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Functional Calculus for Non-Commuting Operators

A. J. Pryde

1. Imtroduction

Let & be a unital Banach algebra and a = (3‘1’ cees am) c #%. We
construct a functional calculus ¢a c Fo> B with a joint épectrum y(a).
The space & 1is a Banach algebra of functions f : R™ 5 ¢ and ¢a is a
bounded linear transformation with compact support supp ((ba) in RT.If
the aj commute then @ a is a homomorphism and if also f 1is a polynomial

in a neighbourhood of supp ((Da) then ¢a(f) = f(a). In the non-commuting

case weaker properties are retained.

Our primary interest is in the case & =H(X), the space of bounded
linear operators om the Bamach space X.  However, it is convenient to
formulate the results in the more general setting. This work extends that

of Taylor [9], Anderson [1], McIntosh and Pryde [5] and Pryde [6].

1980 Mathematics subject classification (1985 version): 47A10, 47A60.
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2. Vector-valued distribution

The construction of & a is via PB-valued distributions and the

compactness of supp (@a) follows from the Paley-Wiener theorem.

For this section we require only that @ be a Banach space. Let
ﬂlRm) denote the Schwartz space of rapidly decreasing functions with its
natural Frechet topology. Let L(y([Rm), %) denote the space of continuous
linear functions from HAR™) to @, that is the space of  @B-valued

tempered distributions.

A function e :c¢™ 5 # is called entire if it is norm differentiable
in each variable Cj at each ( = (Cl, vees {m) € c¢™.  Such a function is

of Paley-Wiener type (s, r), where s, r = 0, if
le@ | = e + |gp° e ¢l
for all { € ¢™ and some ¢ > 0.

If e is entire of Paley-Wiener type then it generates a distribution

E: IR™) > & where E@ = Qn)™ j n ©© f(&) d¢.  This integral is the
R

Bochner integral of the #-valued integrand.

Each tempered distribution E : 9([Rm) > # has a Fourier transform

E: SR™) 5> # defined by E(f) = E() where f(4) = j o 1<t &> g ar
R

and <A, &> = ).151 + .+ Amfm. So, if E is generated by e then its

Fourier transform W is given by W(f) = Q@m)™ J m & f(e) ac.
'R
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The support, supp (W), of a distribution W is the smallest closed
set K in R™ such that W() = 0 whenever f has compact support

disjoint from K.

Theorem 2.1 (Paley-Wiener theorem) Let W & L(.%Rm), ). Then W has
compact support if and only if W is the Fourier transform of a
distribution E  generated by an entire function e of Paley-Wiener type

(s, r) for some s, r = 0. In that case, supp(W) € {1 &€ R : |A] = r}.

The proof of this theorem follows readily from the corresponding
theorem for scalar-valued distributions. For the latter, see for example
Reed and Simon [8]. The entire function e is obviously unique and we

shall call it the symbol of W.

Let C?([Rm) denote the space of infinitely differentiable functions on

R™  with compact support. If p: R 5 ¢ is a polynomial, say

pd) = ] aaA¥,
then pD) = } aaDa

where D = (D D ) and Dj = %SI The following result was proved
J

in [1].

Theorem 2.2 Let W :R™ 5> & be a compactly supported distribution with
symbol e Let 6 &€ C‘: ({Rm) be identically 1 on a neighbourhood of
supp (W). Then for all polynomials p : rR® > ¢, W(0p) = p(D)e(0).
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3. Examples
In this section we exhibit some entire functions e of Paley-Wiener
type. These symbols give rise to functional calculi constructed in the

following section. Again let 4% denote a unital Banach algebra.

We shall say that an m-tuple a = (al, vees am) e & is of

Paley-Wiener type (s, r), where s, r = 0, if
" ei<a, > ” < c(1 + ICI)S er|Im Cl

for all { € ¢™ and some ¢ > 0. As elsewhere, <a, {> = alCl + ...+ amCm.

So an m-tuple a is of Paley-Wiener type (s, r) if and onmly if the

i<a, {>

function e, " { »e is of Paley-Wiener type (s, ).

Example 3.1 Let a, wes A be bounded self-adjoint operators on a
Hilbert space H. Taylor [9] proved that a = (al, vees am) is of

Paley-Wiener type (0, r) where 1 = (|| a, I+ ... +| a »*7 .

Example 3.2 Let b € #(X) where X is a Banach space. It is proved in
Colojoara and Foias [3] that b is a generalized scalar operator with real
spectrum if and only if || elbé | < c@ + |&)° for al & € R and some
s, c = 0. Hence b is generalized scalar with real spectrum if and onmly if

it is of Paley-Wiener type.

It follows that for commuting operators a IPRRTIPIE: W in #X), the

function e, is of Paley-Wiener type if and only if each a is

generalized scalar with real spectrum.
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Example 3.3 Let 2 € #B be of Paley-Wiener type (sj, rj) for 1 = j = m.
Let 7 € Sm the group of permutations on (1, ..., m). The function
i<a_p, £ > i<a .\, £ >

e e LOME veoe © t(m)” *m

a,T
is of Paley-Wiener type (s, 1) where s =8 + ..k s and

— 2 2,112

r——(r1 +...+rm) .

