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DIFFUSION WITH TRAPPING AND FAST DIFFUSION PATHS 

L.R. Francis Rose 

1. INTRODUCTION 

This paper presents some new analytical results and formulations for two diffusion 

problems relevant to aircraft structural materials. The first arises in connection with 

hydrogen embrittlement of high-strength steels and the second involves the transient re­

distribution of lithium during a novel heat-treatment for aluminium-lithium alloys. 

Hydrogen typically enters steel in service either as a by-product of cadmium plating 

(which is done for corrosion protection), or during the application of paint strippers, or 

during stress-corrosion cracking in aqueous environments [1-3}. The problem of 

characterizing the detrimental effect of hydrogen can be conceptually divided into two 

stages : (i) quantify the transport aspect, by solving the relevant diffusion equation subject 

to appropriate initial and boundary conditions; (ii) quantify the damage kinetics, assuming 

a given local hydrogen content. It is known that hydrogen diffusion in steels is non­

Fickian, and this has been attributed to the trapping of hydrogen at various sites such as 

lattice dislocations, grain boundaries or the interfaces with precipitates within the grains. 

A phenomenological theory of diffusion with trapping, due to McNabb and Foster [4], 

requires three parameters to characterize trapping. These parameters can be estimated 

experimentally from permeation tests. The McNabb-Foster equations are non-linear and 

therefore generally intractable analytically, but an exact analytical expression has been 

derived in [4] for the time-lag in a permeation test, when the boundary condition at the 

input face is one of fixed concentration, which is appropriate for gas-phase charging. An 

extension of this result is presented in §2 for the more complicated boundary. condition 

describing electrolytic charging under potentiostatic control. This form of charging 

simulates more closely than gas-phase charging the hydrogen-entry conditions during 

plating or stress corrosion. 
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The non-linearity in the McNabb-Foster equations is associated with trap 

saturation. A simplified formulation is presented in §3 which retains the essential feature 

of a characteristic time for trap saturation, but which can be reduced to a standard 

(Fickian) diffusion problem by a Danckwerts - type transformation. 

The second problem derives from a two-stage ageing treatment, which has been 

found experimentally to greatly enhance the fracture toughness of aluminium-lithium 

alloys [5]. This new class of aluminium alloys is of considerable interest in the aerospace 

context because of their lower density, and consequently their enhanced specific stiffness 

and strength. It has been suggested by Lynch [5] that the observed improvement in 

toughness is due to a transient re-distribution of the solute (lithium) along the grain 

boundaries and within the adjacent precipitate-free zones. A model is formulated in §4 for 

testing this claim, and for estimating the hold time during the second ageing treatment 

which should result in maximum toughness. 

2. PERMEATION TIME-LAG FOR ELECTROLYTIC CHARGING 

2.1 McNabb-Foster equations for trapping 

Let c(x,t) denote the concentration of hydrogen held in solution, and c1(x,t) = 

N¢(x,t) the concentration of hydrogen held in traps, where N denotes the trap density 

(number of traps per unit volume, each trap being imagined to hold at the most one 

hydrogen atom) and¢ the fractional coverage (0~¢~1). It is assumed that diffusion of the 

hydrogen dissolved in the crystal lattice obeys Fick's first law, 

J = -D grade, (la) 

but that there is an exchange of hydrogen between lattice sites and traps, so that the matter 

conservation law leads to 

div J + acjat = - ac1 ;at =- N a¢jat. (lb) 
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McNabb and Foster [4] characterize the exchange between lattice sites and traps in terms 

of two rate constants kN, p, for capture and for release respectively, which leads to the 

following equation for the rate of change of trap coverage ¢ 

8¢/Bt = kc(l- 1/J)- pt/J. (lc) 

Eqs. (la,b,c) constitute the governing equations for diffusion with trapping. They involve 

three trapping parameters N, k, p, as material constants, in addition to the lattice diffusivity 

D. These equations look deceptively simple. Analytical difficulties arise from the non­

linear term -keep in Eq.(lc), which occurs because the rate of capture by traps must be 

proportional to the fraction (1 - ¢) of available empty traps. If the trap coverage is always 

low (t/J < < 1), this term can be neglected, and the resulting linear equations can be solved 

by standard integral-transform techniques [4,6]. Typically the traps do saturate however, 

and the resulting non-linearity cannot be ignored. An analytically tractable for the effects 

of trap saturation is presented in §3. 

