SOLVABILITY OF DIFFERENTIAL OPERATORS ON SEMIRADIAL SEMIDIRECT PRODUCTS

A. H. Dooley

Let $G=N \rtimes K$ be the semidirect product of a simply connected nilpotent Lie group by a compact Lie group. Let $\underline{\underline{n}}_{i}$ be the derived series of $\underline{\underline{n}}$, defined by $n_{0}=n, \underline{\underline{n}}_{i}=\left[\underline{\underline{n}}_{i-1}\right]$ for $i \geq 1$. We shall say that the semidirect product is semiradial if we can write $\underline{\underline{n}}_{i}=\underline{\underline{n}}^{i}+\underline{\underline{n}}_{i-1}$ as a K-space, in such a way that the K-invariants in $\underline{\underline{n}}^{i}$ form a commutative algebra.

Let P be a bi- K-invariant, left N invariant differential operator on G, and consider the partial Fourier coefficients of $P,\left(P_{\wedge}\right)_{\wedge \in \widehat{K}}$. These are K-invariant, $\mathcal{B}\left(\mathcal{H} H_{\wedge}\right)$-valued differential operators on N defined for $\phi \in C^{\infty}(N)$ by

$$
\left(P_{\wedge} \phi\right)(n)=P(\phi \otimes \wedge) .
$$

In [2], the following result was proved.

Theorem 1. Let G and P be as above and suppose that Ω is a relatively compact set in G.

Suppose further that for each integer a there is a constant C so that for all $\wedge \in \widehat{K}$

$$
\begin{equation*}
\left\|P_{\wedge}\right\|^{\prime} \geq C N(\wedge)^{-a} . \tag{**}
\end{equation*}
$$

Then P has a fundamental solution on Ω.

In the above inequality, $N(\wedge)$ denotes the constant $(\wedge+\delta, \wedge+\delta)-(\wedge, \wedge)$, where \wedge is the highest weight associated to $\Lambda,(\quad)$ is the Killing form, and $\|\cdot\|^{\prime}$ denotes a certain norm on the K-invariant $\mathcal{B}\left(\mathcal{H}_{\wedge}\right)$-valued operators which will be defined below.
(Actually, the above theorem was proved for a semiradial semidirect product of a solvable group by a compact group.)

It is of some interest to ask whether one can remove all mention of the set Ω from the statement of the above theorem: that is, can one prove that P is globally solvable rather than semiglobally solvable. The purpose of this note is to answer this question in the affirmative. In fact, one has

Theorem 2. Let G and P be as in Theorem 1. If $\left({ }^{* *}\right)$ holds then P has a global fundamental solution on G.

This theorem will be proved below. The basic techniques will be to show that G is P-convex. Actually, the case where N is abelian was proved in [2]; P-convexity in this case was established in [3]. In [2], we also showed that if N has one-dimensional centre, theorem 2 holds. The case of biinvariant operators on a direct product was done in [1].

Before proving theorem 2, we need to define the norm $\|\cdot\|^{\prime}$; this involves an analysis of the structure of the K-invariant $\mathcal{B}\left(\mathcal{H}_{\wedge}\right)$-valued operators on N. In fact, let ${ }^{i} Q_{1}, \cdots,{ }^{i} Q_{d_{i}}$ be a basis for the K-invariant polynomials in $S\left(\underline{\underline{n}}_{i}\right)$. (By semiradiality, the ${ }^{i} Q_{j}$'s commute for fixed i.) One can show that there are pairwise orthogonal vectors P_{1}, \cdots, P_{s} in $\mathcal{B}\left(\mathcal{H}_{\wedge}\right)$ and corresponding harmonic polynomials H_{1}, \cdots, H_{s} in $S\left(\underline{n}_{i}\right)$ so that the invariants in
$\mathcal{B}\left(\mathcal{H}_{\wedge}\right) \otimes S\left(\underline{\underline{n}}_{i}\right)$ all have the form $\sum_{j=1}^{s} p_{j} P_{j}\left({ }^{i} Q_{1}, \cdots,{ }^{i} Q_{d_{i}}\right) H_{j}$, where the P_{j} 's are polynomials in d_{i} variables. The K-invariants in $\mathcal{B}\left(\mathcal{H}_{\wedge}\right) \otimes S(\underline{\underline{n}})$ are generated (as an algebra) by these, and hence each one is expressible as a sum $\sum A_{\alpha} Q^{\alpha} H_{\alpha}$, where for a multi index α in $\mathbb{N}^{d_{1}+d_{2}+\cdots+d_{r}}, Q^{\alpha}$ denotes $\Pi_{i=1}^{r} \Pi_{j=1}^{d_{i}}\left({ }^{i} Q_{j}\right)^{\alpha_{i+j}}, A_{\alpha} \in \mathcal{B}\left(\mathcal{H}_{\wedge}\right)$, and H_{α} is one of a finite number of operators formed from the products of the H_{j} 's.

