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SOLVABILITY OF DIFFERENTIAL OPERATORS ON 

SEMIRADIAL SEMIDIRECT PRODUCTS 

A.. H. [)oo ley 

Let G = N )<] K be the semi direct product of a simply connected nilpotent Lie group by 

a compact Lie group. Let lli be the derived series of !l,, defined by no = n, lli = [w-1] for 

i ~ 1. We shall say that the semidirect product is semiradial if we can write lli = lli+lli-l 

as a K-space, in such a way that the K-invariants in lli form a commutative algebra. 

Let P be a bi-K-invariant, left N invariant differential operator on G, and consider 

the partial Fourier coefficients of P, (PA) AEK" These are K-invariant, B(HA)-valued 

differential operators on N defined for ¢; E C00(N) by 

In [2], the following result wa..s proved. 

Theorem 1. Let G and P be as above and suppose that Q is a relatively compact set in 

G. 

Suppose further that for each integer a tl1ere is a constant C so that for all 1\ E K 

( **) 
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Then P bas a fundamental solution on U. 

In the above inequality, N(/\) denotes the constant (/\ + S, 1\ + S)- (/\, /\), where 1\ 

is the highest weight associated to/\, ( ) is the Killing form, and II· II' denotes a certain 

norm on the K-invariant 8(1£")-valued operators which will be defined below. 

(Actually, the above theorem was proved for a semiradial semi direct product of a 

solvable group by a compact group.) 

It is of some interest to ask whether one can remove all mention of the set n from 

the statement of the above theorem: that is, can one prove that P is globally solvable 

rather than semiglobally solvable. The purpose of this note is to answer this question in 

the affirmative. In fact, one has 

Theorem 2. Let G and P be as in Theorem 1. If(**) holds then P bas a global funda

mental solution on G. 

This theorem will be proved below. The basic techniques will be to show that G is 

P-convex. Actually, the case where N is abelian was proved in [2]; P-convexity in this 

case was established in [3]. In [2], we also showed that if N has one-dimensional centre, 

theorem 2 holds. The case of biinvariant operators on a direct product was done in [1]. 

Before proving theorem 2, we need to define the norm Jl • II'; this involves an analysis 

ofthe structure ofthe K-invariant 8(1£")-valued operators on N. In fact, let iQb · · · ,i Qd, 

be a basis for the K-invariant polynomials in S(ll.i)· (By semiradiality, the iQj's commute 

for fixed i.) One can show that there are pail)Vise orthogonal vectors Pb · · ·, P 8 in 8(1£") 

and corresponding harmonic polynomials Ht, · · ·, Hs in S(ll.i) so that the invariants in 
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B(H1J&JS(w) all have the form LPiPjeQ1 , • • • ,i Qa;)Hh where the Pj's are polynomials 
j=l 

in d; variables. The K-invariants in B(H") &JS(u) are generated (as an algebra) by these, 

and hence each one is expressible as a sum '2: A,,,Q"' H a, where for a multi index a in 

Nd1 +d2+··+dr Q"' denotes II': IId' (iQ ·)"''+; A E B(H ) and H ~· is one of a finite , •=1 J=l J , 01 1\ , ~ 

number of operators formed from the products of the Hj's. 

The coefficient a is called a winning coefficient if A 01 =/= 0 and a is maximal in the 

order on Nd1 + .. ·+d, which is obtained by taking the lexiographic order on each Nd' and 

forming the product order on Nd,+· .. dr. The norm II· W is defined by II LA<>QdH01 II'= 

L II Aa IIH.s., the sum being taken over all winning coefficients. 

Proof of Theorem 2. 

Consider the partial Fourier coefficients (PA) AEK of our operator P. As noted in 

proposition 5.2 of [1], it will suffice to show that every compact set L ~ N is contained in 

a compact set L ~ N which is PA-ful1 for each 1\ E K. This will be proved by induction. 

In [2], we proved the result for abelian groups and for nilpotent groups whose centre 

has dimension one. To complete an inductive argument, it is sufficient to consider the case 

where the centre has dimension strictly greater then one and reduce it to groups of lower 

dimension. 

Thus let Z1 and Z 2 be two linearly independent elements of the centre of ll· Let N; 

= exp ZJ;/Z;, fori = 1, 2 so that N; = N/Z; is a nilpotent group of dimension dimN- 1. 

Let Pi : N -Jo be the canonical projection. For u E D(N), define u; E D(N;) by 

u;(hD;) = { u(hz;)dz;. 
lvi 

If P E U(!.l) the restriction of P to the D;-invariant functions defines an element of U(ZJ;;)@ 
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!3(H.") denoted P;. It is easy to see that (Pu); = P;u;. Further, extending Z; to a basis 

{X1 , · • · ,Xn-b Z;} for !l, one hasP= Qo + Q1Zi + · · · + Q;Z[" where the Qj belong to 

U(n,) 0 B(H.A) are polynomials in the X's only. Then P; = Qo. 

Notice that each P" can be written in the form PI\= Z~"·'QA,i fori E {1,2}, where 

al\,i E N, and Q A,i is a B(H.A)-valued operator on N not divisible by Z; (i.e. ( Q A,i)o of:. 0). 

Let L be a compact subset of H; p;(L) is a compact subset of N; and by the inductive 

hypothesis applied toN;, there exists a compact set L; ~ N; which is (QA,i)i full for each 

1\ E J{, such that p;(L) ~ L;. (If Lis empty, L; may be taken empty also.) By a lemma 

due to D. Wigner, [4], pi1(L;) is a subset of N which is Q A,;-full for each /\. Now the 

argument of [1] 8.6 shows that pi1(L;) is Z;-full and P1dull for all 1\ E K. 

I claim that the set L = p11 (L1 ) n p21 (L2 ) is a compact subset of N, containing L 

and PA-ful1 for each 1\ E The compactness follows from lemma 6.5 of [1]. 

This completes the inductive step and hence proves theorem 2. 
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