2.2 Boundary condition for hydrogen entry 

A permeation test generally involves one-dimensional diffusion through a 

membrane (or slab) of uniform thickness L. Theinput face is usually taken as the origin 

x = 0, and the output face as x = L. McNabb and Foster [4] deal exclusively with 

boundary conditions of the form 

c(x=:=O, t:?:O) == c0 ( = constant), 

c(x=L, t:?:O) = 0, 

which, in conjunction with the initial condition 

C = C1 = 0, O<x<L, t~O, 

characterizes gas-phase charging, as in the experimental work of Johnson et al.[7]. 

For electrolytic charging, Eq. (2) should be replaced by 

x=O+, t:?:O, 

(2) 

(3a) 

(3b) 

(4a) 

where ka, kd represent rate constants for hydrogen absorption and desorption respectively, 

and 8 denotes the surface coverage of adsorbed hydrogen, which can be assumed to be 

constant under potentiostatic charging [8,9]. Eq.( 4a) can be re-written as 



- D acjax = K. {ce- c(O+, t)}, 

K. = kd, Ce = ka8/kd, 
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X= 0+, t~O, (4b) 

(4c) 

where ce can be interpreted as the equilibrium hydrogen concentration which would 

prevail for two-sided charging (instead of one-sided charging) at the given electrode 

potential. 

Eqs. (3a, 3b, 4b) constitute a complete set of boundary and initial conditions. The 

boundary condition ( 4b) can be re-stated in terms of normalized variables, as foilows 

€ = x/L, 1 = t/(L2/D), C(€,1) = c(x,t)/ce, 

-ac;ae = r{l-C}, e=o+, 1~0, 
r = K.L/d, 

(Sa) 

(5b) 

(Sc). 

where r is an important non-dimensional parameter analogous to the Biot number for 

heat-transfer problems. The boundary condition (Sb) approaches one of constant flux for 

r < < 1, and of constant concentration for r > > 1. 

2.3 The time-lag 

Let J(t) denote the permeation flux at timet from the output face at x = L, and Q(t) 

the total efflux up to time t : 

J(t) D acjax, x=L, t>O, (6a) 

Q(t) = J~ J(t) dt. (6b) 

With the initial condition (3b ), J(t) increases from zero at t = 0 to approach eventually a 

steady-state value which will be denoted by lro. At the same time, Q(t) becomes 

asymptotically a linearly increasing function of t. The time-lag tL is defined from this 

asymptotic behaviour as follows, 

Q(t-+ ro) lro(t- tL), (7a) 

tL lim {t- Q(t)/lro}, (7b) 
f->ro 

lim r {Jro- J(t)}/lro dt. (7c) 
f->oo 0 
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McNabb [10] noted that an exact expression could be derived for tL in the presence of 

trapping, even though the governing equations are non-linear and quite· intractable 

analytically. This arises because the time-lag can be shown to depend orily on the eventual 

steady-state configuration. We follow here the simpler approach introduced by Frisch [11]. 

This approach has been used by Paul [12], working in the context of polymer science, to 

derive tL for diffusion with trapping, assuming a local equilibrium between the solute in 

the matrix and in the traps, and the boundary condition of fixed concentration· at the input 

face, Eq.(2). Paul's result, which is recorded by Crank [13], is the same as that given 

several years earlier (but in a different context) by McNabb and Foster [4], because the 

assumption of local equilibrium proves to be appropriate for the eventual steady-state. 

