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The minimal surface equation is an elliptic equation but it is nonlinear and is 
not uniformly elliptic. It is the Euler-Lagrange equation for variational problems 
which involve minimising the area of the graphs of functions. For the most part 
we will solve the variational problem with Dirichlet boundary values, that is, when 
the values of the function are prescribed on the boundary of some given set. We 
will present some existence results using the Direct Method from the Calculus of 
Variations and also some interior gradient estimates. All of the techniques can 
be generalised to include more difficult equations but the essence of the ideas is 
much clearer when dealing with this particular equation especially as it has such 
strong geometrical meaning. The material presented closely follows Chapters 12 
and 13 from the book "Minimal Surfaces and Functions of Bounded Variation" by 
E. Giusti. 
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Chapter 1: Existence of Solutions 

1. Problem Description 

Suppose n is a given bounded open subset of Rn and ¢> is a given real valued 
function defined on an, the boundary of n. Let 

c = { u u E C 1 (n) n C0 (IT), u(x) = c/>(x) for X E an} 

For u E C define 

A(u) = 1n yf1 + IY'ul2 dx 

then the problem we will consider is: 

(P) Find u E C such that A(u) :$ A(v) for all v E C. 

We will assume that ¢> and an are smooth although for the most part it is sufficient 
to assume an is locally Lipschitz and ¢> is continuous. 

Note that A( u) is the area of the graph of u so that the problem could be rephrased 
as finding the graph of least area amongst all graphs having a prescribed boundary 
given by the graph of ¢> over an. Of course this is not the same as finding the 
surface of least area amongst those having the prescribed boundary. 

Also note that although we have restricted ourselves to C1 functions in the defi­
nition for C we would achieve the same infimum for A over C if we only allowed 
coo functions or alternatively if we allowed all functions from the Sobolev Space 
W 1•1 (n). This follows from the standard approximation results of W 1•1(n) func­
tions by coo functions. 

The material we present is mostly from Chapters 12 and 13 of the book by 
Giusti[G]. It can also be found in the books [MM] and (in a more general set­
ting) [GT]. The large volume [N] by Nitsche contains much information about 
minimal surfaces and includes a particular section of interest on non-parametric 
minimal surfaces which gives several useful references. Problems dealing with 
minimal surfaces rather than just minimal graphs are treated in the lectures on 
Geometric Measure Theory and Classical Minimal Surfaces. 

2. Euler-Lagrange Equation 

Suppose u is a solution to problem (P) and 'fJ E C1 (n) is 0 on an. Then the 
function 

F(t) = A(u + t'fJ) 

must have a minimum at t = 0. Thus F'(O) = 0. Differentiating under the integral 
sign shows 

(2.1) r \i'u. \i''fJ dx = 0 
Jn J1 + IY'ul2 
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If u is twice differentiable then integration by parts yields 

(2.2) 

or, equivalently, 

(2.3) div (a(\i'u)) = 0 

This partial differential equation is known as the minimal surface equation. 

Exercise: 

(i) Verify the above derivation of the minimal surface equation. 

(ii) Show that the equation can also be written in the form 

and for each p, aij (p) is a symmetric positive definite matrix. Show that the 
ratio of the maximum and minimum eigenvalues for this matrix is unbounded as 

IPI--+ 00 · 

This shows that the minimal surface equation is elliptic but not uniformly elliptic. 
It is also quasilinear (i.e. linear in the highest derivatives) and can be written in 
divergence form (i.e. form (2.3)). 

Even if u is not a solution to problem (P) we can still form the function F(t) as 
above. If we now apply Taylor's Theorem to F we find 

(2.4) F(t) = A(u) + tF' (0) + t 2 F" (s) 

where s is some point between 0 and t. Calculations as in the exercise above show 
that F"(s) 2: 0 and so u provides the minimum if and only if F'(O) = 0. Later 
we will see that solutions to problem (P) are automatically c= and so 
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Theorem 1. A function u E C 1 (0) n C 0 (0) solves problem (P) if and only if it 
is in coo ( n) n C 0 (0) and satisfies 

and 
u(x) = cp(x), for X E 80. 

Exercise: 

(i) Show that A is convex on C. 

(ii) Show that A is, in fact, strictly convex. That is 

A(A.u + (1- A.)v) ~ A.A(u) + (1- A.)A(v) 

with strict inequality unless u = v. 

