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FOUR REMARKS CONCERNING THE FEYNMAN INTEGRAL 

Igor Kluv{mek 

RE1v!.ARK ONE 

The efforts of mathematicians in the area of functional integration are, from a 

certain point of view, focused too narrowly. That is, more specifically, the idea of a 

Feynman integral is not conceived in sufficient generality, This statement may seem 

ridiculous now when the Feynman integral attracts more attention than ever before, is 

generalized in various directions, and is used in contexts far beyond Feynman's 

original intention. (Instead of elaborating I would like to refer to the collection [3].) 

Therefore, to indicate what I have in mind l wish to invoke a historical analogy and to 

suggest an example, 

As for the historical analogy, it may strike the listener (and the reader) as 

somevvhat preposterous, but I do not have a better one: I wish to advert to the 

beginnings of the Integral Calculus. Some people, with a certain amount of 

justification, take for the origin of the Integral Calculus Archimedes' calculations of 

areas of some planar figures and volumes of some solid bodies. However, Andre Weil 

is right when he insists that crediting Archimedes with the invention of the Integral 

Calculus would be a historical nonsense. Indeed, we cannot yet speak of the Integral 

Calculus even some 2000 years lr,ter when Fibonacci calculated the area "under the 

curve y = in the interval [0,1] , for n = 3,4, ... ,9, and not even after Fermat 

calculated this area for arbitrary integral n 2: 1 . To be sure, this is not to belittle 

the ingenuity of Archimedes or that of Fibonacci or Fermat. On the contrary, we 

cannot speak of Integral Calculus at those stages precisely because each of the 

mentioned calculations was based on a particular "trick" exploiting the specificity of 

the considered problem and requiring ingenuity far exceeding that which is now 

needed for the calculation of such sophisticated integrals as presented at the Tripos, 

say. 'What was still missing was an underlying principle or a general theory, and that 

emerged only in the works of Leibniz and Newton. Only in the light of such a 
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theory can we understand why and how the specific "tricks" work and, eventually, 

dispose of them, or, alternatively, devise new ones almost ad libitum. 

Let us now consider the example. Let d ~ 1 be an integer and let 1:1 be the 

Laplacian on IRd. 

Fixing conveniently some physically significant constants, letting 

and using loosely a mathematical rather than physical language we may say that, the 

original purpose for which Feynman devised "the Feynman integral" was to construct 

the semigroup exp(-itH), t ~ 0, where 

and V is a given real valued function on IRd interpreted as an operator on (a 

subspace of) L2(1Rd) . 

His and a majority of subsequent constructions depend heavily on the specific 

properties of the group exp( -itH0) , t E IR . This group can be expressed explicitly. 

Namely, 

(1) 

in the 12 -sense, for every cp E L2(1Rd) and almost every x E IRd, where 

(2) 

In terms of the Fourier-Plancherel transform, 

A 2 A 

(exp(-itH0)cp) (w) = exp(-1/2itl wl )cp(w) , 

for every t E IR , cp E L2(1Rd) and almost every wE IRd. 
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Let t > 0 and let r t = [O,t], IRd) be the space of all continuous maps 

(paths) 1: [O,t]_,IRd. The specific form of the kernel (2) makes it possible to 

Lmderstand the Feynman formula 

(3) ( exp(- itH) IP )( x) 

as 

with X =X. n 

n llnes 

lim [2~itl-dn/2 ~j, J ·~Jr 
i1J ·d d 

IR IR 
n--+oo 

For more detail and many illuminating comments, I wish to refer to the note 

"Feynman's paper revisited", G. 'vV. in [3], pp. 249-270. 

