
GAUSSIAN UPPER BOUNDS FOR HEAT KERNELS
OF A CLASS OF NONDIVERGENCE OPERATORS

XUAN THINH DUONG AND EL MAATI OUHABAZ

Abstract. Let Ω be a subset of a space of homogeneous type.
Let A be the infinitesimal generator of a positive semigroup with
Gaussian kernel bounds on L2(Ω). We then show Gaussian heat
kernel bounds for operators of the type bA where b is a bounded,
complex valued function.

1. Introduction

Behaviour of heat kernels has long been an active topic in functional
analysis and partial differential equations. In the past few years, it
is known that heat kernel bounds such as Gaussian bounds or Poisson
bounds imply various useful properties for operators such as Lp spectral
invariance [1], [9], bounded holomorphic functional calculi on Lp spaces
[11], Lp−Lq maximal regularity for abstract Cauchy problems [12], [7],
Lp-analyticity of the semigroup [15]. A large class of divergence form
differential operators on the Euclidean space RD are known to pos-
sess Gaussian heat kernel bounds, see [8], [2], [4] and their references.
However, nondivergence operators with L∞ coefficients, or even with
uniformly continuous coefficients, do not possess Gaussian bounds in
general, [5], [6]. Hence we can only hope Gaussian heat kernel bounds
for specific classes of nondivergence form operators.

The nondivergence form operators −b∆ on the Euclidean space RD

were studied in [14]. It was proved that if b : X → C is any bounded
measurable function on RD such that

<b(x) ≥ δ > 0 for a.e. x ∈ X (1)

then the kernel kt(x, y) of the semigroup e−tbA has an upper bound
with polynomial decay in |x − y|. It was also observed that one can
improve it to exponential decay by controlling the constants in the
upper bound.

The proof in [14] depends on the specific Laplacian ∆ through certain
estimates using Sobolev embedding and contraction property of the
heat semigroup e−t∆ on RD. Note that since b is complex-valued, the
semigroup e−tb∆ is no longer contractive.
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This result was extended in [10] where it was shown that if the heat
kernel pt(x, y) of an operator A has a Gaussian bound

0 ≤ pt(x, y) ≤ C

tD/2
e−c

d2(x,y)
t . (2)

then a similar upper bound holds for the heat kernels of bA. The
proof in [10] relies on the Trotter product formula and estimates on
the resolvents. During a seminar, the second named author was asked
by E. B. Davies if the result in [10] was still true in more general setting
like manifolds where the heat kernel bounds take the form

0 ≤ pt(x, y) ≤ C

v(x,
√

t)
e−c

d2(x,y)
t .

This is a natural question and this paper is to give a positive answer
when the underlying space is a space of homogeneous type or a subset
of a space of homogeneous type.

Throughout this paper, C, C ′, c and c′ denote positive constants
whose value may change from line to line

2. Main result

Let (X, d, µ) denote a metric space equipped with a σ−finite measure
µ. We assume that X satisfies the doubling property

v(x, 2r) ≤ Mv(x, r) ∀x ∈ X,∀r > 0, (3)

where M is a constant and v(x, r) denotes the volume of the ball with
center x and radius r.
Suppose that −A is the generator of a bounded analytic semigroup e−tA

on L2(X, µ) which has a kernel pt(x, y) satisfying a Gaussian upper
bound

0 ≤ pt(x, y) ≤ C

v(x,
√

t)
e−c

d2(x,y)
t (4)

for some positive constants C, c and for all t > 0.
The aim of this paper is to show that if b : X → C is any bounded

measurable function on X which satisfies condition (1), then e−tbA has
a kernel kt(x, y) which satisfies a similar Gaussian upper bound, that
is

|kt(x, y)| ≤ C ′

v(x,
√

t)
e−c′ d2(x,y)

t (5)

for some positive constants C, c and for all t > 0.
As we mentioned above if v is polynomial in r and independent of the

centre x, i.e., v(x, r) = crD for all x ∈ X, r > 0, condition (4) becomes
condition (2) and a similar estimate to (5) (with v(x,

√
t) replaced by
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tD/2) was shown in [10]. In a slightly more general setting, Gaussian
lower bounds of kt(x, y) were also studied in [16].

