SURFACE MEASURES —

MAXIMAL FUNCTIONS AND FOURIER TRANSFORMS

Michael Cowling and Giancarlo Mauceri

Let S denote a smooth hypersurface in \mathbb{R}^{n+1} with surface measure dS induced by the Lebesgue measure of \mathbb{R}^{n+1} . We fix a smooth nonnegative function w with compact support in \mathbb{R}^{n+1} and consider the finite Borel measure μ with $d\mu = wdS$, which is carried by S. For any function f in the Schwartz space $S(\mathbb{R}^{n+1})$ we denote by $M_t f$ the averages of f over the dilates of S—

$$M_t f(x) = \int_S f(x - ty) d\mu(y) \qquad \forall t \in \mathbb{R}^+, \quad \forall x \in \mathbb{R}^{n+1}$$
—

and by M_*f the associated maximal function —

$$M_*f(x) = \sup_{t>0} |M_tf(x)| \quad \forall x \in \mathbb{R}^{n+1}.$$

Our purpose is to determine the range of p's for which an a priori estimate of the form

$$\|M_*f\|_p \le C\|f\|_p \qquad \forall f \in \mathcal{S}(\mathbb{R}^{n+1}),$$

holds; this estimate entails that the sublinear operator M_* extends to a bounded operator on the Lebesgue space $L^p(\mathbb{R}^{n+1})$, hereafter abbreviated to L^p . In the last decade, since Stein's work on the "spherical maximal function" [S1], [SW], this problem has attracted considerable attention [B], [CM1], [CM2], [G], [SS1], [SS2]. It turns out that, at least when p < 2, the range of p's for which the maximal operator M_* is bounded on L^p is determined by the decay at infinity of the Fourier transform $\hat{\mu}$ of the measure μ .

THEOREM 1. If for some α , $1/2 < \alpha \le n/2$

$$|\hat{\mu}(\lambda\sigma)| \le C(1+\lambda)^{-\alpha} \quad \forall \sigma \in S^n, \quad \forall \lambda \in \mathbb{R}^+,$$

then the maximal operator M_* is bounded on L^p if $p > 1 + 1/2\alpha$.

The proof of this theorem can be found in [CM1]. Later Rubio de Francia [R] proved that the theorem holds for any compactly supported Borel measure μ .

It has been known for a long time that the decay at infinity of $\hat{\mu}$ is related to the curvature of the surface S [Hl], [Hz], [L]. In particular Littman [L] proved the following result.

THEOREM 2. If at every point the hypersurface S has at least k nonvanishing principal curvatures then

$$|\hat{\mu}(\lambda\sigma)| \le C(1+\lambda)^{-k/2} \quad \forall \sigma \in S^n, \quad \forall \lambda \in \mathbb{R}^+.$$

Thus if at every point S has at least k nonvanishing curvatures, where $k \geq 2$, Theorem 1 applies and M_* is L^p -bounded for p > 1 + 1/k. However if for some σ in S^n the Fourier transform $\hat{\mu}(\lambda \sigma)$ decays of order less than 1/2 as λ tends to $+\infty$ (as might be the case if at some point less than 2 principal curvatures are different from zero), Theorem 1 no longer applies. Indeed examples show that in this case M_* may fail to be bounded even on L^2 [C]. Since M_* is obviously bounded on L^∞ it follows by interpolation that M_* cannot be bounded on L^p for any p < 2. Nevertheless, even when $\hat{\mu}$ fails to decay sufficiently fast at infinity, one can prove L^p -boundedness of the maximal operator M_* for some p > 2. Indeed in [CM1] the authors proved the following theorem.

THEOREM 3. Let u be a nonnegative bounded Borel function on S such that $\mu\{x \in S : u(x) = 0\} = 0$. Suppose that there exist positive real numbers α, β, ϵ such that

(i)
$$|(u^{\alpha}\mu)\hat{}(\lambda\sigma)| \leq C(1+\lambda)^{-1/2-\epsilon} \quad \forall \sigma \in S^n, \quad \forall \lambda \in \mathbb{R}^+.$$

(ii) $u^{-\beta}$ is integrable with respect to the measure μ .

