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Abstract. We review the large time behaviour of the semigroup
kernel associated with a homogeneous operator on a Lie group with
polynomial growth. We consider complex second-order operators
and two classes of higher order operators.

1. Introduction

There is a vast literature on second-order elliptic operators on Lie
groups with real symmetric coefficients. (See [Rob], [VSC], and refer-
ences cited therein.) The closure of such an operator generates a semi-
group which is holomorphic in a sector, the semigroup has a smooth
kernel and the kernel, together with all its derivatives, satisfies the
canonical Gaussian upper bounds for small time. These results have
been extended to various other classes of complex subelliptic operators
of any order on a Lie group and in particular one has again the Gauss-
ian upper bounds for small time. If the operator is a real symmetric
pure second-order operator and the Lie group has polynomial growth
then the kernel satisfies the Gaussian upper bounds for all time. The
aim of this note is to indicate the difficulties that one can expect for the
large time canonical Gaussian upper bounds associated to other classes
of operators on Lie groups with polynomial growth. In particular we
discuss the class of pure second-order operators with complex constant
coefficients and two classes of higher order homogeneous operators.

Let G be a connected Lie group with Lie algebra g. Let a1, . . . , ad′
be an algebraic basis for g, i.e., independent elements which together
with their multi-commutators up to order s span g. The smallest num-
ber s for which this is valid is called the rank of the algebraic basis.
Let dg be a (left) Haar measure on G. For all p ∈ [1,∞] let L de-
note the left regular representation in Lp(G) = Lp(G ; dg). For all
i ∈ {1, . . . , d′} let Ai be the infinitesimal generator of the one parame-
ter group t 7→ L(exp(−tai)). We also need multi-index notation since
the Ai do not commute in general. Set J(d′) =

⋃∞
n=0{1, . . . , d′}n and
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if α = (i1, . . . , in) ∈ J(d′) set Aα = Ai1 . . . Ain and |α| = n. Associated
to the algebraic basis there is a modulus on G, i.e., the distance to the
identity element e of G. Introduce D as the set of functions

W = {ψ ∈ C∞
c (G) : ψ is real and sup

g∈G

d′∑
k=1

|(Akψ)(g)|2 ≤ 1} .

For all g ∈ G define

|g|′ = sup
ψ∈W

|ψ(g)− ψ(e)| .

Finally, for all ρ > 0 let the volume V ′(ρ) be the Haar measure of the
ball {g ∈ G : |g|′ < ρ}.

The Lie algebra g is called nilpotent if there exists an n ∈ N such
that

[b1, [b2, . . . , [bn−1, bn] . . .]] = 0

for all b1, . . . , bn ∈ g. If g is nilpotent then define the rank r of g by

r = max{n ∈ N : ∃b1,...,bn∈g[b1, [b2, . . . , [bn−1, bn] . . .]] 6= 0} .

Let g̃(d′, r) be the nilpotent Lie algebra with maximal dimension, d′ gen-
erators and rank r. We denote the generators by ã1, . . . , ãd′ and the

associated infinitesimal generators by Ã1, . . . , Ãd′ . Let G̃(d′, r) be the
connected simply connected Lie group with Lie algebra g̃(d′, r).

Now we are able to introduce the operators we want to consider. Let
m ∈ 2N. On a general Lie group G the operator

H =
∑
|α|≤m

cαA
α

with cα ∈ C and domain D(H) =
⋂
|α|≤mD(Aα) is called subcoercive

of step r if the comparable operator

H̃ =
∑
|α|=m

cαÃ
α

on L2(G̃(d′, r)) satisfies a G̊arding inequality, i.e.,

Re(ϕ̃, H̃ϕ̃) ≥ µ̃
∑

|α|=m/2

‖Ãαϕ̃‖2
2̃

for all ϕ̃ ∈ C∞
c (G̃(d′, r)), for some µ̃ > 0. Note that the condition is

on the principal part of the operator and is independent of the lower
order terms. If H is subcoercive of step r then H is also subcoercive
of step r − 1 (see [ElR1], Corollary 3.6).
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Example 1.1. Let cij ∈ C and suppose there exists a µ > 0 such that