The proof of our main result relies on the same strategy as in [10] in
the sense that it is based on the estimates of powers of the resolvents
and the Trotter product formula for semigroups. However, the local na-
ture of the upper bound (v(x,

√
t))−1 requires different approach from

the case of the uniform bound t−D/2. Indeed, an uniform bound on the
kernel of an operator can be obtained through the cross norm of the
operator itself from the space L1 to the space L∞ but this approach is
clearly not enough to produce the upper bound of the type (v(x,

√
t))−1.

We overcome this problem by using the resolvent equation which im-
plies the representation (8), together with careful estimates on their
kernels; see estimates (9) and (10).

We also need to know how to pass from the upper bound (4) on heat
kernels to estimates on kernels of powers of the resolvents and vice
versa. The following theorem gives that equivalence.

Theorem 1. Suppose that −A is the generator of a semigroup e−tA

which is bounded analytic with angle ν on L2(X, µ). The following as-
sertions are equivalent
(α) e−tA has a kernel pt(x, y) which satisfies the estimate (5) for all
t > 0
(β) For all λ > 0 and large enough integer m, (λI + A)−m has a kernel
Rλ,m(x, y) which satisfies

|Rλ,m(x, y)| ≤ C

|λ|mv(x, 1√
|λ|

)
e−c
√
|λ|d(x,y) (6)

(γ) for all θ ∈ [0, ν), λ ∈ Σ(θ + π
2
) and large enough integer m, (λI +

A)−m has a kernel Rλ,m(x, y) which satisfies (6) where Σ(α) denotes
the sector {z ∈ C, |arg(z)| < α}.

Remark.
(a) The doubling property (3) implies the strong homogeneity prop-

erty

∀x ∈ X, r > 0, λ ≥ 1, v(x, λr) ≤ Mλnv(x, r) (7)

for some n > 0. This property will be used in our proof.
(b) The condition m large enough in the above theorem can be re-

placed by m > n.
(c) The main result of this paper is Theorem 2 but Theorem 1 is also

of independent interest.
We will use Theorem 1 and the Trotter product formula to prove the

following.



38 XUAN THINH DUONG AND EL MAATI OUHABAZ

Theorem 2. Assume that −A generates a bounded analytic semigroup
which has a kernel pt(x, y) satisfying the upper bound (4). Assume
that b ∈ L∞(X, µ, C), satisfies (1) and the operator −bA generates a
bounded analytic semigroup e−tbA on L2(X, µ). Then e−tbA has a kernel
kt(x, y) which satisfies (5).

Remarks.
(a) Sufficient conditions in terms of b and A which ensure that −bA

generates a bounded analytic semigroup are given in [10]. For example,
−bA always generates a bounded analytic semigroup if A is self-adjoint.

(b) In the above theorem we assumed that pt(x, y) is positive but
the result is still true if we replace the assumption (4) by

|pt(x, y)| ≤ ht(x, y) ≤ C

v(x,
√

t)
e−c

d2(x,y)
t (4′)

where ht(x, y) is a positive heat kernel. In this case, the right hand
side of the estimate (14) below will be ‖b−1‖∞(λc0I + H)−1|f |, where
H denotes the generator of the semigroup whose kernel is ht(x, y). The
rest of the proof needs no change. As an example, we obtain a Gauss-
ian bound for the heat kernel of bA where A =

∑D
k=1(

∂
∂xk

− iak)
2 the

magnetic Laplacian on RD. It is well known that the heat kernel of A
satisfies (4′) with ht(x, y) the classical heat kernel of the Laplacian, see
[13] for example.

We can replace the space X which satisfies the doubling property
(3) by Ω where Ω is any subet of X and the result of Theorem 2 is still
true. More specifically, the following theorem can be proved by using
the same proof as that of Theorem 2.