Example 3.4 Let # = M, the algebra of n by n complex matrices with a
suitable norm. Suppose a, ..., a are simultaneously triangularizable
matrices in B with real spectra. It is proved in Pryde [7] that
a = (31’ voes am) is of Paley-Wiener type (m - 1, r(a) where

@ = sup {JA] : 4 € y(@)} and p@) = {4 er™ . Iij (aj - lj)z is not

invertible}. Also proved is an extension of this result to the case of

certain triangularizable m-tuples in £(H) for a separable Hilbert space H.

4. Functional calculus

For a = (31’ cens am) e &7 and T € Sm, consider the entire

functions e, and €z defined in section 3. If e, (resp. e is of

>

a,‘c)
Paley-Wiener type then it is the symbol of a compactly supported H-valued

distribution which we denote by W a (resp. W a r)' In such a case, let

6 € c% ([Rm) be identically 1 in a meighbourhood of the support.
c

For a multi-index o = (al, ees am) let P, ¢ R® 5 ¢  denote the

monomial p_(4) = A% and set |a| = a + ..o +oy and o = al ool
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Theorem 4.1 Let (al, coos am) be of Paley-Wiener type. For each

.. _ ol . .
multi-index o, Wa(Gpa) = Ta[t ; aa'(l) ao'(|°f|) where the summation is

over all maps o : {1, ..., |a|} > {1, ..., m} which assume the value j

exactly o times for 1 = j < m.

Theorem 4.2 Let each aj be of Paley-Wiener type. For each multi-index o
[0 4
. _ .1 m
and each permutation 7T € Sm’ Wa,,c(ﬁpa) = A 4 ()"
These two theorems follow readily from theorem 2.2. For the first, see

Anderson [1].

Following MclIntosh and Pryde [5], we extend Wa (resp. Wa 1:) from
.ﬂlRm) to a large function space 2. Indeed, for s = 0 let L ls = Ll(du)
where du = (1 + |¢& |)sd€ and df is Lebesgue measure on R™. Then & is

the space of inverse Fourier transforms of elements of L ls. With the norm
11 =en™ [, a+ 180" fel e,

% becomes a Banach algebra under pointwise operations. Moreover, .Q(IRm)

is dense in &°.

If e, is of Paley-Wiener type (s, r) then || W@ | =c| £ for
all f e .9([Rm) and some ¢ = 0. Hence W a extends uniquely to a bounded

linear operator @a : & 5 B. Moreover,
supp (®,) = supp (W) € {4 € R : |A| =1} .

Similarly, if is of Paley-Wiener type (s, r) then W

Ca,z
extends to a bounded linear operator ¢oz - F 5> B with
2

a,tT

supp(®,, ) = supp (W, ) € {4 € R™: |A] = 1} .

a,T
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5. Joint spectrum
Much use was made in [5] and [6] of spectral sets of the following

form. Let a = (a,..,a ) € #° and for 1 € R define p(l, a) =
m
Z: (aj - .lj)z. By % we will denote a closed unital subalgebra of &

containing each a5 and by <« the intersection of all such ¥  So
S s B If x € € then a%(x) denotes its spectrum as an element of %

and pqg(x) its resolvent. The spectral sets are defined by
vg@ = {A € R : 0 € o, (U, 2))}

and y(a) = yp ﬂ(a).

In general vy t%(a) = 'y(g(a) < y(a). However, if for all 1 € R the
resolvent set p '%,(p(l, a)) has no bounded connected components then
¥ %(a) = ycg(a) = A(a). This is the case for example if & is finite
dimensional or if o I%(p(l, a)) € R forall 4 & R,

The following theorem was proved in [5]. There it was stated for the
case #B = H(X), X a Banach space, but the same proof is valid in the more
general setting. Part (b) for m = 1 is due to Foias [4]. Part (¢) is a
spectral mapping theorem.

Theorem 5.1 ILet a = (al, vees @ be a commuting m-tuple in 9 of

-
Paley-Wiener type (s, 1).

(@ 9P a " F s isa homomorphism of Banach algebras.

(®) supp (B,) = »(a).

© o(,() = f(y(a) foral f e .
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Again let € be a closed unital silbalgebra of @&  containing
a5, s A Let rad € be the Jacobson radical of % So rad € is the
intersection of all maximal left ideals of @ and is a closed two-sided
ideal. (See Bomsall and Duncan [2].) Let = : €~ /rad € be the natural
homomorphism and set n(a) = (n(al), ceos n(am)). We shall say that
a = (al, vees am) commutes modulo rad ¥ if w(a) is a commutative
m-tuple. The integrands in the expresions used to define @ a and @ ap €

elements of %¥. Hence these operators have range in ®. A theorem similar

to the following was announced in [6].

Theorem 5.2 Let a = (al, cees am) be an m-tuple in £ which commutes

modulo rad € and for which e a is of Paley-Wiener type (s, ).

(@ m(@) 1is a commuting m-tuple of Paley-Wiener type (s, r) and
Tod a = [} n(a)’
(®) supp (P,) 2 yla).

©) o d2,1)

fy L) forall fe &

Theorem 5.3 The previous theorem remains valid with e, replaced by €z

~ and 95a by ¢a, T for any permutation 7 € Sm‘

Corollary 5.4 Let a = (a o am) be an m-tuple in &% which commutes
modulo rad ¥ and for which each aj is of Paley-Wiener type. Then
7 5@ = ¥@).

(Complete proofs of these results will appear elsewhere.)
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