(iii) Using the strict convexity show that there is at most one solution to Problem 
(P). 

3. Examples 

It is not hard to find examples of functions satisfying (2.2). Trivially any linear 
function satisfies the equation but many more complicated, and often beautiful, 
examples can be found in the literature (see [N]). By Theorem 1, if we use appro­
priate boundary conditions, we will then have examples where Problem (P) has a 
solution. 

We can also construct examples where there is no solution. 

Let 0 c:;:; R 2 be the annulus 

n = {X E R2 p < lxl < R} 

and ¢ be the function 

¢(x) = { M, ~f lxl: p, 
0, 1f lxl- R. 

where 0 < p < R and M are given constants. 

Suppose that Problem (P) has a solution u. 

Now define a new function on [p, R] by 

v(r) = 2_ r u(ry) ds, 
27r }lyl=l 
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That is, v(r) is defined as the average of u around the circle of radius r. Now 
define 

ii(x) = v(lxl), for X En. 

Exercise: 

Show that A(ii) ::; A(u) and that ii also satisfies the same boundary conditions 
as u. 

The exercise shows that ii is also a solution to Problem (P) and in fact uniqueness 
theorems (see the exercise in Section 2) would then show that ii = u. From 
Theorem 1, ii is a radially symmetric solution to (2.2) and so we must have 

1 
v"(r) = --v'(r) (1 + (v'(r)) 2) 

r 

as well as v(p) = M and v(R) = 0. Solving this ordinary differential equation 
gives 

R+JR2 -c2 
v(r) =clog--~=~ 

r + vr2 - c2 

where c is a constant to be determined such that v(p) = M and 0 ::; c ::; p. 
However 

(3.1) R+ vR2 - c2 ( ) v(p) =clog ::; plog R + JR2- p2 
p+Jp2-c2 

So if p and R are fixed and then M is chosen larger than the right hand side 
of (3.1) the condition for v(p) cannot be satisfied and so u cannot have been a 
solution to Problem (P). 

4. First Existence Results 

The last example shows that some conditions must be imposed on n and ¢ if we 
are to expect a solution (and smoothness is not enough). Later we shall give a 
precise condition, but for the moment we impose a condition and present a proof 
used by Miranda[M]. The condition is 

Bounded Slope Condition (BSC): There is a .constant K such that for each 
Xo E an there are linear functions 7r + and 7r- satisfying 

(i) 7r_(xo) = ¢(xo) = 7r+(xo), 

(ii) 7r_(x) :S cjy(x) :S 7r+(x), for all X E an, 
(iii) IV1r -I :S K and IV1r +I :S K. 

Some work by Hartman[H] shows that this condition is more or less equivalent to 
assuming that n is uniformly convex and ¢ and an are C 1•1 . 
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Theorem 2. Suppose D is a bounded open subset of Rn and ¢ is a function 
defined on 80. If D and ¢ satisfy a Bounded Slope Condition then Problem (P) 
has a solution. Furthermore the solution is unique. 

Rather than solve the problem directly we will first look at the easier problem of 
minimising over the set ck rather than c where 

Ck={uEC: lu(x)-u(y)I:Sklx-yl, forallx,yED}. 

The condition introduced here is known as a Lipschitz condition with constant k. 

The plan is to look at a minimising sequence of functions in Ck , show that it has 
a convergent subsequence and that the limit is the solution for the easy problem. 
Next we show, using the Bounded Slope Condition, that if k is taken sufficiently 
large then the solution to the ck problem actually satisfies iu(x) -u(y)i:::; k'lx-yi 
for some k' < k and that this means that u in fact solves Problem (P). To make 
all the steps we need some preliminary lemmas. The first of these is a lower 
semicontinuity result. Such results are of fundamental importance in the Calculus 
of Variations and there are many more powerful ones than the simple result we 
present here. 

