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Abstract. A key result in describing the asymptotic behaviour of
bounded solutions of differential equations is the classical result of
Bohl-Bohr: If φ : R → C is almost periodic and Pφ(t) =

∫ t

0
φ(s) ds

is bounded then Pφ is almost periodic too. In this paper we re-
veal a new property of almost periodic functions: If ψ(t) = tNφ(t)
where φ is almost periodic and Pψ(t)/(1 + |t|)N is bounded then
Pφ is bounded and hence almost periodic. As a consequence of
this result and a theorem of Kadets, we obtain results on the al-
most periodicity of the primitive of Banach space valued almost
periodic functions. This allows us to resolve the asymptotic be-
haviour of unbounded solutions of differential equations of the form∑m

j=0 bju
(j)(t) = tNφ(t). The results are new even for scalar val-

ued functions. The techniques include the use of reduced Beurling
spectra and ergodicity for functions of polynomial growth.

Keywords: almost periodic, almost automorphic, ergodic, reduced
Beurling spectrum, primitive of weighted almost periodic func-
tions, Esclangon-Landau.

1. Introduction, Notation and Preliminaries

A problem arising naturally from a theorem of Bohl-Bohr-Kadets
[21], (see also [4], [9, Sections 5, 6] and references therein) is to in-
vestigate the almost periodicity of the primitive Pψ when ψ = tNφ,
where φ : R → X is almost periodic, X is a Banach space, and N
is a non-negative integer. More generally we describe the asymptotic
behaviour of solutions u : R → X of differential equations of the form∑m

j=0 bju
(j)(t) = tNφ(t) where bj ∈ X and m ∈ N.

We begin by introducing some notation. The function w(t) = wN(t)
= (1 + |t|)N is a weight on R, satisfying in particular w(s + t) ≤
w(s)w(t). By J we will mean R, R+ or R−. A function φ : J → X is
called w-bounded if φ/w is bounded and BCw(J,X) is the space of all
continuous w-bounded functions, a Banach space with norm ||φ||w,∞ =

supt∈R
||φ(t)||
w(t)

. Following Reiter [28, p. 142], φ is w-uniformly continuous

if ‖∆hφ‖w,∞ → 0 as h → 0 in J . Here ∆hφ denotes the difference
17
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of φ by h defined by ∆hφ(t) = φ(h + t) − φ(t). The closed sub-
space of BCw(J,X) consisting of all w-uniformly continuous functions
is denoted BUCw(J,X). It is not hard to show that φ is w-uniformly
continuous if and only if φ/w is uniformly continuous. Furthermore,
‖φt+h − φt‖w,∞ ≤ w(t) ‖φh − φ‖w,∞ and so

(1.1)
if φ ∈ BUCw(J,X) then the function

t→ φt : J → BUCw(J,X) is continuous.

When N = 0 or equivalently w = 1 we will drop the subscript w
from the names of various spaces.

As an example, note that for λ,N 6= 0, the function φ(t) = tNeiλt is
not bounded or uniformly continuous. However, φ is both w-bounded
and w-uniformly continuous and so φ ∈ BUCw(R, X).

We define TPw(R, X) = span{tjeiλt: 0 ≤ j ≤ N λ ∈ R} and
APw(R, X) to be the closure in BUCw(R, X) of TPw(R, X).

These are natural generalizations of the spaces TP (R, X) of X-
valued trigonometric polynomials and AP (R, X) of almost periodic
functions which correspond to the case N = 0.

Suppose now that u′ = ψ where u ∈ BUCw(R, X), ψ ∈ APw(R, X)
and X 6⊇ c0, that is X does not contain a subspace isomorphically
isometric to c0. Kadets proved that necessarily u ∈ APw(R, X) when
N = 0. However, the following example shows that this is not the case
for general N . Indeed, we will show below that the general case is more
delicate.

Example 1.1. Take X=C, N=1, w(t)=1+|t|, ψ(t)= t
w(t)

cos logw(t)

and u(t) = 1
2
w(t) cos logw(t) + 1

2
w(t) sin logw(t) − sin logw(t) − 1

2
.

Then u ∈ BUCw(R, X), ψ ∈ APw(R,C) and u′ = ψ. However,
u /∈ APw(R,C).

The proof of this assertion requires some further theory and will be
given in Remark 4.4.

2. Some function spaces.

In [12] a function φ : J → X is called Maak-ergodic with mean
Mφ = x ∈ X (see also [25], [19], [20], [11]) if for each ε > 0 there is
a finite subset F ⊆ J with ‖RFφ− x)‖ < ε where RFφ = 1

|F |
∑

t∈F φt.

Moreover E(J,X) is the closed subspace of BC(J,X) consisting of
Maak-ergodic functions and E0(J,X) = {φ ∈ E(J,X) : Mφ = 0}. If
M : E(J,X) → X is the function φ→Mφ, it follows that M is linear
and continuous and E(J,X) = E0(J,X)⊕X.
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In [12] we also defined a notion of ergodicity that applies to un-
bounded functions. This ergodicity differs from both that of Maak and
that of Basit-Günzler [9]. Indeed, the space of w-ergodic functions is
defined by Ew(J,X) = { φ ∈ BCw(J,X) : φ/w ∈ E(J,X)}. Both
Ew(J,X) and Ew,0(J,X) = {φ ∈ Ew(J,X) : M(φ/w) = 0} are closed
subspaces of BCw(J,X). It is convenient to introduce an even larger
class. For this we need Pw(J,X) the closed subspace of BCw(J,X) con-
sisting of polynomials on J with coefficients in X. We shall say a func-
tion φ : J → X is w -polynomially ergodic with w-mean p ∈ Pw(J,X)
if (φ− p)/w ∈ E0(J,X). The space of all such φ is denoted PEw(J,X)
and satisfies PEw(J,X) = Ew,0(J,X)+Pw(J,X). For N 6= 0 a w-mean
is not unique and this last sum is not direct.