Theorem 3. Assume that −A generates a bounded analytic semigroup
on L2(Ω) which has kernel pt(x, y) satisfying

0 ≤ pt(x, y) ≤ C

vX(x,
√

t)
e−c

d2(x,y)
t (4′′)

for all t > 0, all x, y ∈ Ω, where vX(x,
√

t) denotes the volume of
the ball with centre x, radius

√
t in the space X. Assume that b ∈

L∞(Ω, µ, C), satisfies (1) and the operator −bA generates a bounded
analytic semigroup e−tbA on L2(Ω).

Then e−tbA has a kernel kt(x, y) which satisfies

|kt(x, y)| ≤ C ′

vX(x,
√

t)
e−c′ d2(x,y)

t (5′′)

for all t > 0, all x, y ∈ Ω.
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Remarks.
In Theorems 2 and 3, we only give heat kernel bounds on kt(x, y)

for t > 0. Using Proposition 3.3 of [11], we can extend the results to
obtain similar heat kernel bounds on kz(x, y) for complex z in some
sector of the complex plane.

Applications
We give a few applications of our Theorems 2 and 3:
(a) Let A be the Laplace-Beltrami operator on a manifold M which

satisfies a Sobolev inequality and the doubling property. Then A gen-
erates a positive semigroup with Gaussian heat kernel bounds (4). It
follows from Theorem 2 that the semigroup e−tbA has Gaussian heat
kernel bounds (5).

(b) Let A be a divergence form elliptic operator with real, symmetric
coefficients acting on a bounded domain Ω of RD with Neumann bound-
ary conditions. Assume that the boundary of Ω satisfies the extension
property. Then A generates a positive semigroup with Gaussian heat
kernel bounds [8]. More specifically,

0 ≤ pt(x, y) ≤ C max{1, 1

tD/2
}e−c

d2(x,y)
t (4′′′).

It follows from Theorem 3 that the semigroup e−tbA has Gaussian heat
kernel bounds

|kt(x, y)| ≤ C ′ max{1, 1

tD/2
}e−c′ d2(x,y)

t (5′′′).

(c) As a consequence of heat kernel bounds, the two operators bA in
applications (a) and (b) above have the following properties:

(i) Lp spectral invariance: The connected components of their
resolvent sets which contain the positive real line on Lp spaces are
independent of p, 1 ≤ p ≤ ∞,

(ii) The Lp−Lq maximal regularity for abstract Cauchy problems,
(iii) If bA has a bounded holomorphic functional calculus on L2,

then it has a bounded holomorphic functional calculus on Lp, 1 < p <
∞.

3. The Proofs.

Proof of Theorem 1. We first show (α) ⇒ (β).
Let λ > 0. The Laplace transform gives

(λI + A)−m =
1

m!

∫ ∞

0

tm−1e−λte−tAdt.
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Hence the kernel Rλ,m(x, y) of (λI + A)−m is given by

|Rλ,m(x, y)| ≤ C

m!

∫ ∞

0

tm−1e−λt

v(x,
√

t)
e
−cd2(x,y)

t dt.

Using the fact that λt + d2(x,y)
t

≥
√

λd(x, y), we have

|Rλ,m(x, y)| ≤ Ce−c′
√

λd(x,y)

m!

[∫ λ−1

0

tm−1e−c”λt

v(x,
√

t)
dt +

∫ ∞

λ−1

tm−1e−c”λt

v(x,
√

t)
dt

]
.

For t ∈ [λ−1,∞), we obviously have v(x,
√

t) ≥ v(x,
√

λ−1). Hence the
second term in the square bracket satifies∫ ∞

λ−1

tm−1e−c”λt

v(x,
√

t)
dt ≤ 1

v(x,
√

λ−1)

∫ ∞

λ−1

tm−1e−c”λtdt

=
1

v(x,
√

λ−1)

∫ ∞

1

λ−msm−1e−c”sds

=
C

λmv(x,
√

λ−1)
.