Lemma 1. (Lower Semicontinuity) Suppose { ui} is a sequence of functions all 
with Lipschitz constant k on D. Suppose the sequence converges uniformly to u. 
Then u also has Lipschitz constant k and 

A(u):::; liminf A(ui)· 
t---+00 

Proof: Suppose g = (g1 , g2 , ... , gn+l) is a differentiable vector valued function 
with compact support in D, i.e. g E CJ(D;Rn+l). Suppose also that lg(x)l :S 1. 
Then integration by parts shows 

On the other hand if we take g = (1, -V'u)/ )1 + I'Vul 2 then equality will actually 
be achieved. However this choice for g may not be allowed since it does not have 
compact support in D. We multiply g by a sequence of smooth cut-off functions 
which are 0 near an but 1 in the rest of D. We choose the sequence so that it 
converges to 1 everywhere in D and then it is not hard to see that the integrals 
above converge to A( u) . Thus 

(4.1 ). {1 ~ og· 
A(u) =sup 0 gn+l + u ~ox~ dx 
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Suppose g E CJ (n; Rn+l) and lgl ::; 1 then using this idea for each of the functions 
together with uniform convergence 

r 9n+l + u t ~gj dx =_lim r 9n+l + Ui t ~gj dx::; l~inf A(ui)· 
} 0 j=l Xj t->oo } 0 j=l Xj t--+oo 

Taking the supremum over all such g gives the result. 

Equation ( 4.1) is an important one in the theory of the minimal surface equation 
and it is the basis for the theory based in the space of functions of Bounded 
Variation. (See [G].) 

Lemma 2. (Existence of Minimiser in Ck) If Ck is nonempty then there is a 
function Uk E ck such that A(uk)::; A(v) for all v E ck. 

Proof: Let {uj} be a sequence in Ck such that A(uj) --+ inf {A(v) : v E Ck}. 
By the Lipschitz condition this sequence is equicontinuous. Further, again using 
the Lipschitz condition, it is easy to show that lui ::; sup 1¢1 + k diameter of n. 
Thus the sequence is bounded and so by the Ascoli-Arzela theorem we can select 
a uniformly convergent subsequence. The result now follows by using Lemma 1. 

Lemma 3. (Test for Minimiser in C) Suppose u is a minimiser in Ck and there 
is k' < k such that lu(x)- u(y)l ::; k'lx- Yl for x, yEn. Then u is a minimiser 
in C. 

Proof: Suppose TJ E CJ(n) and form F(t) as in Section 2. Since, fort sufficiently 
small u + tTJ E Ck and u minimises in Ck we must have F'(O) = 0. Then the 
result follows by Theorem 1. 

Lemma 4. (Comparison Principle) Suppose u and w are Lispschitz continuous 
functions with Lipschitz constant at most k and u ::; w on an. Suppose also that 
u and w both minimise A( v) amongst functions with Lipschitz constant at most 
k and equaling u and w respectively on an. Then u ::; w in n. 

Proof: Let u1(x) = min{u(x),w(x)} and E = {x En : w(x) < u(x)}. Suppose 
that the set E is nonempty (otherwise the Lemma is true). Note that u1(x) = 
w(x) if x E E and u1(x) = u(x) otherwise. Also u1 = u on an and the Lipschitz 
constant of u1 is at most k. Thus A( u) ::; A( u1) and so 

L .j1 + 1Vul2 dx ::; L .j1 + 1Vwl2 dx. 

Similarly taking u1(x) = max{u(x),w(x)} and comparing it with w we find the 
opposite inequality holds so that, in fact 

L .j1 + 1Vul2 dx = L J1 + 1Vwl2 dx. 
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Obviously we have u = w on aE and both u and w must minimise 

fe y'1 + 1Vul2 dx 

amongst functions in 

E = {v : v = u =won oE, iv(x)- v(y)i:::; kix- yi,x,y E E}. 

Now consider u = (u + w)/2 which belongs to E. Since the function y'l + IPI 2 

is strictly convex on Rn we have y'1 + IV'ul 2 < ~ ( Jl + IV'ul 2 + y'l + I'Vwl 2 ) 

whenever 'Vu-::/=- 'Vw. Thus if V'u-::/=- 'Vw in a set of positive measure we have 

which is a contradiction. Thus V'u = 'Vw almost everywhere and so u = w on E 
which contradicts the definition of E. 

Similar arguments apply without the restriction on the Lipschitz constant and so 
they will apply to Problem (P). 

Theorem 3. There is at most one solution to Problem (P). 

There are several useful consequences of Lemma 4 and we give two. The first is a 
maximum principle giving global bounds on the difference of solutions in terms of 
their difference on the boundary and the second gives a bound for the Lipschitz 
constant of solutions in terms of the Lipschitz constant on the boundary. 