Of course Pw(J,C) is finite dimensional and so PEw(J,C) is a closed
subspace of BCw(J,C). Moreover, we can choose a subspace PM

w (J,C)
of Pw(J,C) such that PEw(J,C) = Ew,0(J,C) ⊕ PM

w (J,C). The (con-
tinuous) projection map Mw : PEw(J,C) → PM

w (J,C) then provides a
unique w-polynomial mean Mw(φ) for each φ ∈ PEw(J,C). Now set
PM
w (J,X) = PM

w (J,C) ⊗ X and define Mw : PEw(J,X) → PM
w (J,X)

byMw(φ) =
∑k

j=1Mw(pj)⊗xj where φ ∈ PEw(J,X) has w-polynomial

mean p =
∑k

j=1 pj ⊗ xj ∈ Pw(J,C)⊗X.

Proposition 2.1. The map Mw : PEw(J,X) → PM
w (J,X) is well-

defined and continuous. Moreover, for each φ ∈ PEw(J,X), Mw(φ)
is a w-polynomial mean for φ and for each of its translates. Finally,
PEw(J,X) is a closed translation invariant subspace of BCw(J,X) and
PEw(J,X) = Ew,0(J,X)⊕ PM

w (J,X).

Proof. Let φ ∈ PEw(J,X) have means p =
∑k

j=1 pj ⊗ xj and q =∑m
j=1 qj ⊗ yj. Then p− q ∈ Ew,0(J,X) and so x∗ ◦ (p− q) ∈ Ew,0(J,C)

for all x∗ ∈ X∗. Hence Mw(x∗◦(p−q)) = 0 = x∗◦(
∑k

j=1Mw(pj)⊗xj−∑m
j=1Mw(qj)⊗ yj) which gives

∑k
j=1Mw(pj)⊗ xj =

∑m
j=1Mw(qj)⊗ yj

showing Mw is well-defined. Also, pj − Mw(pj) ∈ Ew,0(J,C) and so
by Lemma 2.2(a) below p − Mw(p) ∈ Ew,0(J,X). Hence Mw(φ) is
a mean for φ. Moreover, ‖x∗ ◦Mw(φ)‖w,∞ = ‖Mw(x∗ ◦ φ)‖w,∞ ≤
c ‖x∗ ◦ φ‖w,∞ = c supt∈J ‖x∗ ◦ φ(t)‖ /w(t) ≤ c ‖x∗‖ ‖φ‖w,∞. Hence,

|||Mw(φ)||| ≤ c ‖φ‖w,∞ where |||ψ||| = supx∗∈X∗
‖x∗◦ψ‖w,∞

‖x∗‖ for ψ ∈
Pw(J,X). By Lemma 2.2(b) below, Mw is continuous. If (φn) is
a sequence in PEw(J,X) converging to φ in BCw(J,X), let pn =
Mw(φn). Then (pn) converges to some p ∈ PM

w (J,X) and so (φn−pn

w
)

converges to φ−p
w

in BC(J,X). By the continuity of the Maak mean

function, M(φ−p
w

) = 0 and so PEw(J,X) is closed. That PEw(J,X) =
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Ew,0(J,X) + PM
w (J,X) is clear and that the sum is direct follows

from the Hahn-Banach theorem. Finally, for each t ∈ J we have
φt−p
w

= ∆tφ
w

+ φ−p
w

and so, by Lemma 2.2(c) below, p is a w-polynomial
mean of φt and PEw(J,X) is translation invariant. �

Lemma 2.2.
(a) If p ∈ Pw(J,X) and x∗ ◦ p ∈ Ew,0(J,C) for each x∗ ∈ X∗ then

p ∈ Ew,0(J,X).

(b) On Pw(J,X) the norms ‖φ‖w,∞ and |||φ||| = supx∗∈X∗
||x∗◦φ||w,∞

||x∗||
are equivalent.

(c) If φ ∈ BCw(J,X) then ∆tφ ∈ Ew,0(J,X) for all t ∈ J .

(d) If φ ∈ PEw(R, X) has w-mean p, then φ|J ∈ PEw(J,X) and φ|J
has w-mean p|J .

(e) Pw(J,X) ⊆ BUCw(J,X).

(f) Let φ ∈ BUCw(R, X), f ∈ L1
w(R) and suppose φ|J is w-polyno-

mially ergodic with w-mean p|J where p ∈ Pw(R, X). Then (φ ∗ f)|J is
w-polynomially ergodic with w-mean (p ∗ f)|J .

Proof. (a) We can choose q1, ..., qm ∈ Pw(J,C) and linearly independent
unit vectors x1, ..., xm ∈ X such that p =

∑m
j=1 qj ⊗ xj. Also choose

unit vectors x∗j ∈ X∗ such that
〈
x∗j , xi

〉
= δi,j. Given ε > 0 there

are finite subsets Fj of J such that
∥∥RFj(x

∗
j ◦ p/w)

∥∥ < ε/m. Setting
F = F1 + ...+ Fm we find

‖RF (p/w)‖ =

∥∥∥∥∥
m∑
j=1

RF (qj/w)⊗ xj

∥∥∥∥∥ ≤
m∑
j=1

‖RF (qj/w)‖

=
m∑
j=1

∥∥RF (x∗j ◦ p/w)
∥∥ ≤ m∑

j=1

∥∥RFj
(x∗j ◦ p/w)

∥∥ < ε.