(1) Re
d′∑

i,j=1

cij ξi ξj ≥ µ |ξ|2

for all ξ ∈ Cd′ . Then the operator −
∑d′

i,j=1 cij AiAj is a subcoercive
operator of step r for all r ∈ N. This is easy to verify. Conversely,

if −
∑d′

i,j=1 cij AiAj is a subcoercive operator of step r for some r ≥ 2

then (1) is valid. (See [ElR1], Proposition 3.7.)

For allm ∈ 2N the operators
(
−

∑d′

i=1Ai2
)m/2

and (−1)m/2
∑d′

i=1A
m
i

are also subcoercive operators of step r for all r ∈ N, but the proof is
not trivial. (See [ElR2], Example 4.4.)

The group G̃(2, 2) is the Heisenberg group and the operator −Ã12−
Ã22−10i[Ã1, Ã2] is subcoercive of step 1, but not subcoercive of order r
for any r ≥ 2.

The small time theory is well developed. Set

G
(m)
b,t (g) = V ′(t)−1/m e−b((|g|

′)mt−1)1/(m−1)

for all b > 0, t > 0 and g ∈ G.

Theorem 1.2. Let a1, . . . , ad′ be an algebraic basis of rank r for the Lie
algebra of a Lie group G. Let m ∈ 2N and H an m-th order subcoercive
operator of step s with s ≥ r. Then one has the following.

I. The closure of H generates a semigroup S on Lp for all p ∈
[1,∞].

II. The semigroup S is holomorphic.
III. The semigroup has a smooth rapidly decreasing p-independent

kernel K, i.e., Stϕ = Kt ∗ ϕ for all ϕ ∈ Lp and t > 0.
IV. For all α ∈ J(d′) there exist b, c > 0 and ω ≥ 0 such that

(2) |AαKt| ≤ c t−|α|/m eωtG
(m)
b,t

for all t > 0.
V. If p ∈ 〈1,∞〉 then H is closed on Lp. Moreover, if the semi-

group S is uniformly bounded on Lp then for all N ∈ N one has
D(HN/m) =

⋂
|α|=N D(Aα).

Proof. See [ElR1], Theorems 2.5 and 4.1, and for Statement V see
[BER]. �

The bounds (2) are optimal for t ∈ 〈0, 1] and describe the Gaussian
decay. For large t the factor eωt reflects the semigroup property and
the contribution of the lower order terms in H. Each derivative of K
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gives a t−1/m-singularity. We say that AαK has the canonical (large
time) Gaussian upper bounds if the bounds (2) are valid for all t > 0
with ω = 0. On a subclass of Lie groups these bounds are valid for
particular operators.

2. Second-order operators

A Lie group is said to have polynomial growth if there exist c > 0
and D ∈ N0 such that the volume V ′(ρ) ≤ c ρD for all ρ ≥ 1 ([Gui] and
[Jen]). It turns out that this definition is independent of the choice of
the algebraic basis.

Theorem 2.1. If G has polynomial growth and H is a pure second-
order real symmetric subcoercive operator of step 2 then there exist
b, c > 0 such that

|Kt| ≤ cG
(2)
b,t and |AiKt| ≤ c t−1/2G

(2)
b,t

for all t > 0 and i ∈ {1, . . . , d′}.

Proof. See [SC]. �

In the situation of Theorem 2.1 the reality of the coefficients implies
that the kernel K is positive and by the Beurling-Deny criterium the
semigroup S is a contraction semigroup on L∞. Therefore K is inte-
grable and

∫
Kt = 1 for all t > 0. By duality the semigroup is also

a contraction semigroup on L1 and then a Nash inequality provides
L∞-bounds on Kt. Finally by a Davies perturbation the L∞-bounds
for K can be strengthened to the Gaussian bounds of Theorem 2.1.