Lemma 5. (Maximum Principle) Suppose u and w are Lispschitz continuous 
functions with Lipschitz constant at most k. Suppose also that u and w both 
minimise A( v) amongst functions with Lipschitz constant at most k and equaling 
u and w respectively on an . Then 

(i) sup{u(x)- w(x) : x En}= sup{u(x)- w(x) x E an} 
(ii) u(x):::; sup¢, for all X E 0 

ao 
Proof: If w is a minimiser and a is a real number then w + a is also a minimiser 
but for boundary values increased by a. Choose a= sup{ u(x)- w(x) : X E an} 
and then apply Lemma 4 to u and w +a. 

Lemma 6. (Maximum Principle for Difference Ratios) Let u minimise A( v) in 
Ck. Then 

lu(x)- u(y)l:::; k'lx- Yl, for x,y E 0, 
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where 

Proof: Let x1 and x 2 belong to 0 and set T = x2 -x1 . Now consider the function 
u7 (x) = u(x + T) and the set 0 7 = {x : x + T E 0}. Clearly U 7 minimises an 
integral like A( v) (but over OT instead of n) amongst functions equal to Ur on 
anT which have Lipschitz constant at most k. Now consider u and Ur on the set 
n n nT which contains Xl· Both functions are minimisers in appropriate classes 
and so we can apply Lemma 5 to obtain 

sup{u(x)-u7 (x): xEOnf27}~sup{u(x)-u7 (x) xEa(OnDr)} 

and so, in particular 

However' if X E a( n nOr) then either X or X+ T is in an and so by the definition 
of k' the right hand side ofthe inequality above is bounded by k'ITI = k'lx1- x2 j. 
Thus u(x1 )- u(x2) ~ k'lx1 - x2l· Reversing the roles of x1 and x2 gives the 
required result. 

We are now ready to give the proof of Theorem 2. A crucial step in the application 
of the Bounded Slope Condition is to note that the linear functions 1r + and 1r _ 

satisfy the minimal surface equation and so, by Theorem 1, are minimisers with 
respect to their own boundary values. 

Proof of Theorem 2: 

Choose k > K where K is the constant of the Bounded Slope Condition. Apply 
Lemma 2 to find a function u which minimises in ck. Fix a point Xo in an and 
note that the functions 1r + and 1r _ given in the BSC both minimise A( v) with 
respect to their own boundary values. Further 

(4.3) Jr_(x) ~ ¢(x) = u(x) ~ 1r+(x), for X E art 

By Lemma 4, inequality ( 4.3) holds throughout 0 and not just on the boundary. 
But Jr_(x0 ) = ¢(x0 ) = u(x0 ) = 1r+(x0 ) and both linear functions have slope at 
most K, so 

-Kix- xol ~ 7r_(x)- 7r_(xo) ~ u(x)- u(xo) ~ 1r+(x) -Jr+(xo) ~ Klx- xol· 

Since x 0 E an was arbitrary we have shown that k' in Lemma 6 is at most K. 
Lemma 3 shows that we have the required function. 
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5. More General Existence Results 

The only place we used the Bounded Slope Condition in the last Theorem was to 
obtain a bound for \u(x)- u(z)\/\x- z\ when x Eon and z E no The linearity 
of 1r _ and 1r + was used to show that each satisfied the minimal surface equation 
and so we could use the Comparison Principle to say that u had to lie between 
the two linear functionso We will generalise the Comparison Principle to allow 
functions other than just solutions of the minimal surface equation and then we 
will introduce the concept of barriers which generalise the ideas behind 1r _ and 
7r+o 

A function v E C 2 (0) n C 0 (0) is a subsolution for the minimal surface equation 
if 

or equivalently 

Similarly, reversing the inequalities we can define supersolutionso 

Note that by Theorem 1 solutions to Problem (P) are both sub- and supersolutionso 

Lemma 1. (Weak Maximum Principle) Suppose u minimises A( v) over Ck , Sup­
pose u 1 and u2 are sub- and supersolutions respectively with Lipschitz constants 
at most k 0 Suppose also that Ul (X) :::; u( X) :::; U2 (X) for X E oft Then 

u1(x):::; u(x):::; u2(x) for all X E 00 

Proof: Suppose Tf E CJ(n) and 7] 2: 00 Consider F(t) = A(u1 + tTj)o Then 

F'(t) = { ('Vul + t'VrJ) 0 'VrJ dx 
Jn .J1 + \'Vu1 + t'VrJ\ 2 

- r ('Vul) 0 \77] + t\'VrJ\2 dx 

- Jn y'1 + \'Vu1 + t'VTf\ 2 y'l + \'Vu1 + t'VrJ\ 2 

Using integration by parts on the first term and the definition of subsolutions 
shows that F'(t) 2: 0 for t 2: 00 Thus, from (2A) 