This proves that p ∈ Ew,0(J,X)
(b) Let {p1, ..., pk} be a basis of Pw(J,C) consisting of unit vec-

tors for the norm ‖p‖w,∞. If p =
∑k

j=1 cjpj, where cj ∈ C then

‖p‖w,∞ ∼
∑k

j=1 ‖cj‖, ∼ denoting equivalence of norms. Every φ ∈
Pw(J,X) has a unique representation φ =

∑k
j=1 pj ⊗ xj, where xj ∈

X, and by the closed graph theorem, ‖φ‖w,∞ ∼
∑k

j=1 ‖xj‖. Hence,

|||φ||| = sup
∥∥∥∑k

j=1 pj 〈x∗, xj〉
∥∥∥ / ‖x∗‖ ≤ ∑k

j=1 ‖xj‖ ∼ ‖φ‖w,∞. Con-

versely, choose j0 such that ‖xj‖ ≤ ‖xj0‖ for each j. Then choose
x∗ ∈ X∗ such that 〈x∗, xj0〉 = ‖xj0‖ and ‖x∗‖ = 1. Hence,
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|||φ||| ≥

∥∥∥∥∥
k∑
j=1

pj 〈x∗, xj〉

∥∥∥∥∥
w,∞

∼
k∑
j=1

|〈x∗, xj〉| ≥ ‖xj0‖ ≥
1

k

k∑
j=1

‖xj‖ ∼ ‖φ‖w,∞ .

(c) We have ∆tφ
w

= ∆t(
φ
w
)+ ( φ

w
)t

∆tw
w

where ∆t(
φ
w
) ∈ E0(J,X) by [11,

Proposition 3.2] and ( φ
w
)t

∆tw
w

∈ C0(J,X).
(d) We prove the case J = R+. Given ε > 0 there is a finite subset

F = {t1, ..., tm} ⊆ R such that
∥∥∥ 1
m

∑m
j=1(

φ−p
w

)(tj + t)
∥∥∥ < ε for all t ∈ R.

choose uj, vj ∈ R+ such that tj = uj − vj. Let v = v1 + ...+ vm and set

sj = tj + v. So sj ∈ R+ and
∥∥∥ 1
m

∑m
j=1(

φ−p
w

)(sj + t)
∥∥∥ < ε for all t ∈ R+.

(e) Given p ∈ P n(J,X) we may choose pj ∈ P n(J,X) and qj ∈
P n(J,C) with qj(0) = 0 such that ∆hp(t) =

∑k
j=1 pj(t)qj(h) for all

h, t ∈ J . Hence ‖∆hp(t)‖ ≤ cw(t)
∑k

j=1 |qj(h)|, where c = supj ‖pj‖w,∞,

and so p ∈ BUCw(R, X).
(f) If χ is the characteristic function of a compact set K ⊆ R then

(φ− p) ∗ χ(s) =
∫
−K(φ− p)t(s)dt for each s ∈ R. But for each t ∈ R,

(φ− p)t = ∆t(φ− p) + (φ− p) and so by (c), (φ− p)t|J ∈ Ew,0(J,X).
Also, by (e), φ − p ∈ BUCw(R, X). By (1.1), the function t → (φ −
p)t|J : R → Ew,0(J,X) is continuous and hence weakly measurable and
separably-valued on −K. The integral

∫
−K(φ − p)t|Jdt is therefore a

convergent Haar-Bochner integral and so belongs to Ew,0(J,X). As
evaluation at s ∈ J is continuous on Ew,0(J,X) we conclude that ((φ−
p) ∗ χ)|J ∈ Ew,0(J,X). Hence also ((φ− p) ∗ σ)|J ∈ Ew,0(J,X) for any
step function σ : R → C By [28, p. 83] the step functions are dense in
L1
w(R) and so ((φ− p) ∗ f)|J ∈ Ew,0(J,X) for any f ∈ L1

w(R). �

The difference theorem below, included here in order to characterize
Ew(J,X) will also be used later. We use the notation Cw,0(J,X) =
{wξ : ξ ∈ C0(J,X)}, clearly a closed subspace of BUCw(J,X).

Theorem 2.3. Let F be any translation invariant closed subspace of
BCw(J,X). If φ ∈ PEw(J,X) has w-mean p and ∆tφ ∈ F for each
t ∈ J , then φ− p ∈ F + Cw,0(J,X). If also w = 1, then φ− p ∈ F .

Proof. For any finite subset F ⊆ J , φ−p
w
−RF (φ−p

w
) = − 1

|F |
∑

t∈F ∆t(
φ−p
w

)

and so φ − p = wRF (φ−p
w

) − 1
|F |

∑
t∈F ∆tφ + 1

|F |
∑

t∈F (φ−p
w

)t∆tw +
1
|F |

∑
t∈F ∆tp. The first term on the right may be made arbitrarily
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small in norm by suitable choice of F . The second term is in F by
assumption, the third and fourth terms are in Cw,0(J,X) since ∆tp,
∆tw ∈ Cw,0(J,X) for t ∈ J . If w = 1 then ∆tw = ∆tp = 0 which
shows φ− p ∈ F . �

We are now able to characterize w-polynomially ergodic functions.
Denote byDw,0(J,X) the closed span of {∆tφ : t ∈ J, φ ∈ BCw(J,X)}∪
Cw,0(J,X) and by Dw(J,X) the closed span of {∆tφ : t ∈ J, φ ∈
BCw(J,X)}.

Corollary 2.4. Ew,0(J,X) = Dw,0(J,X). If w = 1, then Dw,0(J,X) =
Dw(J,X) = E0(J,X).

Proof. Since Cw,0(J,X) ⊂ Ew,0(J,X), by Lemma 2.2 (c) and the closed-
ness of Ew,0(J,X), we have Dw,0(J,X) ⊂ Ew,0(J,X). Conversely, let
φ ∈ Ew,0(J,X). Then ∆tφ ∈ Dw(J,X) for all t ∈ J and by Theorem
2.3, φ ∈ Dw,0(J,X). If w = 1, then for any ψ ∈ Cw,0(J,X) and any
finite subset F of J , we have ψ = − 1

|F |
∑

t∈F ∆tψ+RFψ. As ‖RFψ‖w,∞
may be made arbitrarily small, we conclude that ψ ∈ Dw(J,X) and
hence Dw,0(J,X) = Dw(J,X). �

We conclude this section with a characterization of APw(R, X).

