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SE~GROUPS AND THE STRUCTURE OF 
WEIGHTED CONVOLUTION ALGEBRAS 

Sandy Grabiner 

1. INTRODUCfiON 

Weighted convolution algebras on the half line IR+ = [O,oo) arise naturally as the 

domains of the operational calculus maps determined by sernigroups of bounded operators 

on a Banach space. For a continuous semigroup in a Banach algebra, which exists in 

every Banach algebra with bounded approximate identity [15, Th. 3.1, pp.35-36], this 

operational calculus map becomes an algebra homomorphism [15, pp.38-40], so weighted 

convolution algebras also arise as domains of Banach algebra homomorphisms. In fact, 

one of the motivations for the study of weighted convolution algebras is to learn more 

about the operational calculus map (see for example [15, Prob. 3.8, p.40], [11], [12, Th. 

5.1]) and to use this map and structural features of weighted convolution algebras to study 

sernigroups of operators and Banach algebras with a bounded approximate identity (see 

for instance [5], [15]). In this paper we report on :research, much of it done jointly with 

F. Ghah:ramani and J.P. McClure, which, in a sense, goes in the other direction. We study 

homomorphisms and other properties of weighted convolution algebras by using 

semigroups of convolution operators defined on them. 

Suppose that w is a positive Borel function on [O,<X>) and that both w and 1/w 

are locally essentially bounded. Then L 1(w) is the Banach space of (equivalence classes 

of) locally integrable functions f on [O,oo) fo:r which fw is in L 1(11t) , with the 
co 

inherited norm llfll = J. I f(t) I w(t) dt. Similarly, M(w) is the space of locally finite 
0 

00 

measures for which the norm 111111 = J. w(t) d 1111 (t) < oo • As usual, we consider L \w) 
0 

as a subspace of M(w) by identifying f in L 1(w) with f(t) dt in M(w) . We are 

interested in the case that L 1(w) is an algebra under the convolution product 



156 

X 

f*g(x) = J f(x-t) g(t) dt. In this case we can normalize w, without changing the 
0 

1 elements or the topology of L (w) , so that: (i) w is right continuous; 

(ii) w(x+y) s; w(x) w(y) ; (iii) w(O) = 1 [12, Th. Such a normalized w will be 

called a weight (these are the strongly algebraic weights of [12}). With this 

normalization, M(w) is also an algebra under convolution and it can be identified with 

the multiplier algebra of L 1(w) and with the dual space of C0(1/w) (see [12, Th. 2.2] 

which just adds a few finishing touches to [7, Section 1] and [16, pp.303-306]). Here 

is the Banach space of continuous functions on for which 

lim (f(t)/w(t)) = 0 and with norm \lfll = sup I f(t)lw{t) I . With these identifications M(w) 
t--)00 

* has not only its usual topology, but also a weak and strong operator topology, and if 

{!!t}k::O is a semigroup of elements of M(w), {!,.tt} becomes identified with the 

semigroup of bounded operators f---) lltf on L 1(w) . 

We are interested in the following questions and the relation between them: 

(1) When is a convolution semigroup {llt}~0 in M(w) strongly continuous as a 

semigroup of operators on L 1(w) ? 

(2) For which f in L 1(w) is the principal ideal L \w)*f dense in L 1(w) ? 

(3) When is a continuous homomorphism 1\jJ: L 1(w1)---) L 1(w2) particularly nice 

in the sense that it satisfies the equivalent conditions of Theorem 1.2 below? 

The relations between these questions are described in Theorem (1.2) below, but first 

we need to make some definitions and elaborate on the questions. 

Recall that a semigroup of bounded operators {U(t)} >o on a Banach space X is 
t:_ 

strongly continuous (or is a C0 semigroup) if U(t)x is continuous for t :2: 0 for all x 

in X [5, def. VITI.l.l, p.614] (actually it is enough to assume continuity at t = 0, 

Cor. 2.3, p.4]). The convolution semigroups we consider will not obviously be strongly 

continuous at t = 0 (this is what question (1) asks). Hence we need to consider more 

general semigroups and therefore we say that {U(t)} is almost continuous if U(t)x is 
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continuous for t > 0 for all x and if IIU(t)ll is bounded as t ___, 0+. For an almost 

continuous semigroup {U(t)} , we let w(t) == IIU(t)ll and define the operational calculus 

map 

"' 
(1.1) <l'(f) = l f(t) U(t) dt . 