If the coefficients are complex then K is not positive and there is no
version of the Beurling-Deny criterium for complex operators [ABBO].
It is a recent result that the reality of the coefficients in Theorem 2.1
is superfluous.

Theorem 2.2. If G has polynomial growth and H is a pure second-
order (complex) subcoercive operator of step 2 then there exist b, c > 0
such that

|Kt| ≤ cG
(2)
b,t and |AiKt| ≤ c t−1/2G

(2)
b,t

for all t > 0 and i ∈ {1, . . . , d′}.

Proof. See [DER2]. �

Although the first-order derivatives of the kernel satisfy the canonical
large time Gaussian upper bounds, in general higher order derivatives
fail to have the canonical large time Gaussian upper bounds.
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Theorem 2.3. Suppose G has polynomial growth and let H be a pure
second-order (complex) subcoercive operator of step 2. The following
are equivalent.

I. There exist b, c > 0 such that

|AiAjKt| ≤ c t−1G
(2)
b,t

for all t > 0 and i, j ∈ {1, . . . , d′}.
II. There exists a c > 0 such that ‖AiAjSt‖2→2 ≤ c t−1 for all t > 0

and i, j ∈ {1, . . . , d′}.
III. For all p ∈ 〈1,∞〉 there exists a c > 0 such that ‖AiAjϕ‖p ≤

c ‖Hϕ‖p for all ϕ ∈ D(H) and i, j ∈ {1, . . . , d′}.
IV. There exist σ ∈ 〈0, 1〉, c > 0 and for all R ∈ 〈0,∞〉 a function

ηR ∈ C∞(G) such that 0 ≤ ηR ≤ 1, ηR(g) = 1 for all g ∈ G
with |g|′ ≤ σR, ηR(g) = 0 for all g ∈ G with |g|′ ≥ R and
‖AαηR‖∞ ≤ cR−|α| for all α ∈ J(d′) with |α| = 2.

V. The Lie algebra of G is the direct product of the Lie algebra of a
compact group and a nilpotent Lie algebra.

Proof. For real symmetric operators this theorem has been proved in
[ERS2]. The general case is again in [DER2]. �

In [Ale] Alexopoulos gave an example of a sublaplacian H on the
covering group of the Euclidean motion group for which Condition III
of Theorem 2.3 fails.

A similar theorem is valid for n derivatives instead of only two deriva-
tives, with n ≥ 3. In particular, on a nilpotent Lie group all higher
order derivatives of the kernel associated to a complex second-order
operator of step r, with r ≥ 2, satisfy the canonical Gaussian upper
bounds for large time. That is a special case of the following theorem.

Theorem 2.4. Let G be a nilpotent Lie group and let r be the rank of
its Lie algebra. Let m ∈ 2N and let H be a pure m-th order operator
which is subcoercive of step r. Then for all α ∈ J(d′) there exist b, c > 0
such that

|AαKt| ≤ c t−|α|/mG
(m)
b,t

for all t > 0.
Moreover, for all N ∈ N and p ∈ 〈1,∞〉 there exists a c > 0 such

that

(3) c−1 max
|α|=N

‖Aαϕ‖p ≤ ‖HN/mϕ‖p ≤ c max
|α|=N

‖Aαϕ‖p

for all ϕ ∈ D(HN/m) =
⋂
|α|≤N D(Aα).

Proof. See [NRS] or [ERS1]. �
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3. Sums of subcoercive operators

Before we describe a more general theorem we first consider an ex-
ample on Rd.

Example 3.1. Let ∆ = −
∑d

i=1 ∂i2 be the Laplacian on Rd and n,m ∈
2N such that n ≤ m. Set

H = ∆n/2 + ∆m/2 .