Theorem 2.5. If N ≥ 1, then APw(R, X) = tNAP (R, X)⊕Cw,0(R, X).

Proof. Note firstly that the sum on the right is direct. For suppose
tNψ1 + ξ1 = tNψ2 + ξ2 for ψj ∈ AP (R, X) and ξj ∈ Cw,0(R, X). Set
q(t) = (1 + t)N − tN and J = R+. Then (ψ1 − ψ2)|J = 1

w
(ξ2 − ξ1 −

qψ2 + qψ1)|J ∈ C0(J,X). This is impossible unless ψ1 = ψ2 (see [31]
or [5, Proposition 2.1.6). The sum is also topological. For suppose
φn = tNψn + ξn where ψn ∈ AP (R, X) and ξn ∈ Cw,0(R, X) and

(φn) converges to φ in BCw(R, X). Then φn

w
|J = ψn|J + ξn−qψn

w
|J ∈

AP (R, X)|J ⊕ C0(J,X). But this last sum is a topological direct sum
(see [5, 31]) and so (ψn|J) converges to ψ|J for some ψ ∈ AP (R, X).
Hence (ψn) converges to ψ in AP (R, X) and

(
tNψn

)
converges to tNψ

in APw(R, X). It follows that (ξn) converges to some ξ in Cw,0(R, X)
and that φ = tNψ + ξ.

Next, given φ ∈ APw(R, X) we may choose a sequence (πn) ⊂
TPw(R, X) converging to φ in APw(R, X). But πn = tNψn + ξn where
ψn ∈ TP (R, X) and ξn ∈ Cw,0(R, X). It follows from the previous para-
graph that φ = tNψ + ξ for some ψ ∈ AP (R, X) and ξ ∈ Cw,0(R, X).

Conversely, let φ = tNψ + ξ for some ψ ∈ AP (R, X) and ξ ∈
Cw,0(R, X). We may choose αn ∈ TP (R, X) such that ‖ψ(t)− αn(t)‖ ≤
1
n

(see[1, (1.2), p. 15] or [23]). Moreover, ξ
w
∈ C0(R, X) and ‖ξ(s)‖ ≤
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‖ξ‖∞,w w(s) for all s. Hence we may choose t̃n > 0 such that ‖ξ(t)‖ ≤
1
n
w(t) for all |t| ≥ t̃n. Then choose tn > t̃n such that ‖ξ‖∞,w w(t̃n) ≤

1
n
w(tn). It follows that ‖ξ(t)‖ ≤ 1

n
w(t) and ‖ξ(s)‖ ≤ 1

n
w(tn) for

all |t| ≥ tn and all |s| ≤ tn. Since ξ is continuous we may choose
βn ∈ TP (R, X) such that ‖ξ(s)− βn(s)‖ ≤ 1

n
and ‖βn(t)‖ ≤ 1

n
w(tn)+

1
n

for all |s| ≤ tn and all t. Thus ‖ξ(s)− βn(s)‖ ≤ 3
n
w(s) for all s. Set

πn = tNαn+βn ∈ TPw(R, X). Then (πn) converges to φ in BCw(R, X)
and so φ ∈ APw(R, X). � �

Corollary 2.6. APw(R, X) ⊂ PEw(R, X).

Proof. Let φ = tNψ + ξ where ψ ∈ AP (R, X) and ξ ∈ Cw,0(R, X). Set

p = tNMψ and ψ0 = ψ −Mψ. Then φ−p
w

= ψ0 − ψ0

w
+ ξ

w
on R+ and

φ−p
w

= −ψ0 + ψ0

w
+ ξ

w
on R−. Hence φ−p

w
|J ∈ E0(J,X) for J = R+ or

R− and thus φ−p
w

∈ E0(R, X). �

3. Spectral analysis

Throughout this section we will assume that F is a BUCw-invariant
closed subspace of BCw(J,X). A subspace F of BCw(J,X) is called
BUCw-invariant (see [12]) if φt|J ∈ F whenever φ ∈ BUCw(R, X),
φ|J ∈ F and t ∈ R. Numerous examples are provided in [12].

The dual group of R is denoted R̂ = {γs : γs(t) = eist for s, t ∈ R}
and the Fourier transform of f ∈ L1(R) by f̂(γs) =

∫ ∞
−∞ f(t)γs(−t)dt.

Let φ ∈ BCw(R, X). The set Iw(φ) = {f ∈ L1
w(R) : φ ∗ f = 0}

is a closed ideal of L1
w(R) and the Beurling spectrum of φ is defined

to be spw(φ) = cosp(Iw(φ)) = {γ ∈ R̂ : f̂ = 0 for all γ ∈ Iw(φ)}.
More generally, following [5, Section 4], the set IF(φ) = {f ∈ L1

w(R) :
(φ ∗ f)|J ∈ F} is a closed translation invariant subspace of L1

w(R) and
therefore an ideal. We define the spectrum of φ relative to F , or the
reduced Beurling spectrum, to be spF(φ) = cosp (IF(φ)).

The following proposition contains some basic properties of these
spectra. The proofs are the same as for the Beurling spectrum. See for
example [17, p. 988] or [29] also [6], [15], [27].

Proposition 3.1. Let φ, ψ ∈ BCw(R, X).

(a) spF(φt) = spF(φ) for all t ∈ R.

(b) spF(φ ∗ f) ⊆ spF(φ) ∩ supp(f̂) for all f ∈ L1
w(R).

(c) spF(φ+ ψ) ⊆ spF(φ) ∪ spF(ψ).

(d) spF(γφ) = γspF(φ), provided F is invariant under multiplication

by γ ∈ R̂.
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(e) If f ∈ L1
w(R) and f̂ = 1 on a neighbourhood of spF(φ), then

spF(φ ∗ f − φ) = ∅.