The starting point is the equation expressing conservation of matter applied to the 

region within the interval (x,L ): 

L 
ajat L { c + c1 } dx = J(x,t) - J(t), (8a) 

J(x,t) = -D iJc(x,t)jax. (8b) 

Integrating over time and re-arranging using the notation in Eq. ( 6b ), we obtain 

Q(t) = r J(x,t) dt -JL Ac(x,t) dx, (9a) 
0 X 

Ac(x,t) = {c(x,t) + c1(x,t)}- {c(x,O) + c1(x,O)}. (9b) 

2.3.1 Constant flux 

Consider first a constant flux boundary condition 

-D ocjax = loo, X= 0+, t>O, (lOa) 

where the notation fro for the constant flux at the input face highlights the fact that at the 

eventual steady-state, the flux across x=O must be the same as the flux across x=L (or at 

any other value ofx in that interval). Settingx=O+ in Eq.(9a), we have 
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Q(t) = 100 t -I Ac(x,t) dx, 

0 

and hence from Eq.(7b) 

L 
tL = [ Io Ac(x,t-+oo)dx]/100 • 

2.3.2 Constant concentration 
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(lOb) 

(10c) 

Next consider the constant concentration boundary condition in Eq.(2), retaining 

Eq.(3a) for the exit face. Frisch's [11] procedure, which applies to this case, is to integrate 

Eq.(9a) over x, noting first that 

IL JL J(x,t) dx D(acjax) dx, 
0 0 

ro Ddc, 
0 

Dc0 , 

(lla) 

(llb) 

where Eq.(llb) applies if the diffusivity does not depend on concentration, which we shall 

assume to be the case, whereas Eq.(lla) holds more generally. The steady-state flux is 

now given by 

(llc) 

Using this result and Eq.(llb) when integrating Eq.(9a) with respect to x over (O,L), we 

obtain 

L Q(t) 
L L 

Lloo t - I dx I Ac(z,t) dz, 
0 X 

and hence on interchanging the order of integration and using Eq.(Th ), 

L [ I A c(x,t-+oo)xdx] / (U00 ), 

0 

2.3.3 Electrolytic charging 

(12a) 

(12b) 

We can now derive tL for the boundary condition (4b) by combining the ideas used 

above for constant flux and constant concentration. The procedure is clearer if Eq.( 4b) is 

re-stated in the following form, with a constant on the right-hand side, 



8 

-D/11. ac(O+, t)jax + c(O+, t) = Ce. (13a) 

Then, 1/~t times Eq.(9a) evaluated at x=O+, added to 1/D times the integral of Eq.(9a) 

over (O,L), leads to 

L 
Q(t) {1/lt +L/D} = Ce t - J ~1/~t+x/D} llc(x,t) dx. (13b) 

Before using Eq.(7b) to derive an expression for tv we note that the steady-state flux is 

now given by 

J<tJ = D c(O+, <tJ)/L, 

i.e. with c(O+, <tJ) replacing c0 in Eq.(llc). From the boundary condition (4b), 

J<tJ = 11. {ce -c(O+, <tJ)}, 

so that 

c(O+,<tJ) = {r/(l+r)}ce, 

] 00 = II.Ce/(l+r), 

!' = Yi.L/D. 

(14a) 

(14b) 

(14c) 

(14d) 

Using these relations and re-arranging Eq.(13b) to derive tL according to the definition in 

Eq.(7b ), we obtain 

L 
tL = [ J (1 + u/D) llc(x, t-+<tJ) dx ]/ (l'i.Ce) 

0 
(15) 

The main result of this section, Eq.(15), is not tied to the exchange relation in 

Eq.(lc), which is specific to the McNabb-Foster theory. To obtain a more explicit 

expression for tv however, we shaH now adopt this particular relation, which leads to the 

following steady-state relations, 

c1(x, <tJ) = Nkc(x, <tJ) / {kc(x, <tJ) + p} , (16a) 

c(x, <tJ) = c(O+, <tJ){l-x/L}. (16b) 

Using these and the initial condition (3b) in the definition (9b) for IJ.c, we can evaluate the 

integral in Eq.(15) to obtain 
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tLf(L2/6D) ={3+r +3(2+r)1+6'Y/.B[~-{l+r/.B (1+.8) log(l+.B)}]}/(l+r), (17a) 

'Y Njc(O+, ro) ND/(lroL), (17b) 

.B kc(O+, oo)jp klroL/(Dp). (17c) 

This gives the permeation time-lag for electrolytic charging in terms of the non­

dimensional parameter ( defined by Eq.(5c), and the trapping parameters N, k, p, as well 

as the diffusivity D and membrane thickness L. It is recalled that for diffusion without 

trapping [13], the time-lag under constant concentration at the input face x = 0 is given by 

tL = L 2j6D, (18a) 

and under constant flux by 

tL = L 2j2D. 