Let K, K(n) and K(m) denote the kernels of the semigroups generated
by H, ∆n/2 and ∆m/2. Then

Kt ∗ ϕ = Stϕ = e−tHϕ = e−t∆
n/2

e−t∆
m/2

ϕ = K
(n)
t ∗K(m)

t ∗ ϕ

for all ϕ ∈ L2(R
d) since ∆n/2 and ∆m/2 commute. So Kt = K

(n)
t ∗K(m)

t

for all t > 0. Hence there exist b, c > 0 such that

|Kt| ≤ c (G
(n)
b,t ∗G

(m)
b,t )

for all t > 0 and x ∈ Rd. These bounds can be reexpressed as follows.
Set

E
(m,n)
b,t (x) = (t−d/n ∧ t−d/m)(e−b(|x|

nt−1)n/(n−1) ∨ e−b(|x|mt−1)m/(m−1)

) .

Then for all b > 0 there exist b′, c > 0 such that

G
(n)
b,t ∗G

(m)
b,t ≤ cE

(m,n)
b′,t

and

E
(m,n)
b,t ≤ c (G

(n)
b′,t ∗G

(m)
b′,t )

for all t > 0. Thus there are b, c > 0 such that |Kt| ≤ cE
(m,n)
b,t for all

t > 0.
Using Fourier analysis it is not hard to show that there exists a c > 0

such that

c−1 t−νt−d/n ≤ ‖Kt −K
(n)
t ‖∞ ≤ c t−νt−d/n

uniformly for all t ≥ 1, where ν = (m − n)/n. So for large t the
kernel K(n) is a first approximation of K. One might hope that one

has bounds |Kt| ≤ cG
(n)
b,t for suitable b, c > 0, uniformly for all t ≥ 1,

but these are not valid by the following argument. If y ∈ Rd then the
Lebesgue dominated convergence theorem implies that

lim
t→∞

td/mKt(t
1/my) = (2π)−d

∫
dp e−ip·ye−|p|

m

and the integral is not zero for all y ∈ Rd. But

lim
t→∞

td/mG
(n)
b,t (t

1/my) = 0
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for all b > 0 and y ∈ Rd. Therefore there are no b, c > 0 such that

|Kt| ≤ cG
(n)
b,t uniformly for all t ≥ 1.

The general case on a nilpotent Lie group is as follows.

Theorem 3.2. Let G be a nilpotent Lie group and let r be the rank
of its Lie algebra. Let k ∈ N\{1} and m1, . . . ,mk ∈ 2N with m1 >
m2 > . . . > mk. For all j ∈ {1, . . . , k} let Hmj

be a pure mj-th order

subcoercive operator of step r. Set H =
∑k

j=1Hmj
and let K be the

kernel of the semigroup generated by H. Then one has the following.

I. For all α there are b, c > 0 such that

|AαKt| ≤ c (t−|α|/m ∧ t−|α|/m) (G
(m)
b,t ∗G(m)

b,t )

for all t > 0 where m = m1 and m = mk.
II. For all α ∈ J(d′) and p ∈ 〈1,∞〉 there exists a c > 0 such that

‖Aαϕ‖p ≤ c‖H |α|/mjϕ‖p
for all j ∈ {1, . . . , k} and ϕ ∈ D(H |α|/mj).

III. For all α ∈ J(d′) there exist b, c > 0 such that

|AαKt − AαK
(m)
t | ≤ c t−νt−|α|/m (G

(m)
b,t ∗G(m)

b,t )

for all t ≥ 1, where K(m) denotes the kernel of Hm and ν =
(mk−1 −mk)/mk.

Proof. See [DER1], Theorems 2.1 and 2.12. �

Again Statement III of Theorem 3.2 indicates that K(m) is the first
order approximation of the kernel K for large t. Thus the large time
behaviour is determined by the lowest order terms in H. The kernel K
can be bounded by a Gaussian only in a very special case.