The following theorem is proved in [12](see also [10], [11]). It gives
our motivation for introducing spF(φ).

Theorem 3.2. Let φ ∈ BUCw(R, X).

(a) If f ∈ L1
w(G) and φ|J ∈ F , then (φ ∗ f)|J ∈ F .

(b) spF(φ) = ∅ if and only if φ|J ∈ F .

(c) If ∆k
tφ|J ∈ F for all t ∈ R and some k ∈ N, then spF(φ) ⊆ {1}.

(d) spF(φ) ⊆ {γ1, ..., γn} if and only if φ = ψ +
∑n

j=1 ηjγj for some

ψ, ηj ∈ BUCw(R, X) with ψ|J ∈ F and ∆tηj|J ∈ F for each t ∈ RN+1.

4. Primitives and Derivatives

Throughout this section we assume that F is a translation invariant
closed subspace of BUCw(J,X). Examples of such classes are
Pw(J,X), Cw,0(J,X), APw(R, X), Ew,0(J,X) ∩ BUCw(J,X) and

PEw(J,X) ∩BUCw(J,X).
We define the primitive Pφ of a function φ ∈ BCw(R, X) by Pφ(t) =∫ t

0
φ(s)ds.

Theorem 4.1.
(a) If Fw denotes any of BCw(J,X), Cw,0(J,X), Ew,0(J,X),

Pw(J,X), PEw(J,X) or APw(R, X) then P maps Fw continuously
into Fww1.

(b) If φ ∈ Ew,0(J,X) then Pφ ∈ Cww1,0(J,X).

(c) If φ ∈ APw(J,X) has w-mean p. Then P (φ− p) ∈ Cww1,0(R, X).

Proof. Take J = R+, the other cases being proved similarly. If φ ∈
BCw(J,X) and t ∈ J then ||Pφ(t)|| ≤ t.||φ||w,∞w(t). Hence P maps
BCw(J,X) continuously into BCww1(J,X). If also φ ∈ Cw,0(J,X) then
given ε > 0 there exists t0 > 0 such that ||φ(t)|| < εw(t) whenever t >

t0. For these t we have ||Pφ(t)|| ≤
∫ t0

0
||φ(s)|| ds+ εw(t)(t− t0) and so

P maps Cw,0(J,X) into Cww1,0(J,X). Next, P (∆tφ) = ∆t(Pφ)−Pφ(t)
and since P is continuous it follows from Corollary 2.4 that P maps
Ew,0(J,X) into Eww1,0(J,X). The result for Pw(J,X) is clear and so
therefore is the result for PEw(J,X). For (b) note that ||∆t Pφ(s)|| ≤
t.w(t)w(s) ||φ||w,∞ for all s ∈ J . Hence ∆t(Pφ) ∈ Cww1,0(J,X). If
φ ∈ Ew,0(J,X), we can apply Theorem 2.3 to Pφ to obtain Pφ ∈
Cww1,0(J,X). Finally, (c) follows from (b) using Corollary 2.6, and then
(a) with Fw = APw(R, X) follows from (c) using Theorem 2.5. �
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Proposition 4.2.
(a) If φ∈BCw(R, X) and spw(φ) is compact, then φ(j)∈BUCw(R, X)

for all j ≥ 0.

(b) If φ ∈ F and φ′ is w-uniformly continuous, then φ′ ∈ F .

(c) If φ ∈ BCw(J,X) and φ′ is w -uniformly continuous, then φ′ ∈
Ew,0(J,X) ∩BUCw(J,X).

(d) If φ, φ′ ∈ BCw(R, X) then spw(φ′) ⊆ spw(φ) ⊆ spw(φ′) ∪ {1}.
(e) If φ, φ′ ∈ BCw(J,X) then φ ∈ BUCw(J,X).

Proof. (a) Choose f ∈ S(R), the Schwartz space of rapidly decreasing
functions, such that f has compact support and is 1 on a neighbourhood
of spw(φ). Then f (j) ∈ L1

w(R) for all j ≥ 0. Moreover, φ = φ ∗ f and
so φ(j) = φ ∗ f (j) for all j ≥ 0. Hence φ(j) ∈ BUCw(R, X).

(b) If ψn = n∆1/nφ then ψn ∈ F . Moreover, by the w-uniform
continuity of φ′, given ε > 0 there exists nε such that

‖ψn(t)− φ′(t)‖ =

∥∥∥∥∥n
∫ 1/n

0

(φ′(t+ s)− φ′(t))ds

∥∥∥∥∥ < εw(t)

for all t ∈ J and n > nε. Hence φ′ ∈ F .
(c) With the notation used in the proof of (b), ψn ∈ Ew,0(J,X) ∩

BUCw(J,X) by Lemma 2.2(c). Hence, so does φ′.
(d) For any f ∈ L1

w(R) we have (φ∗f)′ = φ′∗f and so Iw(φ′) ⊇ Iw(φ).
Hence, spw(φ′) ⊆ spw(φ). For the second inclusion, let g(t) = exp(−t2)
so that g, g′ ∈ L1

w(R) and ĝ is never zero. Now take γ ∈ R̂ (spw(φ′) ∪
{1}). So γ(t) = eist for some s 6= 0 and there exists f ∈ L1

w(R)

such that φ′ ∗ f = 0 but f̂(γ) 6= 0. Let h = f ∗ g′ ∈ L1
w(R). Then

φ ∗ h = φ ∗ f ∗ g′ = φ′ ∗ f ∗ g = 0 whereas ĥ(γ) = isf̂(γ)ĝ(γ) 6= 0. So
γ /∈ spw(φ′) showing spw(φ) ⊆ spw(φ′) ∪ {1}.