Eq.(17a) reduces to these expressions for no trapping (N = c 

limits. 

(18b) 

0), in the appropriate 

It is emphasized that Eq.(15) also holds when c1 in Eq.(9b) represents the hydrogen 

concentration in several trap populations having distinct values for the trapping 

parameters Ni , ki, Pi, i = 1,.-,n, or even for a continuous spectrum for. these parameters. 

The appropriate steady-state distributions, and hence the relevant extension of Eq.(17a), 

can be readily determined. 

3. TRAF' SATURATION 

It has already been mentioned that analytical difficulties in solving the McNabb­

Foster equations arise from the non-linear term -kc¢ in Eq.(lc). If we temporarily regard 

the concentration cas a given constant, Eq.(lc) can be integrated to obtain 

¢(t) ¢00 {1- e -(kc+p)t}, (19a) 

¢00 kc/(kc + p) , (19b) 

indicating an exponential approach to an equilibrium coverage ¢w , over a time scale 

(kc+py1. If kc< <p, so that ¢w< < 1, one could reasonably ignore the non-linear term in 

Eq.(lc), and proceed analytically using standard integral-transform techniques [14]. 
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Eqs.(la-c) would then be equivalent to those for diffusion with a first-order, reversible 

chemical reaction.[13,§14.4]. 

In the hydrogen embrittlement context, however, one typically finds kcjp~102, so 

that ( 1 - 16"') < < 1. This means that 8¢/ at ... 0 because the traps saturate, rather than 

because the capture rate is balanced by a release rate, as would be the case when 

kc/p< <1. 

We can attempt to simulate this behaviour by replacing Eq.(lc) by 

or/1/ot = k e-Xt c(x,t), (20a) 

where x·1 represents a prescribable time-scale. The effective rate constant for capture 

would then decay to zero, simulating the effect of trap saturation, provided that we use x 
""kc, where cis a "representative" value of the concentration c(x,t), so that x-1 is an equally 

representative characteristic time for trap saturation. For the boundary condition ( 4b ), an 

obvious choice would be 

(20b) 

On using Eq.(20a) instead of Eq.(lc), and assuming a constant diffusivity D, the 

governing equations reduce to 

D rPc = acjot + k e-X..t c , (20c) 

which is similar to the equation for diffusion with an irreversible first-order reaction [13, 

§14.3], but with the rate constant decaying exponentially. 

More generally, using the same notation as above, consider the equation 

D a2cjax2 = acfi:Jt + .A(t) c , (21a) 

subject to the following initial and boundary conditions 

c(O < x < L, t ~ 0) 

c(x = L, t > 0) 

and either 

c(x = 0, t > 0) 

or 

D acjax 

0, 

0, 

X= 0, t > 0. 

(21b) 

(21c) 

(21d) 

(21e) 
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The solution can be expressed in the form 

c(x,t) 

where 

A(t) 

= e-A(t) u(x,t) + r >.(r) e A(s) u(x,s) ds, 
0 

= r >.(r)dr' 
0 

and u satisfies the conventional diffusion equation 

D a'lujax2 = aujat, 

(22a) 

(22b) 

(22c) 

subject to the same initial and boundary conditions as c, viz. Eqs. (21b, c) and either 

Eq.(21d) or Eq.(21e). 

This represents a generalization ofDanckwert's transformation [13,§14.3]. It can be 

established by noting that if c(x,t) is a solution of Eq.(21a) subject to Eqs.(21b,c) and either 

Eq.(21d) or Eq.(21e), then 

w(x, t) = eA(t) c(x,t) (23a) 

satisfies the conventional diffusion equation (22c), with conditions (21b,c) and either 

w(x = 0 t > 0\ = c eA(t) 
~ ' / 0 ' 

(23b) 

or 

X= 0, t > 0. (23c) 

This solution w(x,t) can be constructed from the solution u(x,t) for constant right-hand 

sides in Eq.(23b) or Eq.(23c) by Duhamel's principle. Using the relation (23a) then gives 

c(x, t) in the form (22a). 