For the first term of the square bracket, we have∫ λ−1

0

tm−1e−c”λt

v(x,
√

t)
dt =

1

λm

∫ 1

0

sm−1e−c”s

v(x,
√

s
λ
)
ds.

We now apply the strong homogeneity property (7) to deduce that

v(x,
√

λ−1) ≤ Ms
−n
2 v(x,

√
s

λ
) ∀s ∈ (0, 1].

This implies that∫ λ−1

0

tm−1e−c”λt

v(x,
√

t)
dt ≤ C

λmv(x,
√

λ−1)

∫ 1

0

sm−n
2
−1e−c”sds

and the last integral is finite for m > n
2
. This shows the desired impli-

cation.

We now show (β) ⇒ (γ). Firstly, we show an upper bound for
Rm,λ(x, y) for λ ∈ Σ(θ + π

2
).

By the resolvent equation ( iterated m−times ) we have

(λI + A)−2m = (λI + A)−m(I + (|λ| − λ)(λI + A)−1)2m(λI + A)−m

from which it follows that

Rλ,2m(x, y) =

∫
X

R|λ|,m(x, z)(LR|λ|,m(., y))(z)dµ(z) (8)



GAUSSIAN UPPER BOUNDS FOR HEAT KERNELS 41

where L = (I + (|λ| − λ)(λI + A)−1)2m. In order to apply L to z →
R|λ|,m(z, y) we need to know that the latter is in L2(X, µ). Let us assume
this for the moment.
By Cauchy-Schwarz inequality and (8) we have

|Rλ,2m(x, y)| ≤ ‖R|λ|,m(x, .)‖2 ‖LR|λ|,m(., y)‖2.

By the analyticity assumption on e−tA we have

supλ∈Σ(θ+π
2
)‖λ(λI + A)−1‖L(L2) < ∞.

In particular,

‖LR|λ|,m(., y)‖2 ≤ M‖R|λ|,m(., y)‖2

with some constant M independent of λ. We then obtain

|Rλ,2m(x, y)| ≤ ‖R|λ|,m(x, .)‖2 ‖R|λ|,m(., y)‖2 (9)

We now estimate ‖R|λ|,m(x, .)‖2. Using heat kernel bound (4), we have∫
X
| R|λ|,m(x, z)|2dµ(z)

≤ C

|λ|2mv(x, 1√
|λ|

)2

∫
X

e−c
√
|λ|d(x,z)dµ(z)

=
C

|λ|2mv(x, 1√
|λ|

)2

∞∑
k=0

∫
{ k√

|λ|
≤d(x,z)≤ k+1√

|λ|
}
e−c
√
|λ|d(x,z)dµ(z)

≤ C

|λ|2mv(x, 1√
|λ|

)2

∞∑
k=0

v(x,
k + 1√
|λ|

)e−ck

≤ C

|λ|2mv(x, 1√
|λ|

)

∞∑
k=0

(k + 1)ne−ck

where we used (7) to obtain the last inequality. We now obtain from
this and (9) that

|Rλ,2m(x, y)| ≤ C

|λ|2mv(x, 1√
|λ|

)1/2v(y, 1√
|λ|

)1/2
. (10)

Now, Proposition 3.3 of [11] shows that the strong homogeneity prop-
erty (7), together with the bound (10) for λ > 0, imply that

|Rλ,2m(x, y)| ≤ C

|λ|2mv(x, 1√
|λ|

)1/2v(y, 1√
|λ|

)1/2
e−c”

√
|λ|d(x, y)

for λ ∈ Σ(θ + π
2
). This inequality and (7) imply (6) for λ ∈ Σ(θ + π

2
).
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We now show (γ) ⇒ (α). The proof is standard but we give the
details for the sake of completeness.
Using the inverse Laplace transform we have

pt(x, y) =
m− 1

2πitm−1

∫
ΓR

eλtRλ,m(x, y)dλ

where ΓR = {re−iα, r ≥ R} ∪ {Reiα, |φ| ≤ α} ∪ {reiα, r ≥ R} :=
Γ1 ∪ Γ2 ∪ Γ3 and where α ∈ (π

2
, ν + π

2
) is a given constant and R =

max(1
t
, d2(x,y)

t2
).

