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Abstract. Suppose T is a continuous linear operator between two Hilbert spaces X and Y and 
let K be a closed convex nonempty cone in X. We investigate the possible existence of 8 > 0 such 
that 8By nT(K) <; T(Bx nK), where Bx, By denote the closed unit balls in X andY respectively. 
This property, which we call openness relative to K, is a generalization of the classical openness 
of linear operators. We relate relative openness to Jameson's property (G), to the strong conical 
hull intersection property, to bounded linear regularity, and to metric regularity. Our results allow a 
simple construction of two closed convex cones that have the strong conical hull intersection property 
but fail to be boundedly linearly regular. 
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1. Introduction. Throughout this paper, we assume 

I X and Y are two real Hilbert spaces and T : X -t Y I 
is a continuous linear operator. The celebrated open mapping theorem (see, for in
stance [8, Theorem III.12.1]) proclaims the existence of a positive 8 > 0 such that 

8By ~ T(Bx) 

provided that Tis onto. (Here and elsewhere Bx and By stand for the closed unit 
balls in X andY, respectively.) 

Our aim in this paper is to discuss a more general openness property relative to 
a cone. We also show how this property closely relates to Jameson's property (G), to 
strong CHIP, to bounded linear regularity, and to metric regularity. 

Specifically, we assume throughout that 

I K is a closed convex cone in X I 
and we investigate under which conditions one can be assured of the existence of 8 > 0 
such that 

8By n T(K) ~ T(Bx n K). 

If this is the case, as is when K = X and T is onto by the open mapping theorem, 
then we say that T is open relative to K. 
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Our main results can be summarized as follows. 
Rl If Tis open relative to K, then T(K) is closed (Theorem 2.1). 
R2 T(K) can be closed without T being open relative to K (Example 2.1). 
R3 Suppose L1 , L2 are two closed convex cones such that { L 1 , L2 } has strong CHIP 

but is not boundedly linearly regular. Then one can construct T and K as 
in R2 (Theorem 3.1). 

R4 If T and K are as in R2, then one can construct an example of L1, L2 as in R3 
(Theorem 3.2). 

R5 Metric regularity in form of injectivity of TIK yields openness ofT relative to K 
(Corollary 4.1). 

By combining R2 and R4, we obtain two cones that have strong CHIP but fail to be 
uoundedly linearly regular- the construction in [6] is much more involved. 

We conclude by fixing notation, which essentially follows Rockafellar's classical 
[15). SupposeS is a set in X. Then clS (resp. intS, riS, convS, coneS, se, 
sj_) stands for the closure (resp. interior, relative interior, convex hull, conical hull, 
(negative) polar cone, orthogonal complement) of S. We write d(·, S) for the distance 
function corresponding to S: x 1---7 inf{llx- sil : s E S}. For us a cone is a nonempty 
set closed under multiplication by nonnegative reals; in particular, every cone contains 
0. If x E S, then Ns(x) = (S- x) 8 is the normal cone of S at x. The indicator 
function of Sis denoted ts (0 inS; +oo outsideS). The conjugate (or transpose) of 
a linear operator T is denoted T*. Finally, f* stands for the (Fenchel) conjugate of a 
function f. 

2. Basic properties. 

T(K) is ope:n :relative to K :::::? T(K) is dosed. 
DEFINITION 2.1. We say that Tis open relative to K, if there exists some 6 > 0 

such that oBy n T(K) ~ T(Bx n K). 

Theorem 2 .1. If T is open relative to K, then T ( K) is closed. 

Proof. Obtain 6 > 0 such that oBy n T(K) ~ T(Bx n K) and pick an arbitrary 
y E cl T(K). After scaling if necessary, we assume without loss of generality that 
IIYII < 6. Now Bx n K is weakly compact, hence so is T(Bx n K). In particular, 
T(Bx n K) is dosed. Hence y Ed (8By n T(K)) ~ cl (T(Bx n K)) = T(Bx n K) ~ 
T(K) and the result follows. D 

If K happens to be a subspace, then the converse implication in Theorem 2.1 
holds true (by the open mapping theorem). In the next subsection, we will show how 
this can go wrong for a cone K. 

