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Abstract. We examine a class of maps which have fixed points for all Banach spaces. Included 
in the class are affine mappings and Banach contractions. The emphasis is on examples, with an eye 
to applications. 
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The aim of this note is to expose the broad class of almost convex maps, which 
have the following useful property. 

For any Banach space X and any nonempty weak-compact convex subset C of 
X, we have that any map T : C --t X belonging to the class will have a fixed point 
provided that it 'tries to have a one', in the sense that inf{llx- Txll : x E C} = 0. 

The theory of such mappings was developed by Enrique Llorens-Fuster, Jesus 
Garcia-Falset and the author, [2] and extended to the case of multifunctions (set
valued maps T : C --t BC(X), where BC(X) is the class of all nonempty closed 
bounded subsets of X) by Llorens-Fuster in [4]. 

Unlike the metric fixed point theory for nonexpansive maps (see, the recent survey 
by the author, [5], or the book by Goebel and Kirk, [3] for details), fixed point results 
for almost convex maps make no demand on the underlying space. Further, the class 
of almost convex maps is invariant under the change to an equivalent norm, as is 
the necessary condition inf{llx- Txll : x E C} = 0. The results should therefore be 
widely applicable to areas such as differential equations, dynamical systems theory 
and control systems. The brief survey which follows is written with such applications 
in mind. The emphasis is on examples. A stripped down proof of the main existence 
result is included for the sake of completeness, other proofs are suppressed and the 
interested reader is directed to the references mentioned above for details. 

Classical classes of maps which have fixed points in all Banach spaces include: 
• Banach (strict) contractions; that is, maps T : C --t C with IITx - Tyll ~ 

Kllx - Yll for all x, y E C and some constant K with 0 ~ K < 1 and 
• Norm continuous afflne maps; that is, maps T: C --t X satisfying T(A.x + 

(1- A.)y) = A.Tx + (1- A.)Ty, for all x, y E C and all A between 0 and 1. 
The first class have fixed points courtesy of the Banach contraction mapping 

principle, and the second because they are also weak continuous and so the Schauder 
fixed point theorem applies provided C is a nonempty weakly compact convex subset 
of X. 

One reason such classes of maps are important lies in the observation that of
ten the type of space is determined by the application, but there is some freedom in 
constructing the map to be used. For example, this is the case in the Picard exis
tence theorem for ordinary differential equations and in various generalized Newton
Kantorovich methods where the space is dictated by the type of solution sought, 
though there is choice in the mapping to be iterated. 

The case of affine maps provided motivation for the definition of almost convex 
maps given below. However, as we shall see, it turns out that they also generalize 
Banach contractions, at least in the Banach space environment. 
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Throughout C will always be a nonempty dosed and convex subset of the Banach 
space X. 

For T : C --t X define the associated nonlinear displacement functional to be 

h(x) := llx- Txjj. 

Obviously; x0 E Fix(T), the set of fixed points ofT if and only if Jr(x0 ) = 0. A 
necessary condition for this is clearly that inf Jr(C) = inf{llx-Txll : x E C} = 0; that 
is, T admits an approximate fixed point sequence (xn) C C with llxn- Txnll --t 0. 

We will see that for the class of continuous almost convex maps this is also a 
sufficient condition. 

Let a: R+-+ R+ be a function with a(O) = 0 such that a(tn) --t 0 if and only 
if tn --t 0. We say T : C -+ X is a-almost convex if 

Jr (Ax+ (1- >.)y) :S a (max { Jr(x), Jr(y)}), 

for all x,y E C and A E [0, 1]. 
In this context we will use r to denote the function t 1--+ rt. Thus, for r > 0, T is 

r-almost convex means that Tis a-almost convex where a(t) = rt. In particular Tis 
1-almost convex if Jr(.Ax + (1- .A)y) :S max{Jr(x), Jr(y)}. Clearly every affine map 
is 1-almost convex. 

We will refer to T as an almost convex mapping if it is a-almost convex for some 
admissible function a. 

Theorem l. Let C be a weak-compact convex set (in particular, a closed bounded 
convex subset of a reflexive space) and letT : C -+ X be an almost convex and norm
continuous map, then Fix(T) is a nonempty closed convex subset of C if and only if 
inf Jr(C) = 0. 