Proposition 3.3. Let n ∈ N\{1} and adopt the notation of Theo-
rem 3.2. The following are equivalent.

I. There exist b, c > 0 such that |Kt| ≤ cG
(n)
b,t for all t > 0.

II. n = m = m or G is compact and n ≥ m.

Proof. See [DER1], Proposition 2.15. �

4. Higher order operators

It follows from Theorem 2.4 and Example 1.1 that for all m ∈ 2N the

kernel of the semigroup generated by the operator
(
−

∑d′

i=1Ai2
)m/2

satisfies canonical Gaussian upper bounds for all time if G is nilpotent.
The condition that G is nilpotent can be relaxed.
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Theorem 4.1. Let a1, . . . , ad′ be an algebraic basis of rank r for the
Lie algebra of a Lie group G with polynomial growth. Let m ∈ 2N
and let K be the kernel of the semigroup generated by the operator(
−

∑d′

i=1Ai2
)m/2

. Then there exist b, c > 0 such that |Kt| ≤ cG
(m)
b,t

for all t > 0.

Proof. See [ElR3], Theorem 3.1. �

It also follows from Theorem 2.4 and Example 1.1 that for allm ∈ 2N

the kernel of the semigroup generated by the operator (−1)m/2
∑d′

i=1A
m
i

satisfies canonical Gaussian upper bounds for all time if G is nilpotent.
Nevertheless in contrast to Theorem 4.1, this result does not extend
to Lie groups with polynomial growth, in general. We next describe a
counter example.

5. The Euclidean motion group

The Lie algebra g of the Euclidean motion group is the three dimen-
sional Lie algebra with basis b1, b2, b3 and commutation relations

[b1, b2] = b3 , [b1, b3] = −b2 , [b2, b3] = 0 .

Then g is solvable, but not nilpotent. The maximal nilpotent ideal of g,
the nilradical, equals n = span(b2, b3). Let G be the connected simply
connected Lie group with Lie algebra g. Then G is the covering group
of the Euclidean motion group. Let a1, a2 be an algebraic basis for g,
let m ∈ 2N\{2} and set

(4) H = (−1)m/2(Am1 + Am2 ) .

Let K be the kernel of the semigroup generated by H. One has V ′(ρ) �
ρ3 for ρ ≥ 1, so G has polynomial growth.

Theorem 5.1. The following are equivalent.

I. There exist b, c > 0 such that

|Kt| ≤ cG
(m)
b,t

uniformly for all t > 0.
II. There exists a c ≥ 1 such that

c−1 V (t)−1/m ≤ ‖Kt‖∞ ≤ c V (t)−1/m

uniformly for all t > 0.
III. a1 ∈ n or a2 ∈ n.

Proof. See [ElR3] Theorem 1.1 and Remark 2.5. �
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A sketch of the beginning of the proof is as follows. Define Φ: R3 →
G by

Φ(x1, x2, x3) = exp(x1b1) exp(x2b2) exp(x3b3) .

Then Φ is a diffeomorphism. Set Bi = dL(bi) and B̌i = (Φ−1)∗Bi.
Then

B̌1 = −∂1,

B̌2 = − cosx1 ∂2 + sinx1 ∂3,

B̌3 = − sinx1 ∂2 − cosx1 ∂3 ,

where the ∂i are the partial derivatives on R3. Set Ȟ = (Φ−1)∗H. Note
that

(5) (ϕ, Ȟϕ) =
2∑
i=1

(Ǎ
m/2
i ϕ, Ǎ

m/2
i ϕ)

for all ϕ ∈ D(Ȟ). Then the quadratic form on the right hand side of
(5) can be written in the form

(ϕ, Ȟϕ) =
∑

α,β∈J(3)
1≤|α|,|β|≤m/2

(∂αϕ, cα,β ∂
βϕ)

with the cα,β a function which is a polynomial of functions x 7→ sin x1

and x 7→ cosx1. Hence the quadratic form associated to Ȟ might con-
tain second-order terms. The large time behaviour of the kernel can be
obtained using a Bloch–Zak decomposition or by using homogenization
theory.