To make the specific role of the kernel (2) in the theory of the Feynman 

integral more apparent, let us change Feynman's and consider 

such that = -!.i1 , for instead. That is, for H0 we take the 

every 1 in the domain of t,, . Then , t E iR , is again a nice unitary group 

of operators. In terms of the Fourier- Plancherel transform, 

for every t E U{ , If) ::: and alnwst every w E . It can also be in the 

forn1 (1). it suffices to define 

it 
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for every t f. 0 and every x E IRd such that I xl f. I tl , where 

As before, let V be a real or complex valued function on IRd and let 

H = H0 + V. We may wish to construct the semi-group exp( -itH) , t 2: 0 . Attempts 

to produce a formula analogous to Feynman's formula (3) do not seem to have been 

made. The reasons seem to be in that the kernel ( 5) has a very different form from ( 2) 

and so, we cannot expect the "integrand" to be the composition of a functional on r t 

with the exponential function. Of course, it is possible to consider an analogy to 

formula (4). For that purpose, we look at the integrand in (4) as a product of two 

factors, each being the exponential function of the appropriate sum, and replace the 

first factor a new one. However, another difficulty then arises. Neither the kernel 

(2) nor the kernel (5) is integrable on the whole of IRd, but, while the kernel (2) is 

continuous and bounded so that its singularity is concentrated near I xi = oo , for every 

t, the singularity of the kernel (5) is concentrated around I xi = I tl and so, it moves 

with time. Consequently, the usual methods for making sense of (3) cannot be used 

without further ado in this situation. 

REMARK TWO 

I wish now to present a context from which the example suggested in the first 

remark naturally arises, indicating thereby its significance and a possible, and perhaps 

desirable, extension of the idea of the Feynman integral. 

The Fourier-Plancherel transform, ~,of an element, lfJ, of the space L2(1Rd) 

is defined so that 

~(w) (27rfd/2J exp(-iwx)I{J(x)dx , 
IRd 
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for every wEIRd and every r.p E L1 n L2(1Rd) . Let the domain, .0(~) , of the 

operator ~ consist of all elements, r.p, of the space L2(1Rd) such that the function 

w--+ lwl 2~(w), wEIRd, belongs to L2 (1Rd) ,andlet 

A 2A 
(~r.p) (w) = -I wl r.p(w) , 

for almost every wE IRd and every r.p E .0(~) . The domain, .0(0) , of the 

operator 0 is assumed to consist of all elements, r.p, of the space L2(1Rd) such 

that the function w -1 I wl ~( w) , wE IRd, also belongs to L2(1Rd) , and the operator 

0 itself is defined by 

(0((w) = I wl ~(w) , 

for every r.p E .0(~ -~) . Then ~ -~ is the positive operator whose square is equal to 

-~ ; that is, (0)2r.p = -~r.p, for every r.p E .0(~) . 

Let c > 0. Let us re-write the wave equation, ·· C2 " l·n U = LJ.U, d 

space-dimensions as the system 

2 u = v, v = C ~u , 

that is 

(6) 

Let 

(7) 

be the fundamental solution of the equation (6). We introduce a space in which (7) 

represents a unitary group and give an explicit formula for S( t) , t E IR . 

Let E be the space of all pairs, 
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such that cpE .0(.[-"K) and 1/JE~-D-..0(~-D.)). The relation 1/JE~-D-..0(~-D.)) 

means of course that there exists an element, x, of .0(.[-"K) such that 

if;(w) = I wl x(w) for almost every wEIRd. We shall write 

[cp(x)l 
, etc. 

1/J(x) 

For every w E IRd , w 1: 0 , let 

A+ 1 [1, i ( Cl wl f 1] A_ 1 [1, -i ( Cl wl f 1] 
II (w) = - and II (w) = - , 

2 -iCI w I , 1 2 iC I wl , 1 

for every wEIRd with I wl 1: 0 . The matrices fi+(w) and fi-(w) represent the 

projections of the space C2 onto the subspaces 

{(a,,B)I :,8=-iCiwla} and {(a,,B)I :,B=iCiwla}, 

respectively. Using these matrices, we define the projections II+ and II- on the 

space E by letting 

for almost every wEIRd and every ( cp, ¢)I E E. Obviously, II+II- = II-II+ = 0 and 