Then M_* is bounded on L^p for $p > 2(1 + \alpha/\beta)$.

The basic idea of the proof of Theorem 3 is that by (i) and Theorem 1 the maximal operators M_*^z corresponding to the measures $d\mu_z = u^z d\mu$ are bounded on L^2 when $\text{Rez} = \alpha$, while from (ii), the operators M_*^z are bounded on L^∞ when $\text{Rez} = \beta$. Thus, by complex interpolation, $M_* = M_*^0$ is L^p -bounded if $p > 2(1 + \alpha/\beta)$.

The rôle of the function u in the statement of Theorem 3 is to mitigate the effect of the points of S where the curvature vanishes. Thus we shall call it a "mitigating factor". This result raises two natural questions:

(1) for every hypersurface S is it possible to find a mitigating factor u such that, for some exponent α , $(u^{\alpha}d\mu)$ has optimal decay, i.e.

$$|(u^\alpha d\mu)\hat{\ } (\lambda\sigma)| \leq C(1+\lambda)^{-n/2} \qquad \forall \sigma \in S^n, \quad \forall \lambda \in \mathbb{R}^+ \ ?$$

(2) for any hypersurface S, how can we choose the mitigating factor to optimize the range of p's for which we can prove L^p -boundedness of M_* using Theorem 3?

We address question (1) first. Since the role of the mitigating factor is to compensate for the lack of curvature of S, a natural choice for u is the Gaussian curvature κ of S.

We recall that, if S is locally the graph of a function $\phi : \mathbb{R}^n \to \mathbb{R}$, its principal curvatures are, up to a nonvanishing factor, the eigenvalues of the Hessian matrix $H\phi$ of

 ϕ . Thus the Gaussian curvature κ is, up to a nonvanishing factor, the determinant of $H\phi$. In [CM1] the authors were able to exhibit an example of a class of surfaces in \mathbb{R}^3 for which $(\kappa^{1/2}ds)^{\hat{}}$ has optimal decay. In [SS1] Sogge and Stein proved the following theorem.

THEOREM 4. Let S be a smooth hypersurface in \mathbb{R}^{n+1} . Then

$$|(\kappa^{2n}d\mu)\hat{}(\lambda\sigma)| \le C(1+\lambda)^{-n/2} \quad \forall \sigma \in S^n, \quad \forall \lambda \in \mathbb{R}^+.$$

It follows from Theorems 3 and 4 that if the Gaussian curvature of S does not vanish of infinite order at any point of S, then M_* is L^p -bounded for all p larger than a critical index $p_0(S)$. The critical index depends on the order of vanishing of κ and can be arbitrarily large. For general hypersurfaces it is not yet clear whether κ^{2n} is the lowest power of the curvature that yields optimal decay of the Fourier transform of the surface carried measure. However for convex surfaces this result has been considerably improved [CDMM].

THEOREM 5. Let S be a compact convex hypersurface in \mathbb{R}^{n+1} of class C^Q , all of whose tangent lines have order of contact at most q, where q < Q, and let κ denote the Gaussian curvature of S. If u is a nonnegative C^{Q-1} function on S with the property that $0 \le u \le \kappa^{1/2}$, then

$$|(u\mu)\hat{}(\lambda\sigma)| \le C(1+\lambda)^{-n/2} \quad \forall \sigma \in S^n, \quad \forall \lambda \in \mathbb{R}^+,$$

provided that $n \leq Q-2$, $nq \leq 2(Q+n-1)$ and $q \leq Q-2$.

The proof of this theorem requires obtaining uniform estimates of the decay of oscillatory integrals depending on parameters. Indeed, by taking a partition of unity on S, and using suitable coordinate systems, $(u\mu)^{\hat{}}(\lambda\sigma)$ can be written as the sum of two oscillatory integrals of the form

$$I(\lambda) = \int_{\mathbb{R}^n} \exp(i\lambda \phi_{\sigma}(x)) v_{\sigma}(x) dx, \quad \forall \lambda \in \mathbb{R}^+,$$

plus a term which is negligible as $\lambda \to +\infty$. Here the phase function $\phi_{\sigma}: \mathbb{R}^n \to [0, +\infty)$ is a convex C^Q -function and has a single critical point in the support of the compactly supported amplitude function $v_{\sigma}: \mathbb{R}^n \mapsto [0, +\infty)$. As the direction σ varies in the unit sphere S^n , the functions ϕ_{σ} and v_{σ} vary continuously in C^Q and C^{Q-1} respectively, and one must obtain estimates of $I(\lambda)$ which are uniform in σ . The oscillatory integral I is controlled by the volume integral V_{σ} —

$$V_{\sigma}(t) = \int_{\{x: \phi_{\sigma}(x) < t\}} v_{\sigma}(x) dx \quad \forall t \in \mathbb{R}^+.$$