T is ope:n relative to K-¥= T(K) is closed. 
EXAMPLE 2.1. Let X := R 4 , Y := R 3 , and T: X-+ Y: (x1,x2,x3,x4) 1---7 

(xt, xz, x3). Consider the curve 

y(t):= ~(cos(27rt),sin(27rt),l), tE[O,l] 

and define in X the closed convex cone 

K := cl cone { (y(t), .Jl=t2") : t E [0, 1]}. 
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Then T(K) coincides with the icecream cone (see Figure 2.I) 

L := { y E Y : y~ + y~ :::; y~, Y3 ~ 0}, 

and for every t E (0, I], the ray generated by the vector y(t) is an extreme ray of L. 
Despite the closedness of T(K), the mapping Tis not open relative to K. 

Proof. Let z(t) := (y(t), JI=t2), for every t E [0, I]. Then lly(t)ll = t and 
llz(t)ll = 1. Clearly, {z(t): t E [0, I]} is compact, hence (by [I5, Theorem I7.2]) so is 

C := conv { z(t) : t E [0, IJ}. 

Claim 1: mintE[O,l]max{t/v'2,JI=t2} = Ij..;3. Calculus. 
Claim 2 : min IICII > 0. 
Every element of C is of the form 

n 

X= L Ai (ti cos(27rti)/v'2, ti sin(27rti)/V2, ti/V2, JI- tn' 
i=l 

for some ti E [0, I] and Ai > 0 with E~=l Ai = 1. We now distribute the indices 
i E {I, ... ,n} as follows: i E 13 :{::} ti/v'2 ~ JI-tr and 14 :={I, ... ,n} \14 • In 
view of Claim I, we deduce that the third and fourth components of x satisfy 

L tiLI EMEI X3 > >. ·- > >. ·- and X4 > >. · I - t. > >. ·-. - 'tn2- 'r;;3 - • ·- 'r;;3 
iE/s V ~ iEls V .:> iEl4 iEl4 V .:> 

Subclaim: max{x3,x4} ~ I/(2..;3). 
If the Subclaim were false, then (using the last displayed inequali
ties) I/..;3 = EiEis Ai/..;3 + EiEI4 >.i/..;3:::; X3 + X4 < I/(2..;3) + 
I/(2..;3) = I/..;3, which is absurd. The Subclaim thus holds. 

Claim 2 now follows immediately from the Subclaim. It also implies (directly or by 
[I5, Corollary 9.6.I]) that 

K =cone { (y(t), JI=ti): t E [0, I]}= [0, +oo) ·C. 

Hence T(K) = cone {y(t) : t E [0, I]} = L, since every ray generated by y(t) with 
t E (0, I] is clearly an extreme ray of the icecream cone L. (See Figure 2.1.) It only 
remains to show that Tis not open relative to K. Now fix an arbitrary 6 > 0 and let 
t* := min{I, 6/2}. Since lly(t*)ll = t*, we have 2y(t*) E 6By n L. Because the ray 
generated by y(t*) is an extreme ray of L, there is only one element inK that is also 
a pre-image of 2y(t*) under T: 2z(t*). However, since llz(t*)ll = I, the vector 2z(t*) 
does not belong to BxnK. We thus have shown 2y(t*) E (6BynT(K)) \T(BxnK). 
Therefore, since 6 > 0 was chosen arbitrarily, the operator T is not open relative to 
K. D 

Jameson's property (G). We now show that Jameson's property (G) (see [I3]), 
a geometric property of a collection of closed convex cones, can be expressed in the 
relative openness framework. 
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FIG. 2.1. The icecream cone L, which is also a three-dimensional cross section of K, and the 
curve y(t). 

DEFINITION 2.2. Suppose K1 and K2 are two closed convex cones in X. Then 
{K1, K2} has property (G), if there exists 8 > 0 such that 8Bx n (K1 + K2) ~ 
(Bx n K1) + (Bx n K2). 

Our first relates property (G) of two cones to the openness property. We omit 
the simple proof. 

Proposition 2 .1. Suppose K 1, K 2 are two closed convex cones in X. Then 
{K1 ,K2} has property (G) if and only if the sum operator 

Tr;: X x X-+ X: (x1,x2) 1-t X1 +x2 

is open relative to K 1 x K 2 • 

Corollary 2.1. Suppose K1,K2 are two closed convex cones in X. If {K1,K2} 
has property (G), then K1 + K2 is closed. 