Proof Let a be an admissible function for which T is a-almost convex. Since 
inf Jr(C) = 0, we can find an approximate fixed point sequence (xn) forT; that is, 
Jr(xn) := llxn- Txnll -> 0. By passing to a subsequence if necessary we can suppose 
without loss of generality that Xn 2i x0 E C. We will show that Jr(x0 ) = 0. 

Since a (Jr(xn)) -+ 0, we can exploit the properties of a to extract a further 
subsequence so that 

By Mazur's theorem there exist convex combinations 
00 

""' ,(k) tl L-t An Xn ---r xo, ask--too. 
n=k 

Since T and hence Jr is norm-continuous, we therefore have 
00 

n=k 

Jr (A~k) Xk + (1 - A~) f: l ~~).k Xn) 
k+l k 

< a (max{Jr(xk), Jr(· · ·)) 

< a (max{Jr(xk), a (max{Jr(xk+l), · · ·) 

a (Jr(xk)) --t 0, 
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establishing that Jr(xo) = 0 and hence that x0 E Fix(T). That Fix(T) is closed and 
convex follow readily from the continuity ofT and the definition of almost convexity. 

D 

The remainder of this note is devoted to examples of maps to which the above 
result might apply. Firstly, examples of non-affine almost convex maps, and then 
examples of when the necessary condition inf Jr(C) = 0 is satisfied. 

Examples of a-almost convex maps 

1. To see what such maps might look like we begin with a very simple !-dimensional 
example. The map T: [0, 1] ----+ [0, 1] : x ~ x(1- x) is 

• not affine, but 
<~> Jr(x) = Jx- TxJ = x2 is a convex function, and so 
* T is 1-almost convex. 

In general any map of the form T =I-V, where jJV(x)ll is a convex function will be 
1-almost convex. 
2. Recall, a map T : C -+ X is K -Lipschitz continuous if IITx- Tyll ::;; KJJx- yJJ, 
for all x, y E C. Any K -Lipschitz continuous map for which there is also a 'lower 
estimate' of the form 

IJx- yJI ::;; 1J (max { Jr(x), Jr(y)}), 

where r; is a continuous strictly increasing function with 'IJ(O) = 0, is t+kry(t)/2-almost 
convex. This example encompasses: 
(2a). Banach contractions; that is, K-Lipschitz continuous maps with K < l. Such 
maps are readily seen to satisfy a lower estimate, and be 1/(1- K)-almost convex. 
(2b). Lipschitz continuous dissipative operators. Recall that a (nonlinear) operator 
A: C ->X is dissipative (or equivalently, -A is accretive) if 

(Ax- Ay, x*) ::;; 0, 

for all x,y, E C and x* E V(x- y), where Vis the duality map 

D: X\{0}----+ 2x·: x ~ {x* EX*: (x,x*) = jJx"llllxJI = IJxW}. 
Here, X* denotes the dual space of X consisting of all continuous linear functionals 
from X into the scalars. The value of y* EX* at x EX is denoted by (x, y*). 

When X is a Hilbert space this is equivalent to -A being a monotone operator. 
For bounded linear maps the condition reduces to requiring (Ax, x*) ::;; 0, for some 
x* E D( x) and for each x E X, and so for self-adjoint operators on a Hilbert space 
equates to requiring the spectrum be negative. Of course in. the linear case fixed 
points can also be established via Schauder's theorem using the weak-continuity of 
the operator. 

For example, A:= T- I is dissipative (and Lipschitz continuous), whenever Tis 
nonexpansive; that is, IITx- Tyji ::;; IJx- Yll· More precisely, Kato (1967) shows that 
A is dissipative if and only if the resolvent R;,. := (I- >..A)-1 is nonexpansive on its 
domain for all >. ;::: 0, see [3, Ch. 13] for details. 

In the context of dynamical systems, dissipativity is often related to stability 
considerations. To illustrate this, consider the simple feedback control system 

±(t) = Ax(t) + u(t), 
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where A is a dissipative operator. If x(t) and y(t) are solutions corresponding to the 
same control u(t), but different initial conditions; x(O) = xo and y(O) =yo, then 

:t ~llx- vii~= (x- iJ, x- y) 
= (Ax- Ay, x- y) 
:::; 0. 