Indeed it is easy to see that

$$I(\lambda) = \int_{\mathbb{R}} \exp(i\lambda t) \, dV_{\sigma}(t) \qquad \forall \lambda \in \mathbb{R}^+.$$

In terms of the hypersurface S this fact has a simple geometric interpretation. For fixed σ in S^n denote by $p(\sigma)$ the point of S whose inward unit normal is σ and by $C(\sigma,t)$ the cap at $p(\sigma)$ of height t, t in \mathbb{R}^+ ,

$$C(\sigma,t)=\{p\in S:\; (p-p(\sigma))\cdot\sigma\leq t\}.$$

If u is a nonnegative measurable function on S denote by $V(u, \sigma, t)$ —

$$V(u, \sigma, t) = \int_{C(\sigma, t)} u(p) \, d\mu(p) -$$

the u-volume of the cap. Then

$$|(u\mu)\hat{\ }(\lambda\sigma)| \leq C\{V(u,\sigma,\lambda^{-1}) + V(u,-\sigma,\lambda^{-1})\} + \text{higher order terms}.$$

(see [CDMM] Theorem 5.1 for a more precise statement). When u is nonvanishing and $d\mu = dS$ this estimate was proved by Bruna, Nagel and Wainger [BNW]. The second key result in [CDMM] is the estimate

(2)
$$V(\kappa^{1/2}, \sigma, t) \le Ct^{n/2} \qquad \forall t \in \mathbb{R}^+.$$

By combining (1) and (2) one easily gets the desired estimate of $(u\mu)$.

Examples show that Theorem 5 is sharp: there are smooth convex hypersurfaces for which no measure $\kappa^a d\mu$, with α less than 1/2, has optimal Fourier transform decay [CM2]. In the nonconvex case it is still an open problem to determine the lowest α for which $(u\mu)^{\hat{}}$ has optimal decay for all smooth function u such that $0 \le u \le \kappa^{\alpha}$. It is known that α must be at least 2.

The last part of this note is a contribution toward a solution of question 2: can we choose a different mitigating factor so as to optimize the range of p's for which we can prove L^p -boundedness of the maximal operator? Notice that in order to apply Theorem 3 we do not need full decay of $(u\mu)$. Any decay of order better than 1/2 will suffice. Littman's result (Theorem 2) suggests that we consider mitigating factors which are products of powers of principal curvatures of S.

THEOREM 6. Let S be a hypersurface satisfying the assumptions of Theorem 5. Let k_1, \ldots, k_n denote the principal curvatures of S, and let $\theta_1, \ldots, \theta_n$ be nonnegative numbers

whose sum θ is less than or equal to 1. If u is a C^{Q-1} -function on S with the property that

$$0 \le u \le (k_1^{\theta_1} \cdots k_n^{\theta_n})^{1/2},$$

then $|(u\mu)^{\hat{}}(\lambda\sigma)| \leq C\lambda^{-[(1/2-1/q)\theta+n/q]} \quad \forall \lambda \in \mathbb{R}^+, \quad \forall \sigma \in S^n,$

provided that $\max(n,q) \leq Q-2$ and $\theta(q/2-1) \leq Q-1$.

Proof. By Theorem 5.1 of [CDMM], it is sufficient to show that if

$$V(\underline{k}^{\underline{\theta}/2}, \sigma, t) = \int_{C(\sigma, t)} (k_1^{\theta_1} \cdots k_n^{\theta_n})^{1/2} d\mu,$$

then, for some C independent of σ in S^n ,

$$V(\underline{k}^{\underline{\theta}/2}, \sigma, t) \le Ct^{(1/2 - 1/q)\theta + n/q} \quad \forall t \in \mathbb{R}^+.$$

(The restrictions on Q imply that the contributions of the error terms in Theorem 5.1 of [CDMM] may be neglected). Let $\pi_0 = 1$, and let $\pi_j = k_1 \cdots k_j$ be the product of the first j principal curvatures, $j = 1, \ldots, n$.