(e) For any h, t ∈ J we have ‖∆hφ(t)‖ =
∥∥∥∫ t+h

t
φ′(s)ds

∥∥∥ ≤ |h| ·
‖φ′‖w,∞w(h)w(t) from which it follows that φ is w-uniformly continu-
ous. �

Proposition 4.3. Let φ ∈ F and assume that F is BUCw-invariant.

(a) If Pφ is w-polynomially ergodic with w-mean p, then Pφ − p ∈
F + Cw,0(J,X).

(b) If F = APw(R, X) and Pφ ∈ PEw(R, X), then Pφ ∈ APw(R, X).

(c) If F = APw(R, X) and Pφ ∈ BUCw(R, X), then spF(Pφ) ⊆ {1}.
(d) If F = C0(R+, X) and Pφ is ergodic with mean c, then Pφ−c ∈

C0(R+, X).
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Proof. (a) Take J = R+, the other cases being proved similarly. Ex-

tend φ to an even function φ̃ ∈ BUCw(R, X). For t ≥ 0 set χt =

χ[−t,0] so that ∆tPφ =
(
φ̃ ∗ χt

)
|J =

∫
R

(
φ̃−s

)
|Jχt(s)ds. Since φ̃ ∈

BUCw(R, X) the integral converges as a Lebesgue-Bochner integral.

Since F is BUCw-invariant
(
φ̃−s

)
|J ∈ F and therefore ∆tPφ ∈ F .

The result follows from Theorem 2.3.
(b) In view of Theorem 2.5, this follows from (a).
(c) Let s, t ∈ R With χs as in the previous proof, (∆sPφ)t = φt ∗ χs

and by Proposition 3.2 (a), (∆sPφ)t ∈ F . By Proposition 3.2(c),
spF(Pφ) ⊆ {1}.

(d) This is a special case of part (a). �

Remark 4.4. Recall u(t) = 1
2
w(t) cos logw(t) + 1

2
w(t) sin logw(t) −

sin logw(t) − 1
2

from Example 1.1. So u′(t) = t
w(t)

cos logw(t) and

therefore u′ ∈ Cw,0(R,C) ⊂ APw(R,C) ⊂ PEw(R,C). However, u /∈
PEw(R,C). Indeed, if u ∈ PEw(R,C) then for t ∈ R+ set ξ(t) =
w(t) cos logw(t) + w(t) sin logw(t). So ξ ∈ PEw(R+,C) and for some
polynomial p(t) = at + b we have (ξ − p)/w ∈ E0(R+,C). Thus η =
ξ/w ∈ E(R+,C). But η′(t) = [− sin logw(t)+cos logw(t)]/w(t) and so
η′ ∈ C0(R,C). By Proposition 4.3(d) we conclude η ∈ C0(R+,C) + C
which is false.

Lemma 4.5. For natural numbers m,N and non-negative integers j, k
set a(m, j) = (−1)j

(
N
j

)(
m−1+j

j

)
j!.

(a) Pm(tNφ) =
∑N

j=0 a(m, j) t
N−jPm+jφ for any φ ∈ L1

loc(J,X).

(b)
N∑
j=0

a(m, j)

(j + k)!
=


(
N+k−m

N

)
N !

(N+k)!
if m ≤ k

0 if k + 1 ≤ m ≤ k +N

(−1)N
(
m−k−1
N

)
N !

(N+k)!
if m > k +N

.

(c)
∑N

j=0 a(m, j) t
N−jP j+1r = P

∑N
j=0 a(m − 1, j) tN−jP j r for any

r ∈ Pm−2(J,X).

Proof. (a) For N = 1 the claim is readily proved by induction on m.
The general case is then proved by induction on N .

(b) For m ≥ k + 1 we have

∑N
j=0

a(m,j)
(j+k)!

=
N∑
j=0

(−1)j
(
N

j

)(
m− 1 + j

j

)
j!

(j + k)!
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=
1

(m− 1)!

N∑
j=0

(−1)j
(
N

j

)
(m− 1 + j)!

(k + j)!

=
1

(m− 1)!

N∑
j=0

(−1)j
(
N

j

)
Dm−k−1tm+j−1|t=1

=
1

(m− 1)!
Dm−k−1tm−1

N∑
j=0

(−1)j
(
N

j

)
tj|t=1

=
1

(m− 1)!
Dm−k−1 tm−1(1− t)N |t=1.

For m− k− 1 < N this last expression is 0 and for m− k− 1 ≥ N it is

1

(m− 1)!

(
m− k − 1

N

)
(Dm−k−1−N tm−1)DN(1− t)N |t=1

=
1

(m− 1)!

(
m− k − 1

N

)
(m− 1)!

(N + k)!
(−1)NN !

as claimed. For m ≤ k the claim follows readily by substituting φ(t) =
tk−m in (a).

(c) It follows readily from (b) that
∑N

j=0
a(m−1,j)

(j+k)!
= (N + k + 1) ×∑N

j=0
a(m,j)

(j+k+1)!
if 0 ≤ k ≤ m− 2. So setting r(t) =

∑m−2
k=0 ckt

k we find

∑N
j=0 a(m, j) t

N−j P j+1r(t)

=
m−2∑
k=0

ckk!t
N+k+1

N∑
j=0

a(m, j)

(j + k + 1)!

=
m−2∑
k=0

ckk!t
N+k+1 1

N + k + 1

N∑
j=0

a(m− 1, j)

(j + k)!

= P
m−2∑
k=0

ckk!t
N+k

N∑
j=0

a(m− 1, j)

(j + k)!

= P
N∑
j=0

a(m− 1, j) tN−jP jr(t). �

Our main result is the following:

Theorem 4.6. Assume φ ∈ AP (R, X) and that
∑N

j=0 bj t
N−jP j+1φ ∈

BUCwN
(R, X) for some bj ∈ C, b0 6= 0.
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(a) Pφ ∈ BUC(R, X) and if
∑N

j=0
bj

(j+1)!
6= 0 then Mφ = 0.