II+ + II- = I. Let E+ = II+ E and Fi = II-E. Hence, every element, ( cp, ¢)I ' of the 

space E has a unique representation 

(8) 

with ( cp + , ¢) E E+ and ( cp _ , ¢ _) E E- . That is, E is a direct sum of its subspaces 

F! and Fi . Consequently, we can define 

IJ(cp,¢) 1 11 2 = J d(Jcp+(x)l 2 + Jcp_(x)J 2 + 11/l+(x)l 2 + l¢_(x)J 2)dx, 
IR 
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for every ( <p, 1/J) ' E E expressed in the form ( 8). The functional ( <p, 1/J) ' _, II ( <p, 1/J) ' II , 

( <p, 1/J)' E E, is a norm vvhich makes of E a Hilbert space in which the subspaces E+ 

and E- are orthogonal to each other. 

:Now , by a direct calculation, we obtain that 

exp(-itcl wl )IT+(w) + exp(itcl tv! )IT-(w) , 

for every t E IR and I.J-' fc 0 . 

' ''+ ' A A t)(cp,</J)') (w) = (exp(-itcl wJI )II (w) + exp (itcl wl )Ir(w))(<p(w),</J(tu))', 

for almost every tv E 

For every t E rR , let 

t) = exp( cfitc ·~ -.6.) . 

Then t) and , t E IR , are unitary groups of transformations of . In 
c, d 

for every t E ~~ and every <p E L"(IR ') , we have 

iwl)~;(w) 

for almost every It is obvious that 

s±(t)-0(~ -L.l) = .0(.[="21), for every t E IR. if we define 

for every (p E and 

r s± (t)\0 -j, 

ls±(t)</J ' 

"0 r r2([Rd\ i 'n""l 
I; c _j_J ' I ' ()-'-Vi 

= E- , for every t E iR . Hence, by (9), 

S(t) 

for every t E IR . Because the and TI are 

=E, 

, t E IR , is a grou.p of transforn1ations on the space E . 

and 

and 



142 

So, the groups s+ ( t) and .) ( t) , t E IR , naturally arise in connection with the 

wave equation. What's more, by solving the Feynman-type problems of constructing 

the semigroups exp( =Fit( C ,[=LS.' + V)) , t 2: 0 , we produce the fundamental solutions of 

certain modifications of the wave equation. However, a more interesting is the task of 

finding the solutions of the equation 

[ul [o, 1lrlul [U,V][u] 
v = C 2t::., o v + W, X v 

with "arbitrary" functions U, V, W and X on IRd. This equation includes as a 

special case the higher dimensional extension of the telegrapher's equation. 

Interestingly enough, solutions of the telegrapher's equation and its extensions 

to higher dimensions do not seem to have been produced by constructions analogous to 

the Feynman integral. Instead, probabilistic methods initiated by Mark Kac have 

been used for this purpose. As a nice and typical example of an early work in this 

direction, let us mention the note [1]. This approach leads to the theory of random 

evolution to which is devoted a rather extensive literature. In the following 

remark, an approach based on an analogy of the Feynman integral is suggested. 

REMARK THREE 

Let N 2: 1 be an integer. Elements of the space I[N will be written as 

column-vectors, that is, matrices with N rows and one column, and elements of 

,.NxN 
'L as square matrices with N rows and columns, so that the product Aa , with 

A E and 

element of 

a E I[N, has the standard meaning as a product of matrices and so, is an 

A fixed norm on [N, such as the Euclidean norm, and the 

corresponding matrix norm on , a.re both denoted as modulus. 