Proof. Combine Theorem 2.1 with Proposition 2.1. D 

REMARK 2 .1. Suppose X is finite dimensional and K 1 , K 2 are two closed convex 
cones in X. Let K := K1 + K2. We now show that {K1,K2} has property (G) 
whenever K is polyhedral. According to [5, Corollary 2.10], {K~, K 2 } has property (G) 
if and only if there exists a> 0 such that the map q: K-+ [0, +oo), defined by 

satisfies q(x) :=; allxll, 'Vx E K. It is elementary to verify that q is sublinear, hence con
vex. Now assume in addition that K is polyhedral. Then KnBoo is polyhedral as well, 
where Boo denotes the closed unit ball with respect to the max-norm in X. In fact, 
K n Boo is a polytope. It follows from [15, Theorem 32.2] that sup q(K n Boo) < oo. 
Hence sup q(K n Bx) =: a* < oo. Since q is positively homogeneous, we conclude 
that q::; a*ll·ll on K. Therefore, {K1 ,K2} has property (G) as claimed. 
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If one of the cones is actually a subspace, then another attractive characterization 
is available: 

FACT 2.1. Suppose Z is a closed subspace of X and denote the (orthogonal} pro
jection onto Z l.. by T 1... Then: 
{i)T1.. is open relative to K if and only if {K, Z} has property {G). 
{ii} T1..(K) is closed if and only if K + Z is. 

Proof. (i): is [6, Proposition 2.6]. (The setting in [6] is finite dimensional, but the 
proof of this result works in Hilbert space equally well.) 
(ii): The kernel of T1.. equals Z. By [12, Lemma 17.H], T1..(K) is closed if and only if 
K +Z is. D 

3. Bounded linear regularity and strong CHIP. 
DEFINITION 3.1. Suppose K 1,K2 are two closed convex cones in X. Then 

{ K 1 , K 2 } is linearly regular, if there exists K > 0 such that 

VxEX 

If only for every bounded subset S of X there exists Ks > 0 such that the last 
inequality holds for every xES, then {K1,K2} is boundedly linearly regular. 

REMARK 3.1. The definition makes sense and is useful for (finitely many) closed 
convex intersecting sets; see [3], [4, Section 5], and [5]. 

In our conical setting, (bounded) linear regularity was characterized in [5, Theo
rem 6. 7] as follows: 

FACT 3.1. The following are equivalent: 
{i} {K1,K2} is linearly regular. 
{ii}{K1 , K2 } is boundedly linearly regular. 
{iii}{Ki\ K:?} has property {G). 

DEFINITION 3.2. Suppose K 1,K2 are two closed convex cones in X. Then 
{K1,K2} has strong CHIP, if NK1 nK2 (x) = NK1 (x) +NK2 (x), Vx E K1 nK2. 

REMARK 3.2. The notion strong CHIP, where CHIP stands for "conical hull inter
section property", was coined by Deutsch and co-workers in their studies of constraint 
approximation problems. See [5], [6], [7], [9], [10], and [11] for further information. 
Again, the definition of strong CHIP makes sense for a finite collection of closed con
vex intersecting sets. 

Strong CHIP allows the following simple characterization, taken from [5, Propo
sition 6.4]: 

FACT 3.2. Suppose K1,K2 are two closed convex cones in X. Then {K1,K2} 
has strong CHIP if and only if K? + K:? is closed. 
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It follows from [5, Theorem 3.6] that bounded linear regularity is stronger than 
strong CHIP: 

FACT 3.3. Suppose K 1 , K 2 are two closed convex cones in X. If {K1, K2} is 
boundedly linearly regular, then it has strong CHIP. 

The following two results connect bounded linear regularity and strong CHIP to 
openness relative to a cone. Firstly, we show how properties of two cones give rise to 
openness properties of the sum operator. 

Theorem 3.1. Suppose L1 , L 2 are two closed convex cones in X. Let K 1 := L?, 
K2 := L~, and define the sum operator TE : X x X -+ X : (x1, x2) H- x1 + x2. Then: 
(i) {L1 , L2 } is boundedly linearly regular if and only ifTE is open relative to K1 x K2 . 

(ii) {L1 ,L2 } has strong CHIP if and only ifTE(Kt x K2) is closed. 

Proof. (i): {L1 ,L2 } is boundedly linearly regular{::} {K1,K2} has property (G) 
(by Fact 3.1) {::} TE is open relative to K 1 x K 2 (by Proposition 2.1). (ii): {L1,L2} 
has strong CHIP {::} K 1 + K 2 is dosed (by Fact 3.2) {::} TE(K1 x K2) is closed. 0 

REMARK 3.3. In [6, Section 3], the reader can find two closed convex cones L1 , Lz 
in R 4 such that { L1, L 2 } has strong CHIP but is not boundedly linearly regular. In 
view of Theorem 3.1, we may now construct T : R 8 -+ R 4 such that T is not 
open relative to some dosed convex cone K <:::; R 8 , but with T(K) closed. However, 
Example 2.1 is a much simpler construction between two spaces of lower dimension. 