(b) If X 6⊇ c0 then P (φ−Mφ) ∈ AP (R, X).

Proof. Let a = Mφ and ψ =
∑N

j=0 bj t
N−jP j+1φ. Then we have ψ =∑N

j=0 bjt
N−jP j+1(φ− a) + tN+1a

∑N
j=0

bj
(j+1)!

. By Theorem 4.1(c), ψ −∑N
j=0 bj t

N−jP j+1(φ − a) ∈ CwN+1,0(R, X) and so either a = 0 or∑N
j=0

bj
(j+1)!

= 0. To prove the rest of the theorem, we may assume

a = 0. By Theorem 4.1(c), P jφ(t)/wj(t) → 0 as t → ∞. Since φ
is almost periodic we may choose (tn) ⊂ R such that tn → ∞ and
φtn → φ uniformly on R. Moreover, as Mφ = 0, by Theorem 4.1(c),
P jφ(s+tn)/wj(s+tn) → 0 uniformly on R for j > 0. Given x∗ ∈ X∗, it
follows that x∗◦Pφtn → x∗◦Pφ locally uniformly. Moreover, by passing
to a subsequence if necessary, we may assume x∗ ◦ ψ(tn)/wN(tn) → b
for some b ∈ C. By Theorem 4.1(c) again, we obtain

ψ(t+ tn) =
N∑
j=0

bj (t+ tn)
N−j[

∫ t

0

P jφ(s+ tn)ds+ P j+1φ(tn)]

= ψ(tn) + b0t
N
n Pφ(t+ tn) + o(tNn ).

Therefore x∗ ◦ ψ(t+ tn)/wN(t+ tn) → b+ b0x
∗ ◦ Pφ(t) for each t ∈ R.

Hence, since ψ/wN is bounded, so too is x∗ ◦Pφ. Since x∗ is arbitrary,
Pφ is weakly bounded and therefore bounded. From Proposition 4.2(e)
it follows that Pφ ∈ BUC(R, X). If also X 6⊇ c0 then by Kadet’s
theorem [21] (see also [4]), Pφ is almost periodic. �

Corollary 4.7. Assume φ ∈ AP (R, X) and P (tNφ) ∈ BUCwN
(R, X).

(a) Pφ ∈ BUC(R, X) and Mφ = 0.

(b) If X 6⊇ c0 then Pφ ∈ AP (R, X).

Proof. Since Pm(tNφ) =
∑N

j=0 a(m, j) t
N−jPm+jφ the result follows

from Theorem 4.6 and Lemma 4.5. �

Theorem 4.8. Assume φ ∈ AP (R, X), X 6⊇ c0, P
m(tNφ) + p ∈

BUCwN
(R, X) for natural numbers m,N and some p ∈ Pm−1(R, X).

Then P j(tNφ) + p(m−j) ∈ APwN
(R, X) for 1 ≤ j ≤ m. Moreover, there

is a polynomial q ∈ Pm−1(R, X) such that P jφ + q(m−j) ∈ AP (R, X)

for 1 ≤ j ≤ m and, if p(t) =
∑m−1

k=0 bkt
k then

∑N
j=0 a(m, j) t

N−jP jq =∑m−1
k=N+1 bkt

k.

Proof. The proof is by induction on m. If m = 1 then, by Lemma

4.5
∑N

j=0
a(1,j)
(j+1)!

= 1
N+1

and P (tNφ) =
∑N

j=0 a(1, j) t
N−jP j+1φ ∈
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BUCwN
(R, X). Therefore, by Theorem 4.6, Mφ = 0 and Pφ ∈

AP (R, X). Moreover, by Lemma 4.5(b),

N∑
j=0

a(1, j) tN−jP j(MPφ) = (MPφ) tN
N∑
j=0

aj
j!

= 0.

Hence P (tNφ) =
∑N

j=0 a(1, j) t
N−jP j(Pφ − MPφ) and by Theorem

4.1(c), P (tNφ) ∈ APwN
(R, X). For m > 1, Theorem 5.2 below shows

P j(tNφ) + p(m−j) ∈ BUCwN
(R, X) for 1 ≤ j ≤ m. Hence, as induction

hypothesis we may assume there is a polynomial r ∈ Pm−2(R, X) such
that for 1 ≤ j ≤ m−1 we have P jφ+r(m−1−j) ∈ AP (R, X), P j(tNφ)+

p(m−j) ∈ APwN
(R, X) and

∑N
j=0 a(m−1, j) tN−jP jr =

∑m−1
k=N+2 kbkt

k−1.

In particular, η = Pm−1φ + r + c ∈ AP (R, X) where the constant c is

to be chosen. Moreover, by Lemma 4.5(d),
∑N

j=0 a(m, j) t
N−jP j+1r =∑m−1

k=N+2 bkt
k.

Now set q = P (r + c −Mφ) so that Pmφ + q = P (η −Mφ). By
Theorem 4.6, to show Pmφ + q ∈ AP (R, X), it suffices to show that∑N

j=0 a(m, j) t
N−jP j+1η ∈ BUCwN

(R, X). By Lemma 4.5(a),

Pm(tNφ) =
N∑
j=0

a(m, j) tN−jPm+jφ

=
N∑
j=0

a(m, j) tN−jP j+1(η − r − c).

Since Pm(tNφ)+p ∈ BUCwN
(R, X), it suffices to show

∑N
j=0 {a(m, j)×

tN−jP j+1(r + c)
}

=
∑m−1

k=N+1 bkt
k.

If N > m − 2 we choose c = 0 as then both sides are 0. Other-
wise N ≤ m − 2 and by Lemma 4.5(c) we may choose c such that∑N

j=0 a(m, j) tN−jP j+1c = bN+1t
N+1, that is c

∑N
j=0

a(m,j)
(j+1)!

= bN+1.