If A is a monotonic function of time, it can be used as a time-like parameter. 

Expressing concentrations as functions of x and A, the solution (22a) assumes the simpler 

form 

c(x,A) = e-A u(x,A) + r ew u(x,w) dw 
0 

(24) 

Explicit results for u(x,t) are available in standard books [13, 14], but detailed 

calculations for c(x, t) using parameter values of interest in the hydrogen embrittlement 

context have yet to be performed. 
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4. REDISTRIBUTION OF SOLUTE DURING 1WO-STAGE AGEING 

Lynch [5] has suggested that the toughness improvement due to second ageing in 

aluminium-lithium alloys is due to a transient reduction in the solute (lithium) content on 

the grain boundary. For the purposes of mathematical modelling, one can assume that this 

boundary is planar on a length-scale comparable with the spacing between the solute-rich 

precipitates (6-phase) lying on the boundary. That spacing is approximately li.Lm, whereas 

the grain dimension along the boundary is typically lOOt.tm. The precipitates can be 

considered to be lenticular, with a diameter of approximately O.lt.tm in the grain boundary 

plane, and their height normal to that plane could be neglected for the purposes of stating 

boundary conditions, in the spirit of slender-body theory. Anticipating a simplified 

formulation as a two-dimensional problem, we may choose coordinates such that y = 0 is 

the boundary plane and the precipitates form a periodic array along the x-axis, with 

spacing 2b "' lf'm. On both sides of the boundary there is a solute-depleted layer known as 

the precipitate-free zone. During the first ageing treatment, when the alloy is held at a 

temperature T1 = 17o•c for several hours, the thickness h of this zone increases 

(approximately) linearly with the square-root of ageing time. (This growth can be 

formulated as a Stefan problem similar to those discussed by other contributors at this 

conference). At the end of the first ageing, the thickness h"' O.lttm and h can be assumed 

to remain unchanged during the second ageing, which lasts only for several minutes, albeit 

at a higher temperature T2 = 2oo•c. 

The material within a few atomic layers of the mathematical dividing plane y = 0 

can be expected to differ structurally from the bulk matrix, and may be considered as a 

special "boundary phase" allowing much faster diffusion, as well as higher equilibrium 

solute content, than the adjacent bulk 

The mathematical problems are: 

(i) to determine the quasi-equilibrium distribution of solute at the end of the first 

ageing, especially the solute concentration at the mid-point (x=b, y=O) between two 

boundary precipitates; 
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(ii) to determine the transient re-distribution due to an increase in temperature from 

T1 to T2, especially at x=b, y=O, starting from the quasi-equilibrium distribution 

determined in (i). 

The aim is to see whether a transient reduction in the solute content on the 

boundary is predicted by a mathematical model, and if so whether an optimum duration 

for the second ageing can be identified. Since it is the concentration at the mid-point 

between two precipitates which is of greatest interest, it is not necessary to model the 

precipitates themselves in accurate detail: they may be treated as point sources (or sinks) 

distributed periodically along y = 0. However, the strength of these sources is not 

prescribed: it has to be determined so as to satisfy the boundary condition 

c(x=a,y=O, t) = Cs(T) (25a) 

which would be satisfied at the boundary of an actual precipitate of radius a (<b) centred 

at the origin. It is noted that Cs(T) denotes the solute concentration in equilibrium with 

the 5-phase, and this changes on going from T 1 to T 2. 

The next important step in the formulation is to account for solute enrichment and 

faster diffusivity at the boundary. A convenient way of proceeding is to imagine a separate 

boundary phase of thickness l < <h in which the solute concentration cb is enriched relative 

to the adjacent bulk concentration, 

cb(x, t) = a c(x, y-+l +, t) , (25b) 

where a (> 1) denotes the enrichment factor. Let B, D denote respectively the boundary 

and bulk diffusivities. In the present physical context, it is reasonable to assume that B > D, 

but the following mathematical formulation is not limited to that case. The conservation 