0 

The integral is a strong Bochner integral, [13, p.85], but because of our continuity 

00 

assumptions <j)(f)x = J f(t) U(t)x dt is actually just a (vector valued) improper Riemann 
0 

integral. The operational calculus map is clearly a bounded linear map from L 1(w) to 

the bounded operators on X , and it has an obvious extension to M(w) . It is not hard 

to show that $ , and its extension, are algebra homommphisms, [13, pp.435--437]. One 

can renom1 X with an equivalent norm so that some { e -rt U(t)} is a contraction 

semigroup, [14, pp.19-20]. In this case the weight w will be appropriately normalized, 

[11, Lemma (2.1), p.l31]. 

Suppose now that L 1(w 1) and L 1(w2) are weighted convolution algebras on fit+ 

and let <1>: L1(w1) -) L\w2) be a non-zero continuous homomorphism. Then <!> has a 

unique extension with the same norm to a homomorphism, which we continue to call <!> , 

between the corresponding measure algebras [12, Th. 3.4]. Thus if {bt} is the 

semigroup of point masses in M(w 1) , which, as a semigroup of operators on L 1(w 1) , 

is just the right-translation semigroup, then !lt = «)>(ot) is a semigroup in M(w2) and is 

in fact almost continuous (see [12, Th. 3.6], or the discussion after Theorem (2.1) below). 

The operational calculus map determined by {!J,t} according to formula (1.1) is just the 

homomorphism <!> , [12, Th. 3.6(c)] (cf. [15, pp.38-39]). Conversely, starting with an 

almost continuous semigroup {!lt} in L 1(w2) and letting w(t) = lllltli , the operational 

00 

calculus map <j>(f) = ~ f(t) !lt dt defines a homomorphism from L 1(w 1) to M(w 2) , 

[12, Th. 3.17], but it is not always easy to determine if $ maps L 1(w1) into L1(w2). 

If f is a locally integrable function on IR+ , we follow the usual terminology and let 

a(f) be the infimum of the support of f, and similarly for locally finite measures. 
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The function f in L 1(w) with a(f) ""d is said to be standard in L 1(w) , if the closure 

of the principal ideal L 1(w)*f is the standard ideal L1(w)d = {g e L1(w): a(g) ~ d}. 

For a;( f) = 0 this just says L 1(w)*f is dense, as in question (2) above. We can now 

state the result relating questions (1), (2), and (3). 

EQUIVALENCE THEOREM (L2). Suppose that $: L 1(w1) -----J L1(w2) is a continuous 

non-zero homomorphism between weighted convolution algebras on IR+ . Let jlt = $(8t) 

and let {e0 } be a bounded approximate identity in L 1(w2). Then {!lt} is an almost 

continuous semi group on L 1(w 2) . Moreover, the following are equivalent: 

(a) {!lt} is a strongly continuous semi group in L 1(w 2) . 

(c) The closure of the range of $ contains a non-zero standard element of 

1 L (w2). 

(d) Whenever L 1(w)*f is dense in L 1(w1), then L\w2)*$(f) is dense in 

1 L (w2). 

1 {$(en)} is a bounded approximate identity in L (w2). 

(h) The extension $ : M(w 1) -----l M(w2) is continuous in the strong operator 

topologies. 

The above equivalence theorem is just [9, Th. (2.2)], with three of the equivalent 

conditions, (b), (f), and (g), omitted. A homomorphism which satisfies the above 

equivalent conditions will be called a standard homomorphism. Since the equivalence 

theorem is proved in [9], we will not give a complete proof here. Rather we will study 

arbitrary almost continuous semigroups in weighted convolution algebras, mentioning 

whenever parts of the equivalence theorem follow from continuity of semigroups. In 

particular we will not prove the two deepest implications: (a) ==} which involves 

determining the generator of the semigroup {!lt} ; and (e)==} (h), which uses the Cohen 

factorization theorem for modules. 

In section 2 we investigate almost continuity and continuity of convolution 

semigroups on L1(w), mostly by adapting results which are given in [12] and [9] for 
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the semigroups llt = <!>(oJ for a homomorphism <1>. Theorem (2.1) gives 

characterizations and properties of almost continuous convolution semigroups. Theorem 

(2.3) gives a criterion for an almost continuous convolution semigroup to be strongly 

continuous, and Theorem (2.8) gives a class of L 1(w) for which all almost continuous 

convolution semigroups are strongly continuous. The Equivalence Theorem above shows 

that if all almost continuous convolution semigroups on L 1(w) are strongly continuous, 

then all homomorphisms into L 1(w) are standard. Theorem (2.9) gives a converse of 

this result and Corollary (2.11) is an application of this converse. 