Example 5.2. If H = B14+B24 then K satisfies the canonical Gauss-
ian upper bounds.

If H = B14 + (B1 + B2)4 then K does not satisfy the canonical
Gaussian upper bounds for large time. If one expands (B̌1 + B̌2)2ϕ as
in (5) then one obtains on both side of the inner product a term B̌3ϕ,
so

(ϕ, Ȟϕ) = (B̌3ϕ, B̌3ϕ) + higher order derivatives .

Similarly to the situation in Theorem 3.2 for sums of subcoercive oper-
ators on nilpotent Lie groups one has a contribution of a second-order
operator and K does not satisfy the m-th order canonical Gaussian
upper bounds for large time.

However, if H = (B1 + B2)4 + B34 then K does have the canonical
Gaussian upper bounds for large time, since Condition III of Theo-
rem 5.1 is valid. This is surprising since the quadratic form has a
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second-order term contribution as in the second example. But homog-
enization is a non-linear process and for the homogenized operator in
this case the coefficients of the second-order terms cancel. It turns out
that the homogenization of Ȟ is again a fourth-order operator and K
satisfies the canonical fourth-order Gaussian upper bounds.

Next we describe the behaviour of the kernel in case the equivalent
conditions of Theorem 5.1 are not valid.

Theorem 5.3. Let H be as in (4). Suppose a1 6∈ n and a2 6∈ n. Then
one has the following.

I. There exist b, c > 0 such that

|Kt(g)| ≤ c

∫
N

dhG
(m)
b,t (gh−1)G

[2]
b,t(h)

uniformly for all g ∈ G and t ≥ 1, where N = exp n and

G
[2]
b,t(Φ(0, x2, x3)) = t−1e−b(x22+x32)t−1

is the second-order Gaussian on N .
II. There exists a c > 0 such that

c−1 t−(m+1)/m ≤ ‖Kt‖∞ ≤ c t−(m+1)/m

uniformly for all t ≥ 1.
III. There exist c, c′, c1 > 0 such that

‖Ǩt − K̂t‖∞ ≤ c t−(m+1)/m t−1/m

uniformly for all t ≥ 1, where Ǩ is the kernel of the semigroup

generated by Ȟ = (Φ−1)∗H and K̂ is the kernel of the semigroup
generated by

(−1)m/2c1 ∂
m
1 − c′(∂22 + ∂32) .

Proof. See [ElR3]. �

If H = (−1)m/2
∑

|α|=|β|=m/2 ∂
α cα,β ∂

β is a pure m-th order strongly

elliptic operator on Rd with complex measurable coefficients then the
solution of the Kato problem solved by Auscher, Hofmann, McIntosh
and Tchamitchian states that D(H1/2) = Wm/2,2 and there exists a
c > 0 such that

(6) c−1 max
|α|=m/2

‖∂αϕ‖2 ≤ ‖H1/2ϕ‖2 ≤ c max
|α|=m/2

‖∂αϕ‖2

for all ϕ ∈ D(H1/2) (see [AHMT], Theorem 1.5). In [AHMT] the
identity D(H1/2) = Wm/2,2 and the homogeneous estimates (6) were
proved first under the additional assumption that the kernel of the
semigroup generated by H has the canonical Gaussian upper bounds.
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A similar result is valid for subcoercive operators with constant co-
efficients on nilpotent groups by (3) in Theorem 2.4. If the group
is simply connected then an operator as in Theorem 2.4 is unitarily
equivalent to an operator on Rd with polynomial coefficients. If G is a
general Lie group and H is a pure m-th order operator which generates
a bounded semigroup on L2 then it follows from Theorem 1.2.V that
there exists a c > 0 such that