We shall first estimate $V(\pi_j^{1/2}, \sigma, t)$. Let p be the point of S whose inward unit normal is σ . Choose a coordinate system in \mathbb{R}^{n+1} "based at p" by choosing an orthonormal frame $\{\tau_0, \tau_1, \ldots, \tau_n\}$ at p such that τ_1, \ldots, τ_n span the tangent space at p and τ_0 points in the direction of σ . As in [CDMM] we shall denote by ϕ_{σ} the C^Q -function defined in a neighborhood of the origin in \mathbb{R}^n whose graph is a subset of S. By rescaling, if necessary, we may assume that ϕ_{σ} is defined on B(2), the ball of radius 2 in \mathbb{R}^n , for every σ in S^n . If $\xi = (\xi_1, \ldots, \xi_n)$ is a vector in \mathbb{R}^n we shall write $\xi = (\xi', \xi'')$ where $\xi' = (\xi_1, \ldots, \xi_j)$ and

 $\xi'' = (\xi_{j+1}, \dots, \xi_n)$. Define Ω_1 and Ω_2 by the formulae

$$\Omega_1(\sigma, t, \xi'') = \{ \xi' : (\xi', \xi'') \in B(2), \ \phi_{\sigma}(\xi', \xi'') \le t \} \qquad \forall \xi'' \in \mathbb{R}^{n-j},$$

$$\Omega_2(\sigma, t) = \{ \xi'' : \Omega_1(\sigma, t, \xi'') \ne \emptyset \}.$$

Then

$$V(\pi_j^{1/2}, \sigma, t) = \int_{C(\sigma, t)} (k_1 \cdots k_j)^{1/2} d\mu$$

$$= \int_{\{\xi \in B(2), \phi_{\sigma}(\xi) \le t\}} (\det' H \phi_{\sigma}(\xi))^{1/2} w_{\sigma}(\xi) d\xi$$

where $\det' H\phi_{\sigma}$ is the determinant of the first j rows and columns of the Hessian matrix $H\phi_{\sigma}$ and w_{σ} is of class C^{Q-1} , uniformly with respect to σ . Thus

$$V(\pi_j^{1/2}, \sigma, t) = \int_{\Omega_2(\sigma, t)} \int_{\Omega_1(\sigma, t, \xi'')} (\det' H\phi_{\sigma}(\xi', \xi''))^{1/2} w_{\sigma}(\xi', \xi'') d\xi' d\xi''.$$

For every ξ'' in $\Omega_2(\sigma,t)$, let

$$\psi_{\sigma}(\xi',\xi'') = \phi_{\sigma}(\xi',\xi'') - \min\{\phi_{\sigma}(\eta,\xi'') : \eta \in \Omega_1(\sigma,t,\xi'')\}.$$

Then by Proposition 4.4 of [CDMM],

(3)
$$\int_{\Omega_1(\sigma,t,\xi'')} (\det' H \phi_{\sigma}(\xi',\xi''))^{1/2} w_{\sigma}(\xi',\xi'') d\xi'$$

$$\leq C_1 \|w_{\sigma}\|_{\infty} \sup\{|\psi_{\sigma}(\eta,\xi'')|^{j/2} : \eta \in \Omega_1(\sigma,t,\xi'')\}$$

$$\leq C_2 t^{j/2}.$$

On the other hand, since the tangent lines to S have order of contact at most q, there exist a positive constant m, independent of σ in S^n , such that $\phi_{\sigma}(\xi) \geq m|\xi|^q$, for all ξ in B(2). Thus $\{\xi : \xi \in B(2), \phi_{\sigma}(\xi) \leq t\} \subseteq B((t/m)^{1/q})$ and therefore