(501) for Tf E CJ(O), 7J 2: 0 

Similarly A( u2) :::; A( Uz - 7]) 0 

We can now repeat the proof of Lemma 4 in Section 4 except we use (501) (over 
E rather than over 0) in place of u being a minimiser over E 0 
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We can use this Comparison Principle to define suitable replacements for 7r _ and 

7r+· 

Given Xo E an and .N a neighbourhood of Xo we say the function v+ is an upper 
barrier at x0 on .N if 

(i) v+ is a supersolution on n n .N' 

(ii) v+(xo) = ¢(xo), 

(iii) v+(x) 2: cp(x) if X E an n.Af, 

(iv) v+(x) 2: SUPan cp(x) if X En n a.Af. 

Similarly v-is a lower barrier if it is a subsolution on nn.N, v-(x0 ) = ¢(x0 ), 

v-(x)::; cp(x) if X E an n.Af and v-(x)::; infen cp(x) if X En n a.Af. 
Example: 7r _ and 7r + are lower and upper barriers with .N taken as Rn . 

Theorem 2. Suppose there are constants E > 0 and K sud.z that for every 
Xo E an there is a neighbourhood .N containing {x : lx- xol < E} and upper 
and lower barriers v+ and v- at x0 on .N with Lipschitz constants at most K. 
Then Problem (P) has a solution. 

Proof: Choose k > max{K,2supl¢(x)l/c} and let u be the i:ninimiser in Ck. If 
Xo E an then by the previous Lemma, lu(x)- u(xo)l < Klx- xol if lx- xol <E. 
On the other hand, if lx- xol 2: E then lu(x) - u(xo)l ::; 2sup l¢(x)l ::; lx­
xol2sup 1¢(x)I/E. 

Now Lemma 3 of Section 4 applies. 

The idea of upper and lower barriers was used by Jenkins and Serrin [JS] to obtain 
optimal existence results for Problem- (P). It is very clearly explained in a general 
setting in Chapter 13 of the book by Gilbarg and Trudinger [GT]. 

The barriers are usually constructed in terms of the function d( x) which is the 
distance of X from an. This function obviously has properties related to the 
smoothness and geometry of an. In particular if an is C2 then so is d, at least 
in a neighbourhood of an. Even more importantly the second derivatives of d are 
related to the curvatures of an and in particular, on ao' - 6 d is just n times 
the mean curvature of an. For precise statements and proofs of these results see 
appendix B of [G] or appendix A of [GT]. 

An upper barrier at x0 for .N = {x : d(x) < a} can be constructed with the 
form 

v+(x) = ¢(x) + 'lj;(d(x)) 

with 'if;( d) = c log(l +(3d) for suitable choice of constants a, c and (3. The choices 
can be made and the barriers constructed provided an has nonnegative mean 
curvature. 
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Theorem 3. Let n be a bounded open set in Rn with a C 2 boundary having 
nonnegative mean curvature. Let ¢ be a C 2 function defined on an. Then 
Problem (P) has a solution. 

Remarks: 

(i) In R 2 the condition of nonnegative mean curvature is equivalent to the con­
vexity of n but this is not the case in higher dimensions. 

(ii) Jenkins and Serrin showed that the result is optimal in the sense that if an 
has negative mean curvature at any point then there is smooth data¢ with sup 1¢1 
arbitrarily small such that Problem (P) has no solution. See [GT]. 

(iii) Despite (ii), given any set n there is always some data for which the problem 
has a solution (e.g. ¢ = 0). Results showing that smallness in the Lipschitz norm 
will guarantee solutions together with counterexamples to show the results are 
optimal can be found in [W]. 

6. Interior Regularity of solutions 

We have so far proved the existence of solutions which are Lipschitz continuous. 
In this section we show that such solutions are actually c= inside n. (Indeed 
they are in fact analytic.) After some initial regularity results the higher order 
regularity follows from the theory of linear differential equations. 

Lemma 1. If u is a Lipschitz continuous solution of Problem (P) then u has 
Holder continuous first derivatives in n. 

