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SURFACE MEASURES -

MAXIMAL FUNCTIONS AND FOURIER TRANSFORMS 

Michael Cowling and Giancarlo Mauceri 

Let S denote a smooth hypersurface in Rn+l with surface measure dS induced the 

Lebesgue measure of Rn+l. vVe fix a smooth nonnegative function w with compact support 

in Rn+l and consider the finite Borel measure p, with dp, = wdS, which is carried S. For 

any function f in the Schwartz space we denote by the averages of f over 

the dilates of S -

f(x- Vt E R+, Vx E 

and by M*f the associated maximal function-

=sup jMtf(x)l 
t>O 

Our purpose is to determine the range of p's for which an a priori estimate of the form 

E S(R"+1), 

this estimate entails that the sublinear operator extends to a bounded operator 

on the Lebesgue space Ll'(Rn+l ), hereafter abbreviated to LP. In the last decade, since 

Stein's work on the "spherical maximal function" [SW], this problem has attracted 

considerable attention [B], [CM1], [CM2], [G], [SSl], [SS2]. It turns out that, at least when 

p < 2, the range of p's for which the maximal operator }vf" is bounded on LP is determined 

the decay at infinity of the Fourier transform jl of the measure fl· 
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THEOREM 1. If for some a, 1/2 < a ~ n/2 

then the maximal operator ]I/[,, is bounded on LP if p > 1 + 1/2a. 

The proof of this theorem can be fou._nd in [CMl]. Later Rubio de Francia [R] proved 

that the theorem holds for ru.'ly compactly supported Borel measure f-l· 

It has been known for a long time that the decay at infinity of j1 is related to the 

curvature of the surface S [Hl], [Hz], [L]. In particular Littman [L] proved the following 

result. 

THEOREM 2. If at every point the hypersurface 8 has at least k nonvanishing pr.incipaJ 

curvatures then 

ltl(.Aa)l ~ C(l + .A)-k/2 

Thus if at every point S has at least k nonva..<ishing curvatures, where k ::::: 2, Theorem 

1 applies and M* is LP-bounded for p > 1 + 1/k. However iffor some a inS"' the Fourier 

transform j1(Aa) decays of order less than 1/2 as >. tends to +oo (as might be the case 

if at some point less than 2 principal curvatures are different from zero), Theorem 1 no 

longer applies. Indeed examples show that in this case M* may fail to be bounded even on 

L 2 [CJ. Since M,., is obviously bounded on L 00 it follows by interpolation that M,., cannot 

be bounded on LP for any p < 2. Nevertheless, even when jl fails to decay sufficiently fast 

at infinity, one can prove LP-boundedness of the maximal operator M., for some p > 2. 

Indeed in [CMl] the authors proved the following theorem. 
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THEOREM 3. Let u be a nonnegative bounded Borel function on S such that 

,u{x E S: u(x) = 0} = 0. Suppose that there exist positive real numbers rx,j3, e such that 

(i) l(uapf(.\a)l :5 

(ii) u -{3 is integrable with respect to the rneasure p,. 

Then is bounded on LP for p > + 

The basic idea of the of Theorem 3 is that by and Theorem 1 the maximal 

operators corresponding to the measures dp, z = are bounded on L 2 when Rez =a, 

while from (ii), the operators M:; are bounded on L 00 when Rez = f3. Thus, by complex 

interpolation, ]\![* = is LP-bounded if p > +a/ f3). 

The role of the function u in the staternent of Theorem 3 is to mitigate the effect of 

the of S where the curvature vanishes. Thus we shall call it a "mitigating factor". 

This result raises two natural questions: 

for every hypersurface S is it possible to :find a for some 

exponent a, has optimal 

:5 C(l + VuE S", V>. E ? 

for any hypersurface S, how can we choose the '"'·""''""''"H''"' factor to optimize the range 

of for which we can prove D"-bour1dedness of Theorem 3? 

'i'Ve address question first. Since the role of the IP.Jit1!!;aicm.p;, factor is to compensate for 

the lack of curvature of S, a natural choice for u is the Gaussian curvature " of S. 

We recall that, if S is locally the graph of a function ¢; : R'"' ~--+ its principal 

curvatures are, up to a nonvanishing factor, the eigenvalues of the Hessian matrix H 4> of 
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<f>. Thus the Gaussian curvature K. is, up to a nonvanishing factor, the determinant of H <f>. 

In [CMl] the authors were able to exhibit an example of a class of surfaces in R3 for which 

(to, 112dsr has optimal decay. In [SSl] Sogge and Stein proved the following theorem. 

THEOREM 4. Let S be a smooth hypersurface in Rn+l. Then 

It follows from Theorems 3 and 4 that if the Gaussian curvature of S does not vanish of 

infinite order at any point of S, then M. is LP-bounded for all p larger than a critical index 

p 0 ( S). The critical index depends on the order of vanishing of to, and can be arbitrarily 

large. For general hypersurfaces it is not yet clear whether to,2n is the lowest power of the 

curvature that yields optimal decay of the Fourier transform of the surface carried measure. 

However for convex surfaces this result has been considerably improved [CDMM]. 

THEOREM 5. Let S be a compact convex hypersurface in Rn+l of class CQ, all of 

whose tangent lines have order of contact at most q, where q < Q, and let to, denote the 

Gaussian curvature of S. H u is a nonnegative cQ-1 function on S with the property that 

0 $u $ to, 112 , then 

provided that n $ Q - 2, nq $ 2( Q + n - 1) and q $ Q - 2. 

