra of C( .6.) . 

It is well-known that the product of two commuting a-additive spectral 

measures is not necessarily a a-additive spectral measure. The first example 

demonstrating this phenomenon was constructed by S. Kakutani (in [7]). Proposition 7 

shows that closable spectral set functions do not suffer by this defect. It thereby gives 

us a method of constructing a wealth of closable spectral set functions. 
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