Proof: We consider the difference quotients 

uh(x) = [u(x + ha)- u(x)] /h 

for a fixed unit vector a and show that they satisfy a linear differential equa­
tion. We then use linear theory to obtain bounds on the Holder norms which are 
independent of h. Taking the limit as h ----+ 0 then gives the result. 

Suppose n' has closure contained in n and v E CJ ( n'). If h is sufficiently small 
then vh(x) = v(x- ha) E CJ(n) and so from equation (2.1) 

(6.1) fo a('Vu) · 'Vvh dx = 0 

with a(p) as in (2.3). By the change of variables x--+ x + ha 

(6.2) in a('Vu(x + ha)) · 'Vv dx = 0 
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Subtract (6.2) from the equation like (6.1) that has v rather than vh and we have 

L [a(V'u(x + ha))- a(V'u(x))]· V'v dx = 0 

and hence 

i 11 0 a av 
~ai(V'u(x) +t(V'u(x + ha)- \i'u(x))) · ~[u(x + ha)- u(x)]~ dx = 0 

n o up1 ux1 ux, 

where we have summed i and j from 1 to n. Now by dividing by h we obtain an 
equation 

(6.3) i Ln auh av 
aij(x)-- dx = 0 

n ax ax· 
i,j=l J " 

for all v E CJ (S1') 

where aij are determined from the derivatives of ai as in the equation before. 
Now we know u is Lipschitz continuous and so IV'ul is bounded and consequently, 
using previous calculations about the ellipticity of the minimal surface equation, 

n 

(6.4) .AI(I 2 :::; L aij(x)(i(j:::; Al(l 2 for all ( E Rn' X E n 
i,j=l 

where .A > 0 and A are constants depending on the bounds for IV'ul. By the 
De Giorgi-Nash theory (see[GT] Theorem 8.22) we then have the required bounds. 

Theorem 1. Solution for Problem (P) are in c=(n). 

Proof: From equation (2.1) we have 

for v E CJ(O). 

If we take v = ~ we can integrate by parts to obtain 
UX 8 

l Ln ow ary 
aij(x)-- dx = 0 

n ax ax 
"i,j=l J ' 

where aij(x) = ~ (\i'u(x)) and w = f!u. Actually for this to be valid we need 
up1 uX8 

to know that u E W 2•2 (S1). This can be proved by using a technique very similar 
to the last Lemma. We use (6.3) and (6.4) and then apply Theorem 8.8 of [GT] 
(also see Theorem 5.5 in the notes by John Urbas in these volumes) to get uniform 
estimates on the difference quotients. Since \i'u is Holder continuous, by the 
previous Lemma , so are aij ( x) . Linear theory now shows that w has Holder 
continuous first derivatives and so u has Holder continuous second derivatives. 
By further differentiating the equation we can step up to any derivative we like. 
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As mentioned before solutions are actually analytic and a proof of this can be 
found in [MC]. 

7. Other Existence Methods 

We have presented just one of the many methods available to prove the existence 
of solutions. Other possible techniques are viscosity solutions, the Perron process 
and the methods of continuity, fixed point theorems and topological degree which 
are used extensively in the theory of nonlinear partial differential equations (see 
[GT]). A further rather interesting method is the direct method in the Calculus of 
Variations. This method can be easily illustrated for the Dirichlet Integral 

D(u) = fn1Vul 2 dx. 

We can attempt to minimise this integral amongst functions in W 1,2 (!1) which 
satisfy some prescribed boundary values. If we look at a minimising sequence, 
then using the Poincare inequality it is a simple matter to show that the sequence 
is bounded in W 1,2 (!1). It must then have a weakly convergent subsequence and 
using lower semicontinuity for the norm under weak convergence we can show the 
limit function is the required solution. If we try to apply the same technique to 
A( u) then the natural space to use would be W 1 '1 ( n) . Unfortunately this is 
not a reflexive space and so we cannot obtain a weakly convergent subsequence. 
We can obtain a subsequence which converges in L 1 (!1) but the limit may not 
be in W 1,1 (!1). To try to overcome this it is necessary to use a different space 
of functions. Using equation (4.1) as a starting point the area of the graph of 
functions of Bounded Variation is defined .. Then it is easy to prove that minimising 
sequences converge to a function of Bounded Variation (or at least a subsequence 
does). The limit is the solution we have found before, when it exists. However the 
limit always exists even when we have shown that Problem (P) has no solution. 
This leads to the notion of a generalised solution which doesn't necessarily satisfy 
the boundary values. There are many very interesting results about such solutions 
(see [G]). 