c−1( max
|α|=m/2

‖Aαϕ‖2 + ‖ϕ‖2) ≤ ‖H1/2ϕ‖2 + ‖ϕ‖2

≤ c ( max
|α|=m/2

‖Aαϕ‖2 + ‖ϕ‖2)(7)

for all ϕ ∈ D(H1/2). But if the group is not homogeneous then one
cannot easily scale the L2-norm ‖ϕ‖2 of ϕ away in (7). Nevertheless
the homogeneous estimates (3) are valid on nilpotent Lie groups, even
if the nilpotent group is not homogeneous.

If G is the covering group of the Euclidean motion group and H =
B14 + B24, with the notation as in the beginning of this section, then
it follows from Theorem 5.1 that the kernel of the semigroup S gener-
ated by H has the canonical Gaussian upper bounds. Moreover, S is
bounded on L2 and D(H1/2) =

⋂
|α|=2D(Aα) on L2. Nevertheless the

analogue of the homogeneous estimates (6) and (3) are not valid.

Proposition 5.4. Let G be the covering group of the Euclidean motion
group and adopt the notation as in the beginning of this section. Let
a1, a2 be an algebraic basis for g such that a1 ∈ n or a2 ∈ n. Let
m ∈ 2N\{2} and set H = (−1)m/2(Am1 + Am2 ). Then there does not
exist a c > 0 such that

max
|α|=m/2

‖Aαϕ‖2 ≤ c ‖H1/2ϕ‖2

for all ϕ ∈ D(H1/2).

Proof. Suppose there exists a c > 0 such that max|α|=m/2 ‖Aαϕ‖2 ≤
c ‖H1/2ϕ‖2 for all ϕ ∈ D(H1/2). We will show that Condition IV of
Theorem 2.3 is valid.

Let K be the kernel of the semigroup S generated by H. Then

max
|α|=m/2

‖AαStϕ‖2 ≤ c ‖H1/2Stϕ‖2 ≤ (2e)−1/2t−1/2‖ϕ‖2

for all t > 0 by spectral theory. By Theorem 5.1 the kernel K satisfies
the canonical Gaussian upper bounds. Hence by a quadrature estimate
it follows that there exists a c1 > 0 such that

‖St‖1→2 ≤ c1V
′(t)−1/(2m) and ‖Kt‖2 ≤ c1V

′(t)−1/(2m)
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for all t > 0. Therefore one has

‖AαKt‖∞ ≤ ‖AαS3t‖1→∞ ≤ ‖AαS2t‖2→∞‖St‖1→2 = ‖AαK2t‖2‖St‖1→2

≤ ‖AαSt‖2→2‖Kt‖2‖St‖1→2 ≤ (2e)−1/2c c12 t
−1/2V ′(t)−1/m

for all t > 0 and α ∈ J(d′) with |α| = m/2. Hence there exists a c2 > 0
such that

(8) max
|α|=m/2

‖AαKt‖∞ ≤ c2 t
−1/2V ′(t)−1/m

for all t > 0.
Since H does not have a constant term one has H11 = 0 on L∞,

where 11 is the constant function with value one. Hence St11 = 11 and∫
Kt = 1 for all t > 0. Moreover, since H is self-adjoint one deduces

that Kt(g−1) = Kt(g) for all g ∈ G and t > 0. Hence

ReK2t(g) = Re

∫
dhKt(h)Kt(h

−1g)

≤
∫
dh |Kt(h)|2 =

∫
dhKt(h)Kt(h

−1) = K2t(e)

for all t > 0 and g ∈ G by the Schwartz inequality. By Theorem 5.1

there exist b, c3 > 0 such that |Kt| ≤ c3G
(m)
b,t for all t > 0. Then for all

κ > 0 one has

Kt(e) ≥ V ′(κt1/m)−1

∫
{g∈G:|g|′≤κt1/m}

dg ReKt(g)