Using the assertion 3, we can write that for some constants C, c, c′

independent of R

|pt(x, y)| ≤ C

tm−1

∫
ΓR

e<λt

|λ|mv(x,
√
|λ|−1)

e−c
√
|λ|d(x,y)d|λ| (11)

The doubling property (7) implies that for |λ| ≥ R ≥ t−1,

v(x,
√

t) ≤ M(|λ|t)
n
2 v(x,

√
|λ|−1). (12)

Hence,

1
tm−1

∫
Γ1∪Γ3

e<λt

|λ|mv(x,
√
|λ|−1)

e−c
√
|λ|d(x,y)d|λ|

≤ C

v(x,
√

t)

∫ ∞

R

(λt)−m+n
2 e−c′λte−c

√
λd(x,y)dλ

≤ C

v(x,
√

t)
e−c

√
Rd(x,y)e−

c′
2

tR

∫ ∞

1

s−m+n
2 e−

c′
2

sds

≤ C

v(x,
√

t)
e−c

√
Rd(x,y)e−

c′
2

tR...

Using the fact that R = max(1
t
, d2(x,y)

t2
), the last term is dominated by

C

v(x,
√

t)
e−c

d2(x,y)
t .

Again by (12) we can bound the third term ( i.e.,
∫

Γ2
) in the right

hand side of (11) by

C

v(x,
√

t)

∫
|λ|=R

(Rt)−m+n
2 ec′Rte−c

√
Rttd|λ|.

This term is clearly dominated by

C

v(x,
√

t)
(Rt)−m+n

2
+1e−c

√
Rt

which gives the desired bound on pt(x, y). ♦
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Proof of Theorem 2. Suppose that b ∈ L∞(X,µ, C) satisfies (1) and
that −bA generates a bounded analytic semigroup on L2(X, µ). For
any λ > 0 we write

(λI + bA)−1 = (λb−1 + A)−1b−1 (13)

Our aim is to prove the following pointwise inequalities which is valid
a.e. for all f ∈ L2(X, µ)

|(λI + bA)−1f | ≤ ‖b−1‖∞(λc0I + A)−1|f | (14)

where c0 = δ
‖b‖2∞

. The proof of (14) was given in [10] but we repeat it

here to keep this paper self sufficient.
We first observe that the positivity of pt(x, y) implies that the resol-

vent (λc0I + A)−1 is a positivity preserving operator for λ > 0. This is
also the case for the operators (sI + λ<(1

b
) + A)−1 for all s, λ > 0 as a

consequence of the Trotter product formula (see [17])

e−t(λ<( 1
b
)+A)f = limn→∞(e−

t
n

λ<( 1
b
)e−

t
n

A)nf, ∀f ∈ L2(X)

( in [17], the formula is given for contraction semigroups but it applies

in this situation since both semigroups e−t<( 1
b
) and e−tA are contractions

for the equivalent norm ‖f‖∗ := supt≥0‖e−tA|f |‖2).
Note that by this formula we have the pointwise estimate

e−t(λ<( 1
b
)+A)|f | ≤ e−tA|f |, ∀t > 0, and f ∈ L2(X)

from which it follows that

(sI + λ<(
1

b
) + A)−1 =

∫ ∞

0

e−ste−t(λ<( 1
b
)+A)dt

exists for all s, λ > 0.

Using again the Trotter product formula for e−t(λ
b
+A), we deduce that

|e−t(λ
b
+A)f | ≤ e−t(λ<( 1

b
)+A)|f |

which implies

|(sI +
λ

b
+ A)−1b−1f | ≤ ‖b−1‖∞(sI + λ<(

1

b
) + A)−1|f |.