(4)
$$\int_{\Omega_2(\sigma,t)} d\xi'' \le \int_{\{\xi'' \in B(2): |\xi''| \le (t/m)^{1/q}\}} d\xi'' \le C_3 t^{(n-j)/q}.$$

Combining estimates (3) and (4) we get

$$V(\pi_i^{1/2}, \sigma, t) \le C_4 t^{(1/2 - 1/q)j + n/q} \quad \forall j \in \{0, \dots, n\}.$$

Next we estimate $V(\underline{k}^{\underline{\theta}/2}, \sigma, t)$. By permuting the ordering of the curvatures, if necessary, we may assume that $\theta_1 \geq \theta_2 \geq \cdots \geq \theta_n \geq 0$. Let $\alpha_n = \theta_n$, $\alpha_j = \theta_j - \theta_{j+1}$, $j = 1, \ldots, n-1$ and $\alpha_0 = 1 - \sum_{j=1}^n \alpha_j$. Then $k_1^{\theta_1} \cdots k_n^{\theta_n} = \pi_1^{\alpha_1} \cdots \pi_n^{\alpha_n}$.

By simple application of Hölder's inequality to the conjugate exponents $\alpha_0^{-1}, \alpha_1^{-1}, \dots, \alpha_n^{-1}$ we get

$$\int_{C(\sigma,t)} \underline{k}^{\theta/2} d\mu \le \prod_{j=0}^{n} \left(\int_{C(\sigma,t)} \pi_{j}^{1/2} d\mu \right)^{\alpha_{j}}$$

$$\le C_{5} \prod_{j=0}^{n} t^{[(1/2-1/q)j+n/q]\alpha_{j}}$$

$$= C_{5} t^{(1/2-1/q)\theta+n/q}$$

since
$$\sum_{j=0}^{n} \alpha_j = 1$$
 and $\sum_{j=1}^{n} j \alpha_j = \sum_{j=1}^{n} \theta_j = \theta$.

References

- [B] J. Bourgain, Averages in the plane over convex curves and maximal operators, J. d'Anal. Math. 47 (1986), 69-85.
- [BNW] J. Bruna, A. Nagel and S. Wainger, Convex hypersurfaces and Fourier transforms, Ann. of Math. 127 (1988), 333-365.
 - [C] M. Cowling, On Littlewood-Paley-Stein theory, Rend. Circ. Mat. Palermo Suppl. 1 (1981), 21-55.
- [CDMM] M. Cowling, S. Disney, G. Mauceri and D. Müller, Damping oscillatory integrals, Invent. Math., to appear.
 - [CM1] M. Cowling and G. Mauceri, Inequalities for some maximal functions II, Trans. Amer. Math. Soc. 296 (1986), 341–365.

- [CM2] M. Cowling and G. Mauceri, Oscillatory integrals and Fourier transforms of surface carried measures, Trans. Amer. Math. Soc. 304 (1987), 53-68.
 - [G] A. Greenleaf, Principal curvature and harmonic analysis, Indiana Math. J. 30 (1982), 519–537.
 - [Hz] C.S. Herz, Fourier transforms related to convex sets, Ann. of Math. 75 (1962), 81-92.
 - [H1] E. Hlawka, Über Integrale auf konvexen Körper. I, Monatsh. Math. 54 (1950), 1-36.
 - [L] W. Littman, Fourier transforms of surface carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766-770.
 - [R] J.L. Rubio de Francia, Maximal functions and Fourier transforms, Duke Math. J. 53 (1986), 395-404.
 - [SS1] C.D. Sogge and E.M. Stein, Averages of functions over hypersurfaces in \mathbb{R}^n , Invent. Math. 82 (1985), 543-556.
 - [SS2] C.D. Sogge and E.M. Stein, Averages over hypersurfaces II, Invent. Math. 86 (1986), 233-242.
 - [S1] E.M. Stein, Maximal functions: spherical averages, Proc. Nat. Acad. Sci. USA 73 (1976), 2174-2175.
 - [SW] E.M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295.

School of Mathematics University of New South Wales P.O. Box 1, Kensington, N.S.W. 2033 Australia

AMS Subject Classification: 42B25

Dipartimento di Matematica, Università di Genova, Via L.B. Alberti 4, I-16132 Genova, Italy