To see that dissipative operators satisfy a lower estimate we observe that for 
distinct x, y E C and z* := y* /IIY"'II, where y* E 1J(x- y) we have 

llx- Yll = (x- y, z*} 

::::; (x- Ax, z*) - (y-Ay, z*), as (Ax- Ay, z*) :::; 0 

:::; llx - Axil + IIY - Ayll 
= JA(x) + JA(Y) 

::::; 2 max{JA(x), JA(y)}. 

Thus, all Lipschitz continuous dissipative operators are almost convex. 
In particular, the Yosida approximants 

for any dissipative operator A are themselves dissipative and automatically Lipschitz 
continuous, and so are always almost convex. 
3. Generalized nonexpansive maps T : C --t X which satisfy 

IJTx - Ty!l :::; a!lx - Yll + b (jjx - Txjj + IIY - Tyji) 
+c (jjx - Tyll + IIY - Txjl), 

where a, band care positive constants with a+ 2b + 2c = 1, and which also satisfy 
the Kannan type condition, b ::j:: 0 may be shown to be almost convex. 
4. Maps of type r, [1]; that is, T: C --t X for which there exists a continuous convex 
strictly increasing function 1: R+ --t R+ with 1(0) = 0 satisfying 

1 (ii>.Tx + (1- >.)Ty- T (>.x + (1- >.)y) II):::; lllx- YII-IITx- TyJII 

are a-almost convex, where a(t) = t + ,.-1 (2t). So, by [1], 
(4a). All nonexpansive maps on a dosed bounded convex subset of a uniformly 
convex Banach space, in particular a Hilbert space, are almost convex. 

Many more examples are provided by the following simple observation. 

Theorem 2 (Alternative Principle). For C a closed bounded convex set and 
T : C --t C at least one of the following holds 
(i) T is r-almost convex, for some r > 0, or 
(ii) inf h(C) = 0. 

There exist [3] Lipschitz continuous maps T of weak-compact convex sets, indeed 
of the unit ball of Hilbert space, Be2 , with inf Jr(C) > 0. These then provide ex
amples of r-almost convex maps which, unlike the affine maps they generalize, are 
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not weak-continuous. Nonetheless, an argument similar to that for the main result 
establishes the following. 

Proposition 1. IfT is 1-almost convex and norm-continuous then Jr(x) is weak 
lower semi-continuous. 

We do not know if Jr(x) is weak lower semi continuous for arbitrary norm
continuous almost convex maps. 

Some examples of maps satisfying the condition inf Jr(C) = 0 

1. Norm continuous aifine maps T: C----+ C, where Cis a closed convex subset of 
X. Here, the sequence defined by Xn := I:~=l Tk(x0)jn, for n E N, is readily seen 
to be an approximate fixed point sequence. 
2. Banach contractions T: C----+ C, where Cis a closed subset of X. In this case, for 
any Xo E c the sequence of iterates Xn := rn(xo), is well known to be an approximate 
fixed point sequence forT. 
3. Nonexpansive maps T : C -> C, where C is a closed bounded convex subset 
of X. For any particular x0 E C and each n E N the map defined by Tn(x) := 
(1- 1/n)T(x) + (l/n)x0 is a Banach contraction mapping C into C, and so, by the 
Banach contraction mapping principle, has a unique fixed point Xn E C. It is easily 
verified that the sequence (xn) is an approximate fixed point sequence forT. 
4. Maps T : C -? C admitting an entropy; that is, a function '1/J : C ----+ R + for 
which 

llx- Txll :S '1/J(x) - '1/J(Tx), for all x E C. 

To see that such maps always have an approximate fixed point sequence we proceed 
as follows. Since '1/J takes only positive values, 

m := inf{'I/J(x) : x E C} ~ 0. 

Further, for each n EN there exists Xn E C with m :S '1/J(xn) < m + 1/n. Whence, 

Thus, llxn - Txnll ----+ 0 and so (xn) is an approximate fixed point sequence for T. 
5, The existence of an entropy is closely related to the idea of passivity (sometimes 
termed 'dissipativity') of a dynamical system. 

NOTE: The key result and most of the examples considered above have been 
extended to the case of set valued maps in [4]. 
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