Let E be a Banach space whose elements are (equivalence classes of) 

(JV-valued functions on IRd written as column-vectors, 
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having l[- valued functions, rpN, for the components. 
JVxN A I[ ~ -valued 

1ill, 1i12 , ... , 1i1Nl 
I 

qi <!i21' qi22 , ... , qi2NI 

I 
, ... , iPNNJ 

, are (-valued functions on is said to be an 

if E E and 11\l\(pll :':0 kll\oll , for some k?: 0 and every rp E E, Here, 

of course, 

j\[ ,, 
, ... , L 

K=l 

and the multiplication and addition of (-valued functions are point-wise. Hence, the 

multiplication (from the left) a multiplier, <!? , represents a bounded 

linear operator on E !Nhich is also denoted iP , The space of all E-multipliers 

wiH be denoted 

Let L(E) be the space of all bounded linear operators on E. Let 

S: -> L(E) be a (strongly) continuous semigroup of operators. 

For any t > 0 , let be the space of all continuous maps 

'Y: [O,t] -> If 0 < s::; and rf E f t , then the restriction of i to the interval 

is denoted by ~~I 

Let cp E E . For every t > 0 , let be a vector space of 

functions on 

such that the 

-> E a linear map and p t, rp a semi norm on 

are satisfied. 

-valued 
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(i) IIMt (/)II ::; Pt (f), for every f E C(t,i.p). 
,lj) ,lj) 

(ii) If fj E C(t,i.p), j = 1,2, ... , 

00 

L Pt (f.) < oo 
J=l ,lj) J 

d f · "NxN · d f . r h h t an 1s a IL -value unctwn on t sue t a 

for every 'Y E f t for which 

< 00 ' 

then f E C(t,i.p) and 

(iii) Constant functions belong to £( t, lj)) and 1) = S(t)<p, for every t > 0. If 

0 < s :S t, g E £(s,<p), <liE M(E) and f(ry) = <li('y(s))g("/1 [O,s]), for every 'Y E r t, then 

/E and Mt (f)= S(t-s)<liM (g). 
,1.{) s,<p 

The requirement (iii) implies that every function, f, for which there exist an 

integer, k 2: 1 , numbers, tj, and E-multipliers, 

0 < t1 , tj-l < tj :S t , for j = , and 

for every 'Y E r" , belongs to £( t, 1p) and 
L 

, j = 1 ,2, ... ,k, such that 

To make the statements and formulas more transparent, we shall use the 
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terminology and notation of the integration theory, In particular, we shall write 

for every f E £(t,I{J) . 

Let )\ be the one-dimensional Lebesque measure (and integral). Let t > 0 . 

f(/\ ® Pt,I{J) is denoted the family of all functions, f, on [O,i] x r t for which there 

exist functions gj on [O,t] and functions E £( , j = 1,2,,,, such 

that 

and 

f(s,"() 

for every s E and "( E f such that 

II I < oo • 

let V be a suitable -veJued function on and let 

r J t > 
exp i 1 \l( "/( r) )drJ1 , 

uo 

for every "( E f t for which the exists. If et E £( , let 

Let t > 0 . Let 

u ( t) (p 
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for every s E [O,t] and 'Y E r t for which the integral exists. 

If this function, f, belongs to f(A. ® p'P}, then f(s,.) E £(t,cp), for A-almost 

every s, and 

(12) 
t 

u(t) S(t)cp + J/(t-s)Vu(s)ds 

in the Bochner sense. 

For the proof, we note that 

for every 'Y E r t such that the function f(. ,'Y) is ,\-integrable. Also, 

Jr f(z,"()Mt(d'Y)'P = S(t-s) Vu(s) , 

t 

for every s E [O,t] such that f(s, .) E £(t,cp) . Therefore, by Theorem 5.11 in [2], 

t 
= L S(t-s) Vu(s)ds . 

The requirement that the function ( 11) belong to , for every 

r.p E E, may prove to be rather strong. None-the-less, it may happen that 

et E £( t, 'P) , for every 'P E E , and the map 'PH u 'P( t) , 'P E E , is a bounded linear 

operator on E . In that case .. we write U( t) 'P = u ( t) , for every 'P E E , where 
'P 

U(t) E L(E), and 
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Moreover, if t H U( t) , t 2: 0 , turns out to be a strongly continuous group, then the 

relation (12) indicates that its infinitesimal generator is an extension of the operator 

S(O) + V, where S(O) is the infinitesimal generator of the semigroup S. The last 

remark is devoted to the description of a case in which this situation occurs. 