The coefficient α is called a winning coefficient if $A_{\alpha} \neq 0$ and α is maximal in the order on $\mathbb{N}^{d_{1}+\cdots+d_{r}}$ which is obtained by taking the lexiographic order on each $\mathbb{N}^{d_{i}}$ and forming the product order on $\mathbb{N}^{d_{1}+\cdots d_{r}}$. The norm $\|\cdot\|^{\prime}$ is defined by $\left\|\sum A_{\alpha} Q^{d} H_{\alpha}\right\|^{\prime}=$ $\sum\left\|A_{\alpha}\right\|_{H . S .}$, the sum being taken over all winning coefficients.

Proof of Theorem 2.

Consider the partial Fourier coefficients $\left(P_{\wedge}\right)_{\wedge \in \widehat{K}}$ of our operator P. As noted in proposition 5.2 of [1], it will suffice to show that every compact set $L \subseteq N$ is contained in a compact set $\tilde{L} \subseteq N$ which is P_{\wedge}-full for each $\wedge \in \widehat{K}$. This will be proved by induction.

In [2], we proved the result for abelian groups and for nilpotent groups whose centre has dimension one. To complete an inductive argument, it is sufficient to consider the case where the centre has dimension strictly greater then one and reduce it to groups of lower dimension.

Thus let Z_{1} and Z_{2} be two linearly independent elements of the centre of $\underline{\underline{n}}$. Let N_{i} $=\exp \underline{\underline{n}} / Z_{i}$, for $i=1,2$ so that $N_{i}=N / Z_{i}$ is a nilpotent group of dimension $\operatorname{dim} N-1$. Let $p_{i}: N \rightarrow N_{i}$ be the canonical projection. For $u \in \mathbb{D}(N)$, define $u_{i} \in \mathbb{D}\left(N_{i}\right)$ by

$$
u_{i}\left(h D_{i}\right)=\int_{D_{i}} u\left(h z_{i}\right) d z_{i} .
$$

If $P \in U(\underline{\underline{n}})$ the restriction of P to the D_{i}-invariant functions defines an element of $U\left(\underline{\underline{n}}_{i}\right) \otimes$
$\mathcal{B}\left(\mathcal{H}_{\wedge}\right)$ denoted P_{i}. It is easy to see that $(P u)_{i}=P_{i} u_{i}$. Further, extending Z_{i} to a basis $\left\{X_{1}, \cdots, X_{n-1}, Z_{i}\right\}$ for $\underline{\underline{n}}$, one has $P=Q_{0}+Q_{1} Z_{i}+\cdots+Q_{i} Z_{i}^{m}$ where the Q_{j} belong to $U(\underline{\underline{n}}) \otimes \mathcal{B}\left(\mathcal{H}_{\wedge}\right)$ are polynomials in the X 's only. Then $P_{i}=Q_{0}$.

Notice that each P_{\wedge} can be written in the form $P_{\wedge}=Z_{i}^{\alpha_{\wedge, i}} Q_{\wedge, i}$ for $i \in\{1,2\}$, where $\alpha_{\wedge, i} \in \mathbb{N}$, and $Q_{\wedge, i}$ is a $\mathcal{B}\left(\mathcal{H}_{\wedge}\right)$-valued operator on N not divisible by Z_{i} (i.e. $\left.\left(Q_{\wedge, i}\right)_{0} \neq 0\right)$.

Let L be a compact subset of $H ; p_{i}(L)$ is a compact subset of N_{i} and by the inductive hypothesis applied to N_{i}, there exists a compact set $L_{i} \subseteq N_{i}$ which is $\left(Q_{\wedge, i}\right)_{i}$ full for each $\wedge \in \hat{K}$, such that $p_{i}(L) \subseteq L_{i}$. (If L is empty, L_{i} may be taken empty also.) By a lemma due to D . Wigner, [4], $p_{i}^{-1}\left(L_{i}\right)$ is a subset of N which is $Q_{\wedge, i}$-full for each \wedge. Now the argument of [1] 8.6 shows that $p_{i}^{-1}\left(L_{i}\right)$ is Z_{i}-full and P_{\wedge}-full for all $\wedge \in \hat{K}$.

I claim that the set $\tilde{L}=p_{1}^{-1}\left(L_{1}\right) \cap p_{2}^{-1}\left(\dot{L}_{2}\right)$ is a compact subset of N, containing L and P_{\wedge}-full for each $\wedge \in \hat{K}$. The compactness follows from lemma 6.5 of [1].

This completes the inductive step and hence proves theorem 2.

Bibliography

[1] F.D. Battesti, Resolubilité globale d'opérateurs différentials invariants sur certains groupes de Lie. J. Functional Anal. 77 (1988), 261-308.
[2] F.D. Battesti and A.H. Dooley, Global and semiglobal solvability of differential operators on Lie groups. Preprint 1989.
[3] K.El Hussein, Opérateurs differentials invariants sur les groupes de déplacements. Bull Sc. math. (2e serie) 113 (1989), 89-117.
[4] D. Wigner, Bi-invariant operators on nilpotent Lie groups, Invent. Math. 41 (1977), 259-264.