8. Non-graphical Minimal Surfaces 

The problem we have considered is to find the least area amongst all surfaces 
which can be written as graphs and which have a prescribed boundary. There 
may possibly be surfaces which are not graphs and which have a smaller area. If 
n is convex then it is known that this does not happen and our solution provides 
the least area amongst all surfaces. However if n is not convex (nonnegative 
mean curvature is not enough) then there are examples where our solution does 
not provide the least area amongst all surfaces. For such examples and further 
information see [N p367] and [HLL]. 
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Chapter 2: Interior Gradient Estimates 

1. Introduction 

We have seen previously that boundary gradient estimates (or Lipschitz constant 
bounds) transfer to give the same estimate in the interior. It is possible to have 
solutions of the minimal surface equation whose gradient becomes unbounded on 
approach to an. In this Chapter we show that even in this case we can still bound 
the gradient of the solution u provided we keep away from an. Specifically we 
show that if u satisfies the minimal surface equation in n and Xo E n then 

(1.1) 

where c1 and c 2 are constants depending only on n and d is the distance of x0 

from an. 
This result is one of the cornerstones of the theory about solutions of the minimal 
surface equation. It has numerous applications particularly to the convergence 
of sequences of solutions. We shall present just one application, namely the one 
to Problem (P) when we assume that ¢ is only continuous and so cannot ob­
tain uniform bounds on the Lipschitz constants. The result was originally proved 
by Bombieri, De Giorgi and Miranda (BDM] and has since been extended and 
improved in many directions. There is a good account in (G] and a more compre­
hensive and general one in [ G T]. 

A different (and simpler) approach to proving the result can be found in (K]. 

2. Sketch of Proof of Estimate 

The presentation here is only a sketch of the main ideas but it closely follows (GJ 
and further details and explanation can be found there. 

The main idea of the proof is to look at a function of the gradient, namely 

w =log y'1 + j\7uj 2 

and show that it satisfies a differential inequality. However it is important to look 
at the differential inequality as one on the surface (x, u(x)) rather than on n. This 
means that we should take derivatives tangential to the surface rather than in the 
usual coordinate directions. Once this is done it turns out that w is subharmonic 
and so we can attempt to mimic the theory of subharmonic functions to find a 
bound for w. In order to carry out the calculations on the surface it is convenient 
to introduce some notation. 

We assume the point of interest is the origin and that u(O) = 0 .Let BR be a ball 
of radius R in Rn+l and B R be a ball of radius R in Rn . S will the surface 
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determined by the graph of u and SR = S n BR. v is the upward unit normal to 
the surface S and so 

au 
Vi = -1/n+l-;::;--, i = 1, ... , n 

UXi 

The tangential differential operators are 

0 n 0 
oi = 8 - vi ::L:vj 8 , 

Xi j=l Xj 

the Laplacian on the surface is 

n 

and some useful identities, which are readily checked are 

(2.1) 
n 

DiVj = DjVi, L 1/iDi = 0, 
i=l 

n 

LviDjVi = 0 
i=l 

n 

(2.2) where c2 = L (8ivj) 2 

i,j=l 

Furthermore, integration by parts is valid 

(2.3) 

provided uv has compact support in S. From (2.2) and the definition of w 

(2.4) 

and so w is sub harmonic on the surface S. 

Exercise: Check the above identities. 

The next result corresponds exactly to the mean value property for subharmonic 
functions on R.n 

Lemma 1. (Theorem 13.2 of [G]) Suppose u solves the minimal surface equation 
and u(O) = 0. Then 

(2.5). 

In the proof we take inequality (2.4) and multiply by a suitable radially symmetric 
test function whose Laplacian approximates the Dirac delta function plus other 
cleverly chosen terms. Then apply integration by parts twice and take limits. 
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We are trying to find a bound for w(O) in terms of R which corresponds to d the 
distance from a0 and sup lui. According to the Lemma we only have to bound 
the right hand side of (2.5). 

Lemma 2. (Theorem 13.4 of [G]) Suppose u is a solution to the minimal surface 
equation in the ball B3R and u(O) = 0. Then 

(2.6) I; I r wdS:Sc1{1+supufR} 
R lsR B3R 

The proof starts with (2.3) when i = n + 1, u = 1 and v is a suitably chosen 
function with compact support involving the solution u. Then follow several 
estimates which make use of the differential inequality for w. 