of matter within this boundary layer implies 

l {-B a2cbfax2 + acbfat} = D ac(x,y--1+, t)/fJy, (25c) 

for a source-free region of the boundary. Using Eq.(25b) and considering l to be 

vanishingly small, one can represent the effect of the boundary layer by the following 

boundary condition, which only involves the bulk concentration c, 

D acjfJy + al{B a2cjax2 - acjat} = o, y = 0+ . (25d) 
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It is noted that the layer thickness and the enrichment factor do not appear separately but 

only in the combination al, which has dimensions of length, and which is directly related to 

the thermodynamic concept of a surface excess f( =ale); i.e. the preceding formulation 

applies equally to any concentration profile in the immediate vicinity of the boundary, 

provided that ale in Eq.(25d) is interpreted as the surface excess [15]. 

If the effect of precipitates is simulated by a periodic array of sinks, each of 

(unknown) strength 2S, the full boundary condition ony = 0+ can be written as 

..,, 
D ae;ay + al {B a2cjax2 - ac;at} = S(t) {o(x) + }; o(x±nb)}, (25e) 

n=l 

where o(x) denotes the Dirac delta function. The mathematical problem is then reduced 

to solving the diffusion equation in the strip 0 <y-5,h, subject to a specified initial condition 

and to the boundary condition (25e) ony = 0+ and ony=h, 

c(x,y=h,t) = C.s'(T), (25f) 

where Ct/ denotes the solute concentration in equilibrium with the metastable o '-phase 

which is present in the bulk, beyond the precipitate-free zone (i.e. for y > h). 

This problem is linear, and therefore amenable to integral-transform techniques, 

but to the author's knowledge, the only previous treatment of diffusion problems involving 

the boundary condition (25e) appears in [14,§14.11] and in the original papers cited there. 

In the present context, there are four characteristic lengths: al, a, b and h, so that the best 

choice for normalized variables is not immediately obvious. We present here, as a first 

result of continuing work, the steady-state solution for an isolated source at the origin, 

between two half-spaces (i.e. assuming b, h ... "'). A convenient choice of normalized 

variables for this case is 

e = x Dj(alB), 'f/ = y Dj (alB), (26a) 

u(€,17) = c(x,y)/C0(T). (26b) 
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Then u satisfies Laplace's equation in the half-space TJ > 0, subject to the following 

boundary condition ony=O, 

aufaTJ + alu;ae = S/(DC0) o(€), (26c) 

where the sink-strengthS has to be chosen so as to satisfy the condition (25a), i.e. 

u[€=aD/(Brxl), TJ=O] = 1. (26d) 

It is found that u(€,TJ) can be expressed as the real part of a complex potential O(r), 

I: = e + iTJ, as follows 

u(€,TJ) = Sf(DC0) Re[O(r)], 

The corresponding asymptotic expansions 

7{ o <n = r+ ir + ...• 

= - ln( -ir) - i/r + ... , 

Im(r) > 0. 

!:-+0, I arg I: I < 1r, 

r-•oo, I arg r I < 7{ , 

(27a) 

(27b) 

(28a) 

(28b) 

indicate that the presence of a boundary diffusion path removes the logarithmic singularity 

at the origin, while retaining that singularity at infinity. 

5. CONCLUSION 

Some recent and continuing work on diffusion problems arising in connection with 

aircraft structural alloys has been presented, focussing mainly on analytical results. There 

is cqnsiderable scope for further work on these topics relying on analytical techniques. 

These generally require the formulation to be simplified so as to retain only the most 

significant features of the problem, which is a considerable advantage when it comes to 

interpreting the results and assessing the implications of the model. However, even a 

relatively simple-looking non-linearity, such as that arising in the McNabb-Foster theory of 

trapping, appears to be beyond the reach of analytical techniques, and numerical 

techniques are necessary if one wishes to predict the permeation transient [16], which is 

required for the purposes of addressing the important inverse problem of determining the 
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trapping parameters from experimental permeation curves, although some progress has 

been made by asymptotic and dimensional analysis [17,18]. 

I am grateful to Dr W.J. Pollock and Dr S.P. Lynch for initiating the work reported 

above, and to Dr S.K Burke for a critical reading of the manuscript. 
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