REMARK 3.4. In Rn with n :::; 3, consider two arbitrary closed convex cones 
L1 , L2 . According to Bakan [1], { L1 , Lz} has strong CHIP if and only if { L1, L2} 
is boundedly linearly regular. Hence the example from [6, Section 3] mentioned in 
Remark 3.3 is optimal in the sense that it could not reside in any space of smaller 
dimension. 

Theorem 3.2. Suppose T : X -+ Y is a continuous linear operator and K is a 
closed convex cone in X. In X x let K 1 := X x 0, K 2 := gra (T!K), and denote the 
corresponding polar cones by L 1 , L 2 , respectively. Then K1, K 2 are two closed convex 
cones in X x Y. Moreover 
(i) T is open relative to K if and only if { L 1 , L 2 } is boundedly linearly regulm·. 
(ii} T(K) is closed if and only if { L1, L 2 } has strong CHIP. 

Proof. It is easy to check that K 1 , K 2 are dosed convex cones. 
(i) In view of Fact 3.1, it suffices to show that 

T(K) is open relative to K {::} {Kt, K2 } has property (G). 
"=>": Obtain 8 > 0 such that 8By n T(K) <:::; T(Bx n K). 
Claim: 8BxxY n (K1 + K2) <:::; (1 + 8) [(BxxY n Kl) + (BxxY n K2)]. 
Indeed, let (x,O)+(k,Tk) E K 1 +K2 with x EX, k E K, and jjx+kli 2 +jjTkjj2 :::; 82 . 

Then llx+kll :::; 8 and Tk E 8BynT(K). By assumption, there exists k* E BxnK such 
that Tk* = Tk. Let x* := x+k-k*. Then ll(x*,O)II = llx*ll:::; !lx+kll+llk*ll:::; 8+1 
and !l(k*,Tk*)ll2 :::; 1 + 82 :::; (1 + 8)2 . Hence (x,O) + (k,Tk) = (x* + k*,Tk*) = 
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(x*, O)+(k*, Tk*) E (1+8) [(BxxvnKI)+(BxxYnKz)]. The Claim thus holds. After 
dividing the inclusion of the Claim by (1 + o), we see that {K1 , K 2 } has property (G). 
"¢=": Pick 8 > 0 such that oBxxY n (K1 + K2) ~ (BxxY n K1) + (BxxY n K2). 
Fix an arbitrary k E K with Tk E 8By. Then (-k,O) E K1 and (k,Tk) E K2, hence 
(O,Tk) E r5BxxY n (K1 +K2). By assumption, there exist x* E Bx and k* E K such 
that (0, Tk) = (x*, 0) + (k*, Tk*). It follows that k* = -x* E Bx and Tk* = Tk, 
which yields Tk E T(Bx n K). Since k has been chosen arbitrarily, we conclude 
6Bv n T(K) ~ T(Bx n K) and soT is open relative to K. Altogether, statement (i) 
is verified. 
(ii): Clearly, K 1 + K 2 =X x T(K). Hence T(K) is dosed 9 K1 + K2 is closed 9 

L~ + L~ is closed 9 {£1 , £ 2 } has strong CHIP (by Fact 3.2). D 

REMARK 3.5. In Example 2.1, we constructed a (continuous) linear operator 
T : R 4 -t R 3 and a dosed convex cone Kin R 4 such that T(K) is dosed, but Tis 
not open relative to K. By Theorem 3.2, this yields two closed convex cones £1,£2 

in R 7 such that { £1, L2 } has strong CHIP but is not boundedly linearly regular. We 
note that these two cones were obtained much more easily than the example in [6, 
Section 3]. However, the latter example resides in R 4 (rather than R 7 ) and is, in a 
sense made precise in Remark 3.4, optimal. 

4" A sufficient condition: metric regularity. In this final section, we assume 
for simplicity that 

I X and Y are Euclidean spaces.J 

Theorem 4"1. T is open relative to K if and only if T(K) is closed and there 
exist real ;;, > 0 and by > 0 such that 

Proof. In view of Theorem 2.1, we assume throughout this proof that 
T(K) is dosed. 