The required estimate (1.1) follows easily from the two Lemmas and the definition 
of w. 

3. Application to Continuous Boundary Data 

The existence theorem of the first Chapter can only work if we can expect the 
required solution to be Lipschitz continuous on TI. If the boundary values ¢ are 
merely continuous and not Lipschitz continuous then the methods cannot possibly 
work although it still makes sense to look for solutions in C1(D) n C0 (D). We 
use the interior gradient estimate to show that solutions do exist if we assume the 
usual condition on the mean curvature of aD. 

Theorem 1. Let 0 be a bounded open set in Rn with a C 2 boundary having 
nonnegative mean curvature. Let ¢ be a continuous function defined on a0. Then 
there is a unique solution u E C2 (D) n C0 (0) to the boundary value problem: 

u=¢ on aD. 

Moreover u is also the unique solution to Problem (P). 

Proof: Let { ¢j} be a sequence of C2 functions which converge uniformly to ¢ 
on 8D. For each j we can find a solution Uj to Problem (P) with boundary data 
¢j by the work in Chapter 1. We also know that each Uj is c= and satisfies 
the minimal surface equation. If we apply the Maximum Principle (Lemma 5 of 
Section 4) to the sequence we see 
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and so the sequence { Uj} must converge uniformly to some function u E C0 (D). 
Now suppose 0' is any set whose closure is contained inn. Because SUPo lujl is 
bounded we can use the interior gradient estimate for each j to conclude there is 
a constant L not depending on j such that 

(3.1) 

On D' each Uj satisfies a linear equation in divergence form, namely 

n a ( a ) :L ~ a(x) a: = o 
i=l " " 

where a( x) = 1/ J1 + I \7 Uj 12 is uniformly bounded above and below away from 
zero. By the theory of linear equations we then have bounds like (3.1) on the 
derivatives of any order (See the talks of John Urbas in this volume). Using the 
bounds on the third derivatives we can pick a subsequence so that Uj converges 
together with their first and second derivatives to a function which must be the 
u found above. Thus u E C 2 (D') and since each Uj satisfies the minimal surface 
equation in O' so does u. 

To prove the last result about Problem (P) it is only necessary to show that A(u) 
is finite since then our previous calculations in Section 2 of Chapter 1 show that 
u provides the minimum. This is done in [G]. 

4. Application to the Bernstein Problem 

A famous result of Bernstein states that, in 2 dimensions, the only solutions of the 
minimal surface equation defined everywhere are linear Le their graphs a.re planes. 
This was later extended to all dimensions smaller than 8 but a counterexample 
is available in dimension 8. However if we add some additional conditions it is 
possible to obtain results even in these higher dimensions. We present one such 
result below. For additional details and references consult Chapter 17 of [G]. 

Theorem 1. Suppose u is a solution of the minimal surface equation defined 
everywhere in Rn. Suppose there is a constant K such that for all x 

( 4.1) u(x):::; K (1 + lxl). 

Then u is a linear function. 

Proof: Suppose~ ERn and R > 1~1· From (1.1), applied in the ball BR(~), centre 
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( and radius R, 

{ u(x)- u(()} 
j'Vu (()I:::; c1 exp c2 sup R 

BR(/;) 

:::; c1 exp {c2 sup u(x)- u(()} 
B2R(O) R 

{ K (I + 2R) - u(()} 
:::; c1 exp c2 R 

Letting R -+ oo gives 

(4.2) 

Now let w = 8ujax8 then by differentiating the minimal surface equation with 
respect to x s we have 

__!!_ (aij (x) ow) = 0 
axi OXj 

where aij is defined in terms of u and 'Vu. Further because of (4.2) this equation is 
uniformly elliptic. We can then apply the De Giorgi-Nash estimate ([GT] Theorem 
8.22) to show that if x E BR(O) then . 

IX -(1"' Jw(x)- w(()i :::; C ~ sup w 
B2R(O) 

IX -(1"' :Sc4 ~ 

Keeping x fixed and letting r-+ oo shows w(x) = w(() and so w = 8ujox8 is 
constant. Doing this for each s = 1, 2, ... , n shows that \lu is constant and so u 
must be a linear function. 
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