= V ′(κt1/m)−1
(
1−

∫
{g∈G:|g|′>κt1/m}

dg ReKt(g)
)

≥ V ′(κt1/m)−1
(
1−

∫
{g∈G:|g|′>κt1/m}

dg c3G
(m)
b,t (g)

)
for all t > 0. But the last integral tends to zero as κ → ∞. Hence
there exists a κ > 0 such that Kt(e) ≥ 2−1V ′(κt1/m)−1 for all t > 0.
But since G has polynomial growth there then exists a c4 > 0 such that
Kt(e) ≥ c4 V

′(t)−1/m for all t > 0.
It follows from a subelliptic variation of Lemma III.3.3 of [Rob] that

there exists a c5 > 0 such that

max
|α|=n

‖Aαϕ‖∞ ≤ εm/2−n max
|α|=m/2

‖Aαϕ‖∞ + c5 ε
−n‖ϕ‖∞

for all n ∈ {1, . . . ,m/2− 1} and ϕ ∈
⋂
|α|=m/2D(Aα) in the L∞-sense.

Hence by (8), using the Gaussian upper bounds for K and choosing



140 A.F.M. TER ELST AND DEREK W. ROBINSON

ε = t−n/m one deduces that

max
|α|=n

‖AαKt‖∞ ≤ (c2 + c3c5) t
−n/m V ′(t)−1/m

for all t > 0 and n ∈ {1, . . . ,m/2}. Then

|Kt(g)−Kt(e)| ≤ |g|′
( d′∑
i=1

‖AiKt‖∞2
)1/2

≤ c6 |g|′ t−1/m V ′(t)−1/m

for all g ∈ G and t > 0, where c6 = (d′)1/2(c2 + c3c5). It follows that

c3c
−1
4 e−b((|g|

′)mt−1)1/(m−1) ≥
∣∣∣∣Kt(g)

Kt(e)

∣∣∣∣ ≥ 1− |Kt(g)−Kt(e)|
Kt(e)

≥ 1− c6c
−1
4 |g|′ t−1/m(9)

for all g ∈ G and t > 0. Next let τ : C → R be a C∞-function such
that 0 ≤ τ ≤ 1, τ(z) = 0 for all |z| ≥ c3c

−1
4 e−b and τ(z) = 1 for all

|z| ≤ 2−1c3c
−1
4 e−b. For all R > 0 define ηR ∈ C∞(G) by

ηR(g) = τ
(KRm(g)

KRm(e)

)
.

Then it follows from (9) that ηR(g) = 0 if |g|′ ≥ R and ηR(g) = 1 if
|g|′ ≤ σR where σ = c4c

−1
6 (1− 2−1c3c

−1
4 e−b).

Next we show that the derivatives have the right decay. Let α ∈ J(d′)
with |α| = m/2. Then

(10) (AαηR)(g) =
∑

τ (l)

(
KRm(g)

KRm(e)

) l∏
p=1

(AβpKRm)(g)

KRm(e)

uniformly for all g ∈ G and R > 0, where the sum is finite and over a
subset of all l ∈ {1, . . . , n} and β1, . . . , βl ∈ J(d′) with |βp| ≥ 1 for all
p ∈ {1, . . . , l} and |β1|+ . . .+ |βl| = n. Then∣∣∣∣ l∏

p=1

(AβpKR2)(g)

KR2(e)

∣∣∣∣ ≤ l∏
p=1

(c2 + c3c5)c
−1
4 R−|βp| = (c2 + c3c5)

lc−l4 R
−n

uniformly for g ∈ G and R > 0. Hence Condition IV of Theorem 2.3
is valid. Therefore by Theorem 2.3 g is the direct product of the Lie
algebra of a compact group and a nilpotent Lie algebra. This is a
contradiction and the proof of the proposition is complete. �
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