In section 3 we examine the function t H a.(llJ. for convolution semigroups and as 

an application show that every non-zero continuous endomorphism of a radical L 1(w) is 

one-to-one. The results in section 3 are adapted from [12], [8]. 

We now collect for easy reference some useful computational facts about L 1(w) 

and M(w). For proofs, or references to standard proofs, see Lemmas 3.2, 4.1, and 4.7 of 

[12]. Recall that we always assume that the weight w is normalized in such a way that 

M(w) is identified both with the dual space of C0(1!w) and with the multiplier algebra 

ofL1(w). 

LEMMA (1.3). For the weighted convolution algebras L1(w) ~ M(w) we have the 

following: 

(a) 

(b) 

(c) 

a.(jl*V) = a.(jl) + a.(v) , so that, in particular M(w) is an integral domain. 

If the net {ll *v} converges to A. in the strong operator topology of M(w) , 
n 

then a.(v) ~ a.(A.) and ·limsup(a.(jl )) ~ a.(A.)- a.(jl) . 
n 

If (ll } is a bounded net in M(w) and v ::1- 0, then {ll } converges to ll 
n n 

* * in the weak topology of M(w) = C0(1!w) 

* weak to ll *v . 

if and only if { ll *v} converges 
n 
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2. CONTINUITY OF SE:MIGROUPS 

Our first continuity result characterizes almost continuity of convolution semigroups. 

We see that for these semigroups relatively little is needed to guarantee almost continuity 

and that almost continuous convolution semigroups have additional continuity properties. 

THEOREM (2.1). Suppose that {!lt} is a convolution semigroup in M(w). If 11~-ttll is 

bounded as t -1 0+ , the following are equivalent: 

(a) {!lt} is almost continuous. 

* (b) For all v in M(w) , !ltV is weak -continuous for t 2: 0 . 

* (c) lim llt = o0 in the weak -topology on M(w) . 
t-l 0 + 

* (d) For some v if: 0 in M(w) and some a 2 0, is {!.1/V} weak -continuous 

from the right at t =a . 

Proof. We frrst note that one can take a= 0 in (d). For the formula 

* *v) shows that right weak -continuity at a for some v is equivalent to 

* weak -continuity at 0 for some other measure. It now follows from (1.3) (c) that 

and (d) are equivalent to each other and to (b) for right continuity. To obtain left 

continuity we use the formula 

in the usual way [14, p.4]. Since (a) clearly implies (d), we just need to show that (b) 

implies (a). We adapt the proof from our [12, Th. For all g in L 1(w) k: M(w) , 

* * we have that 111*g is weak -continuous and therefore weak -measurable. Thus for all h 

in L 1(w), the real-valued function lllltg- hJI is measurable, [13, Th. 3.5.2, p.72]. 

Since 11tg takes its values in the separable space L1(w), the usual proof of the Pettis 

measurability theorem, [13, Th. 3.5.3, pp.72-73], shows that J.!tg is strongly measurable. 

Thus {J.!t} is a strongly measurable semigroup of bounded operators on the space 
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L 1(w) , and is therefore strongly continuous for t > 0, [12, Th. 10.2.3, p.305]. Thus 

{11t} is almost continuous, and the proof is complete. 

The above theorem shows that the semigroup 11t = (j)(Ot) in the Equivalence 

Theorem is almost continuous. The boundedness follows from ll11tll ~ 11<1>11 llc\11 = 

11<1>11 w 1 (t) . For continuity, choose some f in L 1(w 1) for which $(f) is not zero. Then 

in the norm topology, we have 

(2.2) lim llt*ij)(f) =lim <PO\*f) = <j)(f) 
t---+0+ HO+ 

by the continuity of $. Thus {fl,t} satisfies condition (d) of Theorem (2.1). 

We now give a criterion for an almost continuous convolution semigroup to be 

strongly continuous. The proof is adapted from [12, Cor. 3.13]. 

THEOREM (2.3). Suppose that {!\} is an almost continuous semigroup in M(w). If 

there is a standard g * 0 in L\w) for which hm 11tg = g in norm, then {11t} is a 
HO+ 

strongly continuous semigroup of operators on L 1(w) . 