REMARK FOUR 

Using the notation of the preceding remark, we take N = 1 and E = L2(1Rd) . 

Let the kernel kt be defined by (2) and let S: IR -t L(E) be the unitary group such 

that S(O) =I and 

(S(t)<P)(x) = J kt(x-y)<P(y)dy , 
IRd 

Let w be the Wiener measure on r t with unit variance per unit of time and 

with the initial distribution standard normal. That is, w is a probability measure 

such that 

[ 
n-1 J w(Z) = (27r)dn _II (t .-t ._ 1) - 112 x 

J=1 J J 

for every set 

Z = {'yEr('Y(t}EBj, j=0,1, ... ,n-1}, 

where B j are Borel sets in IRd, j = 1,2, ... ,n- 1, n = 1,2, .... Let us note that, instead 

of w , some other probability measures on r t could be used equally well. The 

integral (expectation) of an integrable function, is denoted by w(f) . By w(f/ F) is 

denoted the conditional expectation of such a function, f , with respect to a 
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measurable map, F: r t...., f! , of r t into a measurable space f! . Hence, w(/1 F) is a 

measurable function on n . 

For any integer n :2: 1 , let 7ft n be the projection of r t onto the space (IRd)n 
' 

defined by 

(/(0), 'Y(tfn), ... ,"f((n-l)t/n)) , 

for every "( E f t . 

For any r > 0 , let B( r) = { x E IRd : I xi :::: r} be the closed ball in IRd of 

radius r centred at 0 . 

Let n 2: 1 be an integer and r > 0 a real number. Given a w-integrable 

function, f , let 

I J ... J r,o(x0)w(fl;rt )(x0,x1, ... ,x _1) x 
B(r) B(r) B(r) ,n n 

x [~/t;n(xfxj-1)] dxodxl ... dxn-1 ' 

Let LIM be a Banach limit on the space, e'JO = e'X>(IN x ( O,oo)) , of all bounded 

complex valued functions on IN x (O,oo) endowed with the sup-norm. That is, LIM is 

a continuous linear functional on assigning nonnegative real values to nonnegative 

real elements of f. 00 such that 

lim 

for every ~ E e'JO for which the limit on the right exists in the usual sense. If 

convenient, we write 

lim ~(n,r) LIM~ . 
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By the same symbol, LIM, we denote the continuous linear map from the 

space, l 00 (1N X (O,oo), E) 'of an bounded E-valued functions on E into E defined by 

<LIM~, 'lj;> = LIM 
1'-loo ' n_,oo 

Let cp E L2(1Rd). Let l(t,cp) be the family of all w-integrable functions, f, 

such that M~'r(/)cp E L2(1Rd) , for every integer n ?: 1 and every number r > 0, and 

Pt,cp(f) = w( I /I) + sup{IIM~'r(/)r,oll : r > 0, n = 1,2, ... } < oo . 

For every f E £( t,cp) , let 

LIM M~'r(/)cp . 
r'"""'oo ' n_,oo 

It can be established now that, for every cp E E and t > 0 , the requirements 

(i), (ii) and (iii) from Remark Three are satisfied. Moreover, for a large class of 

functions, V, on !Rd, the function et, defined by (10), belongs to l(t,r,o) , for every 

r,o E L2(1Rd) , and the resulting map t H Mt( et) , t ?: 0 , is a continuous semigroup of 

operators. In that case, we can write Mt( et) = exp( -it!!) , t ?: 0 , where II is a 

self-adjoint extension of the operator H = -1/211 - iV. Since the operators M/ et) , 

t > 0 , depend on the choice of the Banach limit LIM, we have a method of 

"producing" many self-adjoint extensions of the operator H. 

This construction can be adapted to the case of the wave equation. Details will 

be published elsewhere. 
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