The proof of this theorem requires obtaining uniform estimates of the decay of oscil­

latory integrals depending on parameters. Indeed, by taking a partition of unity on S, and 
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suitable coordinate systems, 

of the form 

~-> +c-AJ. Here the function : R" -+ 

J.S a convex a:nd has a critical m the of the 

function V 17 Hn i--P As the direction cr vanes m the unit 

sn' the functions and lll and 

one x:nust obtain estimates of which are uniform in cr. The I is 

controlled 

dx \:It E 

Indeed lt is easy to see that 

In terms the S this fact has a For fixed 

u rn sn denote of S whose inward unit nonnal is and the 

cap at of t, 

i) = E 

If 1s a ncJil:ne:g<1tJ.ve measurable function on 8 denote 

t)= 
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the u-volume of the cap. Then 

l(uJLHA.a)l ::; C{V( u, a, r 1) + V(u, -a,.\ -l)} +higher order terms. 

(see [CDMM] Theorem 5.1 for a more precise statement). When u is nonvanishing and 

dJL = dS this estimate was proved by Bruna, Nagel and Wainger [BNW]. The second key 

result in [CDMM] is the estimate 

(2) 

By combining (1) and (2) one easily gets the desired estimate of (uJLt 

Examples show that Theorem 5 is sharp: there are smooth convex hypersurfaces for 

which no measure K 4 dJL, with a less than 1/2, has optimal Fourier transform decay [CM2]. 

In the nonconvex case it is still an open problem to determine the lowest a for which ( UJL r 
has optimal decay for all smooth function u such that 0 ::; u ::; "'<>. It is known that a must 

be at least 2. 

The last part of this note is a contribution toward a solution of question 2: can we 

choose a different mitigating factor so as to optimize the range of p's for which we can prove 

LP-boundedness of the maximal operator? Notice that in order to apply Theorem 3 we 

do not need full decay of (uJLf. Any decay of order better than 1/2 will suffice. Littman's 

result (Theorem 2) suggests that we consider mitigating factors which are products of 

powers of principal curvatures of S. 

THEOREM 6. LetS be a hypersurface satisfying the assumptions of Theorem 5. Let 

k1, ... , kn denote the principal curvatures of S, and let 8r, ... , Bn be nonnegative numbers 
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whose sum 8 is less than or equal to 1. If u is a cQ-1 -function on S with the property 

that 

then l(uJLfC.Au)l $ crl(l/2-1/q)O+n/q] 

provided that max(n, q) $ Q- 2 and 8(q/2 -1) $ Q -1. 

Proof. By Theorem 5.1 of [CDMM], it is sufficient to show that if 

V(Jcfl./2 u t) -1 (kol ... en)l/2d" 
- ' ' - 1 n ,.,.., 

C(u,t) 

then, for some c independent of 0" in sn, 

V(Js!l-12, u, t) :5 Ct(l/2-1/q)O+nfq 

(The restrictions on Q imply that the contributions of the error terms in Theorem 5.1 of 

(CDMM] may be neglected). Let 7ro = 1, and let 7rj = k1 • • · kj be the product of the first 

j principal curvatures, j = 1, ... , n. 

We shall first estimate V( 1r}f2 , u, t). Let p be the point of S whose inward unit normal 

is u. Choose a coordinate system in Rn+l "based at p" by choosing an orthonormal frame 

{To, T1, ••• , T n} at p such that T1, ••• , T n span the tangent space at p and To points in 

the direction of u. As in [CDMM] we shall denote by ¢.,. the CQ-function defined in a 

neighborhood of the origin in Rn whose graph is a subset of S. By rescaling, if necessary, 

we may assume that tf>u is defined on B(2), the ball of radius 2 in Rn, for every u in sn. 

If e = (6, ... , en) is a vector in Rn we shall write e = ({', e") where e' = (6, ... , e;) and 
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f," = (f,i+1 , .•• , f.n)· Define s-h and fl2 by the formulae 

flz(a,t) = {(': nl(a,t,e') f=. 0}. 

Then 

V(?Ty2 ,a,t)=j· (k1 ···kj)112dj.l 
C(u,t) 

= { (det'H<f>u(f,)) 112wu(f.)df, 
j {eEB(2),¢uW:s;t} 

where det' H <Per is the determinant of the first j rows and columns of the Hessian ma.trix 

H ¢>,. and w" is of class cQ-1, uniformly with respect to a·. Thus 

For every f," in fh( a, t), let 

Then by Proposition 4.4 of [CDMM], 

(3) £ ( det' H <Pu( e' C) )112 w"( e, t") df,' 
~ n, ( "• t,e'') 

:::; C2til2 • 

On the other hand, since the tangent lines to Shave order of contact at most q, there exist 

a positive constant m, independent of a in sn, such that ¢>,.(0?: mif,\q, for all f, in B(2). 

Thus {f,: f, E B(2), <f>u(f,):::; t} ~ B((t/m)1fq) and therefore 

(4) 
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Combining estimates (3) and (4) we get 

V(111/2 a t) < C t(l/2-1/q)j+nfq 
J , ' - 4 E ... ,n}. 

Next we estimate V(Js..P../2 , a, t). By permuting the ordering of the curvatures, if nee-

essary, we may assume that 81 ;:::: 82 ;:::: · · · ;:::: Bn ;:::: 0. Let Oln = 

j = 1, ... , n- 1 and Olo = 1- f; Gj. Then kf1 • • • k~n = 11f1 ., ·11~n. 
j=l 

By simple application of Holder's inequality to the conjugate exponents a 01 , o}1 , ... , 

we get 

n n n 

n 

::; Cs II t[(l/2-1/q)j+nfq]a; 

j=O 

= C5t(lf2-l/q)O+njq 

smce 2: aj = 1 and 2: iai = ej =e. 
j=O j=l 
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