Proof. In order to use the arguments in this proof later, we postpone invoking the 

hypothesis that 11tg ---) g for some standard g until the end of the proof. For the 

almost continuous semigroup {!11} in M(w) , we define the convergence ideal 

(2.4) I= l(l1t) = {f E L 1(w) : lim lltf = f} . 
HO+ 

It is clear that I is an ideal and, since llt as bounded as t ---) 0+ , that I is closed in 

norm. Also since !l *f = 11 *(11 *f) , it follows from the definition of almost continuity 
t+s s t 

that I contains all lltf, and in particular that I* {0} . It thus follows from Lemma 

(1.3) (b) that lim O:(l1t) = 0 . Hence 
t-+ 0 + 

a(I) = inf{a(f): f E I}= 0. 
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In the current theorem, we are assuming that I contains a standard element. Hence I 

itself must be a standard ideal, [10, Lemma 8.2, p.548]. Since a(I) = 0, I must then be 

all of L 1(w) , and the proof is complete. 

In the next result we collect information about the convergence ideal, when we do 

not assume that the semigroup is strongly continuous. For much more information in the 

case that Jlt = <j>(ot) see [9, Th. (2.4)]. 

COROLLARY (2,5). If I is the convergence ideal of an almost continuous semigroup 

{!lt} in M(w) , then I is a norm-closed weak* -dense ideal in L 1(w) and 

I= cl[ u lltL1(w)] . 
1>0 

Proof. The proof of the previous theorem shows that I is a norm-closed ideal containing 

all J.11*L 1(w) and hence containing the closure of u 11 *L 1(w) . Each f in I satisfies 
t>O t 

f =lim 11 *f and is thus a limit of elements in u Jl *L 1(w) , giving the reverse 
HO+ t t>O t 

* inclusion. Finally, the weak -Continuity of the semigroup, given in Theorem (2.1) (b) 

above, shows that I is dense in the relative weak* -topology of L 1(w) k: M(w) . 

Notice that formula (2.2) shows that for l!t = $0\) the convergence ideal is a closed 

ideal containing the range of <jl • Thus Theorem (2.3) gives the implication (c)=> (a) in 

the Equivalence Theorem. 

The next result shows that one can always obtain strong continuity by passing to a 

larger algebra (cf. Cor. (3.16)]). 

COROLLARY (2.6). If {j.tt} is an almost continuous semigroup in M(w1), then there 

is an M(w2) ::1 M(w1) for which {Jlt} is a strongly continuous semigroup on L 1(w2). 
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Proof. Let g be a non-zero element of L 1(w 1) for which !~~\ Jltg = g in the norm 

of L 1(w1). By [10, Th. (6.5), p.549], there is an L 1(w2) ;;1 L 1(w1) in which g is a 

standard element. Since L 1(w1) is continuously embedded in L 1(w2), we have 

Jltg ---1 g in the norm of L 1(w2) . Hence it follows from Theorem (2.3) that {J.1.1} is a 

strongly continuous semigroup on L1(w2). This completes the proof. 

The most interesting question is: for which L 1(w) is every almost continuous 

homomorphism continuous? One sufficient condition is that all closed ideals are 

standard, and Domar [4] has shown that this holds if w is logarithmically convex and 

satisfies a suitable growth condition. On the other hand Dales and McClure [3] have 

constructed radical algebras L 1(w) with nonstandard closed ideals. By a simple 

adaptation of the arguments in our joint paper [9], we can show that for so-called 

regulated weights [1], [2] all almost continuous semigroups are continuous, even though 

the Dales-McClure counterexamples can have regulated weights. 

Recall, [1, def. 1.3, p.81], that the weight w is regulated at a 2! 0 if 

lim w(X+y)/w(x) = 0 for all y >a . For such weights, L 1(w) must be radical [1, p.82]. 
X-IOO 

We now collect, with references to the literature, the topological facts we need about 

L 1(w) with regulated weights. 

LEMMA (2.7). If the weight w is regulated at a 2! 0, then for all g in L1(w) with 

a(g) 2! a we have: 

(a) 

(b) 

(c) 

Convolution by g is a compact operator on L 1(w) . 

Convolution by g is a compact operator on M(w) . 

If {A. } is a bounded net in M(w) for which {A. *g} converges in the n . n 

* weak -topology to A.*g, then A. *g converges in norm to A.*g. 
n 

Part (a) is the fundamental result of Bade and Dales [1, Lemma 1.4 and Th. 2.2]. 
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Part (b) is an easy consequence of this [9, Lemma (3.1)], and (c) follows easily from (b), 

[9, Th. (3.2)]. We can now prove the promised continuity theorem (cf. [9, Th. (3.4)]). 