Since <(1
b
) ≥ δ

‖b‖2∞
:= c0, it follows from the Trotter product formula

that

|(sI +
λ

b
+ A)−1b−1f | ≤ ‖b−1‖∞(sI + λc0I + A)−1|f |.

Since (λ
b
+A)−1 and (λc0I+A)−1 exist we conclude from this inequality

that

|(λ
b

+ A)−1b−1f | ≤ ‖b−1‖∞(λc0I + A)−1|f |



44 XUAN THINH DUONG AND EL MAATI OUHABAZ

which is the desired inequality [14].
We now choose an integer m > n where n is the constant in the

homogeneity property (7). Iterate (13) m−times, we obtain

|(λI + bA)−mf | ≤ ‖b−1‖m
∞(λc0I + A)−m|f | . (15)

By assumption, pt(x, y) satisfies (4) hence by Theorem 1, (λc0I +A)−m

has a kernel Rλ,m(x, y) which satisfies (6). In particular, v(.,
√

λ−1) ×
(λc0I + A)−m is bounded from L1 into L∞. Estimate (15) implies that

v(.,
√

λ−1)(λI + bA)−m is bounded from L1 into L∞, so it is given by
a kernel. This implies that (λI + bA)−m is given by a kernel. Again
by (15), this kernel satisfies (6). By Theorem 1 we conclude that the
kernel kt(x, y) of e−tbA satisfies (5). ♦

References

[1] W. Arendt, Gaussian estimates and interpolation of the spectrum in
Lp, Differential and Integral Equations 7 (1994) 1153-1168

[2] W. Arendt and A.F.M. ter Elst, Gaussian estimates for second-
order elliptic operators with boundary conditions, J. Op. Theory ( to
appear)

[3] P. Auscher, Regularity theorems and heat kernels for elliptic operators,
J. Math. London Soc., 54 (1996) 284-296

[4] P. Auscher, A. McIntosh, Ph. Tchamitchian, Heat kernels of
second-order complex elliptic operators and applications, J. F. Anal 152
(1998) 22-73

[5] P. Bauman, Equivalence of the Green’s functions for diffusion operators
in Rn: a counter example, Proc. Amer. Math. Soc 91 (1984) 64-68

[6] P. Bauman, Positive solutions of elliptic equations in nondivergence
form and their adjoints, Ark. Mat. 22 (1984) 153-173

[7] Th. Coulhon and X.T. Duong, Maximal regularity and kernel
bounds: observations on a theorem by Hieber and Prüss, Diff. Integ.
Eq. (to appear)

[8] E.B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press
1989

[9] E.B. Davies, Lp spectral independence and L1 analyticity, J. London
Math. Soc. (2)52 (1995) 177-184

[10] X.T. Duong and E.M. Ouhabaz, Complex multiplicative perturba-
tions of elliptic operators: Heat kernel bounds and holomorphic func-
tional calculus, Diff. Integ. Eq ( to appear)

[11] X.T. Duong and D.W. Robinson, Semigroup kernels, Poisson bounds
and holomorphic functional calculus, J. Funct. Analysis 142 (1996) 89-
128.

[12] M. Hieber, J. Prüss, Heat kernels and maximal Lp-Lq estimates for
parabolic evolution equations, Preprint 1996

[13] T. Kato, Remarks on Schrödinger operators with vector potentials, Int.
Equ. Op. Th. 1 (1979) 103-113



GAUSSIAN UPPER BOUNDS FOR HEAT KERNELS 45

[14] A. McIntosh and A. Nahmod, Heat kernel estimates and functional
calculi of −b∆, Preprint 1996

[15] E.M. Ouhabaz, Gaussian estimates and holomorphy of semigroups,
Proc. Amer. Math. Soc. Vol. 123, N.5 (1995) 1465-1474

[16] E.M. Ouhabaz, Heat kernels of multiplicative perturbations: Hölder
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