Fix an arbitrary o > 0. Then 

r5Bv n T(K) ~ T(Bx n K) (4.1) 

holds if and only if toBy + LT(K) 2:: LT(Bx nK). Since all functions appearing in the last 
inequality are closed, this last inequality is equivalent to 

(4.2) 

We now evaluate both sides of the last equation using convex calculus. Firstly, 
LT(K) = LKe o T* by (15, Corollary 16.3.1 and Theorem 14.1]. Secondly, toBy = 811·11 
by [15, Corollary 16.1.1 and Example following Corollary 13.2.2]. Note that 0 E 
T(K) n int (oBy ). Hence ri (dom LT(K)) n int (dom ioBy) i= 0 by [15, Corollary 6.3.2]. 
Using [15, Theorem 16.4], the left side of (4.2) thus evaluates to od(·, (T*)-1(K8 )). 

Similarly, the right side of (4.2) becomes d(T*(·),K8 ). Altogether, (4.2) and hence 
(4.1) are both equivalent to 

d(y*, (T*)-1 (K8 )) s; td(T*y*, K 8 ), Vy* E Y. 
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The result follows, since both sides of the last inequality are positively homogeneous. 
D 

We now state a particularization of a powerful result on metric regularity, see [16, 
Example 9.44]: 

FACT 4.1. (metric regularity in constraint systems) Suppose F : Y -t X is a 
continuous linear operator and C is a closed convex cone in X. Define a set-valued 
map n : Y -t 2x by y t--+ Fy - C. Then metric regularity of n for x = 0 at y = 0 
~;cans the existence of real"'> 0, fix > 0, and Oy > 0 such that 

d(y,n-1 (x)):::; "'d(Fy- x,C), '1:/y E 8yBy,i:/x E 8xBx; 

in fact, this holds if and only if F* Ice is one-to-one. In particular, if this regularity 
holds, then {by choosing x = x = 0 in the above inequality) 

Corollary 4.1. If TIK is one-to-one, then T is open relative to K. 

Proof. It follows immediately from Fact 4.1 (with F = T* and C = K 8 ) that 
there exist real "' > 0 and oy > 0 such that 

We now show that T(K) is dosed. Pick an arbitrary y E dT(K). Then there exists 
a sequence (kn) in K with Tkn ·-+ fj. After passing to a subsequence if necessary, we 
assume without loss of generality that L :=limn llknll exists in [0, +oo]. If L < +oo, 
then we can arrange (by compactness and after passing to a further subsequence if 
necessary) that kn -t k, for some k E K. But then jj = Tk E T(K). The remaining 
possibility is L = +oo. Without loss of generality, we assume that kn/llknll -t k* E 

K\ {0}. Then 0 +- Tkn/llknll -t Tk*, which contradicts injectivity of T!K. Hence this 
case never occurs and T(K) is indeed closed. The result now follows from Theorem 4.1. 

D 

With some care, most results in this paper will be found to have analogues in 
more general Banach space settings. We conclude with the following illustrative vari
ant of Corollary 4.1. 

Theorem 4.2. Suppose X, Y are Banach spaces, where X is reflexive, and 
T : X -t Y is continuous and linear. Suppose further K is a closed convex cone in X 
with T(K) closed. If T!K is one-to-one, then T is open relative to K. 

Proof. Let L := T(K). 
Claim: There exists 8 > 0 and l* E L with (l* + r5By) n L ~ T(Bx n K). 
Since Bx n K is weakly compact, the set T(Bx n K) is dosed. Clearly, L 
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UnE{l,2 , ... } nT(BxnK). NowLin itselfis a complete metric space and each nT(Bxn 
K) is closed in Y and hence in L. Thus, by Baire's theorem (see, for instance (14, 
Theorem 8.14]), some nT(Bx n K) has nonempty interior inLand hence there exists 
some l* in the interior of T(Bx n K) relative to L. The Claim thus holds. 

Assume to the contrary that T is not open relative to K. Then there exists 
a sequence (xn) in K such that Txn -> 0, but all Xn lie outside Bx. Define kn := 
Xn/ JI!Txnll, for every n E {1, 2, ... }. Then (kn) is a sequence inK with llknll -t +oo 
and Tkn -t 0. Set ln := Tkn and obtain (by the Claim) k* E Bx n K with Tk* = l*. 
Then l* t- l* + ln E L. Hence eventually T(k* + kn) = l* + ln E (l* + oBy) n L. By 
injectivity of TIK and the Claim, we have k* + E Bx n K eventually. But this is 
absurd, since llknll -t +oo. Therefore, the theorem is proven. D 
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