THEOREM (2.8). If w is a regulated weight, then every almost continuous convolution 

semigroup {!lt} on L 1(w) is strongly continuous. 

Proof. Suppose w is regulated at a and choose g if:. 0 standard with «(g) :<:: a (for 

* instance g = oa*u where u(x) = 1 ). Then {!ltg} converges in the weak -topology to 

g as t......., 0+ , by Theorem (2.1) (d). Hence, by Lemma (2.6) (c), !~~\ 1..1.tg = g in 

norm. But g is standard, so { llt} is strongly continuous by Theorem (2.3). This 

completes the proof. 

It follows from the Equivalence Theorem (1.2) that, if all almost continuous 

convolution semigroups on L 1(w) are strongly continuous (which would happen for 

regulated weights), then every homomorphism to L 1(w) is standard. The following 

shows that the converse is true. 

THEOREM (2.9). For the convolution algebra L1(w), the following are equivalent: 

(a) Every almost continuous semigroup in M(w) is a strongly continuous 

semigroup on L 1(w) . 

(b) Every continuous non-zero homomorphism from any convolution algebra 

L 1(w 1) to L 1(w) is standard. 

(c) Every continuous non-zero endomorphism of L\w) is standard. 

Proof. Because of the Equivalence Theorem it is enough to prove that (c) implies (a). So 

suppose that {!lt} is an almost continuous semigroup. Let at be one of the standard 

summability kernels on lR+ (like t H xt-l /I'(t)) [15, chapter 1]. Since lim lllltlll/t exists 
t-J 00 
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and is finite, we can fmd an r > 0 for which { e -rt at} and {(e -rt at)*J.Lt} are bounded 

semigroups in L 1(w) . 

Now define the semigroup ~t = (e -rt at)*J.LtOt . Since { e -rt at} is in L 1(w) and is 

norm-continuous for t > 0 , { ~t} is also in L 1(w) , and an easy argument shows that it 

is norm-continuous for t >0 . Also by our choice of r, we have ll~tll = 0(118111) = 

00 

O(w(t)) . Thus when we define the operational calculus map <jl(f) = r f(t) ~ dt as a 
Jo t 

homomorphism from L 1(w) to M(w) , we have not just a strong Bochner integral but a 

uniform Bochner integral (in fact an improper Riemann integral). Hence <jl(f) e L 1(w) ; 

i.e. <P is an endomorphism with <jl(OJ = ~t. It then follows from condition (c) that ~t is 

a strongly continuous semigroup. Since both { e -rt at} and { 81} are strongly 

continuous, we have that {J.L1} is strongly continuous by the following simple lemma. 

LEMMA (2.10). Suppose that {T(t)} is a strongly continuous semigroup of operator on 

a Banach space X and that {O(t)} is a commuting semigroup with IIB(t)ll bounded as 

t ----! 0+ . Then { O(t)} is a strongly continuous semigroup if and only if U(t) = o(t) T(t) 

is a strongly continuous semigroup. 

Proof. The lemma, and hence Theorem (2.9) as well, are immediate consequences of the 

formula U(t)x - x = O(t)(T(t)x - x) + (O(t)x - x) . 

As an application of Theorem (2.9), we prove the following result. 

COROLLARY (2.11). If I is the convergence ideal of an almost continuous semigroup 

{J.lt} on L 1(w) , then there is a g in I with a(g) = 0 . 

Proof. From the proof of the last theorem, it is clear that we can assume that J.L1 = <jl(o1) 

for some non-zero continuous automorphism of L1(w). (Just replace {J.L1} with {~1 } 
if necessary.) Let f be a standard element of L 1(w) with a(f) = 0 (for instance, let 
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f(t) = e -rt for e -rt in L 1(w) ). Then g = <j>(f) has a(g) = 0, [12, Lemma 4.5], and g 

belongs to I by formula (2.2). 

One can also give an alternate proof of the above corollary which does not use 

Theorem (2.9). For each a> 0, let I = {g e I : a(g):;:: a} . Then I is a closed 
a a 

subspace of I . In the proof of Theorem (2.9) we showed that a(I) = 0 , so that each I 
a 

00 

is a proper closed subspace. Thus v Ia "' v Il/n is a first-category subset of I , so by 
a>O n=l 

the Baire category theorem there is a g in I but in no I . For such g , a(g) must be 
a 

zero. 

3. THESUPPORTFUNCTION 

In this section we survey some results related to { a(!lt)} for an almost continuous 

semigroup. The results are adapted from [12, section 4], where many of the proofs are 

adapted from [8, pp.344--348]. We also give an application from [12, Section 5] showing 

that certain homomorphisms are one-to--one. Parts (a) and (b) of the next lemma are 

given for more general semigroups in [12, Th. 4.3]. 

LEMMA (3.1). Suppose that {!lt} is an almost continuous convolution semigroup on 

L 1(w}. Then we have: 

(a) There is a number A :;:: 0 for which a(jlt) = At for t :;:: 0 . 

(b) There is a complex number b for which jl1(At) = bt for t:;:: 0. 

(c) If L 1(w) is a radical algebra and if there is a number c for which 

limsup <lllltll/w(ct))11t::; oo , then A;::: c . 
t -+OO 

Proof. Let B(t) = a(jl1) • It follows from the Titchmarsh convolution theorem, given in 

Lemma (1.3) (a), above, that !)(s+t) = !3(s) + !}(t) . Since llt is almost continuous, there 
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is g '# 0 with lim J.Lt*g = g, so it follows from Lemma (1.3) (b) that lim J3(t) = 0. 
t-tO+ t-+0+ 

It is now easy to see, [17], that J3(t) = a(J.LJ = At for some A ~ 0 . 

Now let k(t) = J.Lt(At) and write J.Lt = k(t) oAt + A.t . Since a(A.t) ~ At and 

\(At) = 0 , we have, for all measures v , that A.t * v(At + a(v)) = 0 . Thus multiplying 

out the expressions for J.1.8 and J.Lt gives k(s+t) = k(s) k(t) (cf. [8, p.348]). Also, since 

oAt and A.t are mutually singular measures, llk(t) oAt II = I k(t) I w(At) ~ lllltll , which is 

bounded near 0 . It is now easy to see that k(t) = bt for some b , [17]. This completes 

the proof of part (b). 

Bade and Dales [1, Th. 3.6, p.99] show that if f in L 1(w) satisfies 

limsup(llf*nll/w(cx))l/n < oo, then a(t) ~c. Choose some g with a(g) = 0, then 

applying the Bade-Dales result to f = g*J.L1 gives A= a(J.L) ~ c (cf. the proof of [12, Th. 

4.7)]. This completes the proof. 

The number A in the above lemma is called the character of the semigroup {J.Lt} . 

When <1> is a homomorphism the character of <1> is the character of the semigroup 

{ <j>(ot)} . The distinction between positive and zero character is important, and the best 

results require positive character. We omit the proof of the next result which is part of 

[12, Th. 4.9]. 

THEOREM (3.2). Suppose that is a continuous non-zero 

homomorphism with character A . If A is positive, then 

(a) a(<j>(J.L)) = Aa(J.L) for all J.1. in M(w1). 

(b) If for any J.1. in M(w1) with a(J.L) > 0 the measure <l>(ll) has non-zero mass 

at a(<j>(J.L)), then whenever A. in M(w1) has point mass at a(A.) > 0 we 

also have <j>(A.)[a(<j>(A.))] '# 0. 
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As an application we have the following result taken from Theorem 4.7 and 

Corollary 5.3 of [12]. 

THEOREM (3.3). Suppose that $ is a continuous non-zero endomorphism of the 

radical convolution algebra L1(w). Then $ has character A~ 1 and $ is 

one-to-one. 

and let A be the character of { 11 } 
~""t 

and <)>. Since 

lllltll :5: l<!>llllotll = 11<1>11 w(t), it follows from Lemma (3.1) (c) that A<:: 1. Now suppose 

that g is a non-zero element of L 1(w) with <)>(g) = 0 , and let a = a(g) . Choose some 

b >a and let be the "restriction" of g to [O,b); also let 

g2 = g- g1 = gx[b,co) . Since a(g1) if:. a(-g2) , it follows from Theorem (3.2) (a) that 

a($(g1)) if:. a(<j>(-g2)) . But this contradicts our assumption that 0 = $(g1)- $(-g2) . This 

completes the proof. 

In [12], the fact that $ is one-to-one is obtained as a special case of a result 

Th. 5.1] which gives a sufficient condition for the operational calculus map of formula 

(1.1) to be injective for an almost continuous quasinilpotent semigroup of operators on a 

Banach space. 
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