In this case also we have by Theorem 4.6, Mη = 0. In either case∑N
j=0 a(m, j) t

N−jP jq =
∑N

j=0 a(m, j) t
N−jP j+1(r + c) =

∑m−1
k=N+1 bkt

k

and
∑N

j=0 a(m, j) t
N−jP j+1Mη = 0. Finally,

Pm(tNφ) + p =
N∑
j=0

a(m, j) tN−jP j+1(η − r − c−Mφ) + p

=
N∑
j=0

a(m, j) tN−jP j(Pmφ+ q) +
N∑
k=0

bkt
k

and by Theorem 4.1, Pm(tNφ) + p ∈ APwN
(R, X). �
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Remark 4.9. (a) In Theorem 4.6(a) the space AP (R, X) may be re-
placed by the class of Poisson stable functions. These are functions
ξ ∈ C(R, X) for which there exist sequences (tn) ⊂ R such that tn →∞
and ξtn → ξ locally uniformly on R. In part (b), AP (R, X) may be
replaced by any class for which Kadet’s theorem remains valid. These
include Poisson stable functions, almost automorphic functions and re-
current functions (see [4 ]).

(b) If p = 0 in Theorem 4.8 then
∑N

j=0 a(m, j) t
N−jP jq = 0, which

reduces to q(k)(0) = 0 for 0 ≤ k ≤ m−N − 1.
(c) Assume φ ∈ AP (R, X) where X 6⊇ c0. By Theorem 4.8, if

Pm(tNφ) + p ∈ BUCwN
(R, X) for some p then Pmφ + q ∈ AP (R, X)

for some q.
The converse is also true. Indeed, Pm(tNφ) =

∑N
j=1 {a(m, j)×

tN−jPm+jφ
}

+ tNPmφ and the result follows from Theorem 4.1(c).
(d) These results are dependent on the Poisson stability property of

φ. Indeed, consider the function φ ∈ C0(R,C) given by φ(t) = 1
1+|t| .

Then P (tφ) = |t| − ln(1 + |t|) and Pφ = sgn(t) ln(1 + |t|). Hence
P (tφ) ∈ BUCw1(R,C) whereas Pφ /∈ BC(R,C).

(e) A well-known example to show that the condition X 6⊇ c0 may
not be omitted from Theorem 4.6 is as follows. Let X = c0 and φ(t) =
( 1
n

sin t
n
)∞n=1 so that Pφ(t) = (2 sin2 t

2n
)∞n=1. Then φ ∈ AP (R, c0) and

Pφ ∈ BUC(R, c0). However, Pφ does not have relatively compact
range so it is not almost periodic.

5. Esclangon-Landau theorem

In this section we use the abbreviations

(5.2) Bu =
m∑
j=0

bju
(j)

and assume bm = 1, bj ∈ C, u : J → X.
We prove a theorem of Esclangon-Landau type ([18], [22], [14], [7],

[16] and references therein).

Lemma 5.1. If Bu = ψ where u, ψ ∈ BCwN
(J,X) then u(j)(t) =

O(|t|N+m−1) for 1 ≤ j ≤ m.

Proof. Since u(m) = ψ −
∑m−1

j=0 bju
(j), taking Pm−k we obtain

u(k) =
m−k∑
j=1

P j−1(u(j+k−1)(0)) + Pm−kψ −
m−1∑
j=0

bjP
m−ku(j).
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Setting k = 1 we conclude that u′(t) = O(|t|N+m−1). In general

u(k)(t) = O(|t|N+m−1) −
∑m−1

j=m−k+1 bjP
m−ku(j)(t) = O(|t|N+m−1) +∑k−1

j=1 O(
∣∣u(j)(t)

∣∣) from which the result follows by induction. �

Theorem 5.2. If Bu = ψ where u, ψ ∈ BCwN
(J,X) then u(j) ∈

BCwN
(J,X) for 1 ≤ j ≤ m.

Proof. Take J = R+, the other cases being proved similarly. The
proof is by induction on m. First, if m = 1 the equation becomes
u′ + b0u = ψ showing u′ ∈ BCwN

(J,X). For the general case we use
the functions f and ũ defined by f(t) = exp(−t) for t ≥ 0, f(t) =
0 for t < 0, ũ(t) = u(−t) for −t ∈ J and ũ(t) = 0 for −t /∈ J .
It follows that et

∫ ∞
t
e−su(s)ds =

∫ ∞
0
e−su(s + t)ds = ũ ∗ f(−t) and

ũ ∗ f ∈ BCwN
(R, X). Moreover, using repeated integration by parts

and Lemma 5.1, we find et
∫ ∞
t
e−su(k)(s)ds = −

∑k−1
j=1 u

(j)(t) + ũ ∗ f
(−t). Hence the equation Bφ = ψ may be transformed to the equation∑m

k=1 bk
∑k−1

j=1 u
(j)(t) = (

∑m
k=0 bk)ũ ∗ f (−t) − ψ̃ ∗ f (−t). This is an

equation of order m − 1 and so by the induction hypothesis u(j) ∈
BCwN

(J,X) for 1 ≤ j ≤ m − 1. Hence u(m) = ψ −
∑m−1

j=0 bju
(j) ∈

BCwN
(J,X) which finishes the proof. �

6. Application

Again we use the abbreviation Bu =
∑m

j=0 bju
(j) and assume bm =

1. By pB we denote the characteristic polynomial of the differential
operator B. Thus pB(s) =

∑m
j=0 bj(is)

j and for smooth f we have

B̂f(γs) = pB(s)f̂(γs). The set of complex zeros of pB is denoted Z(B).

Lemma 6.1. Assume u ∈ BCwN
(R, X) and F is a BUCwN

-invariant
closed subspace of BCwN

(J,X). If Bu = ψ where ψ ∈ BUCwN
(R, X)

and ψ|J ∈ F then spF(u) ⊂ {γs : s ∈ Z(B) ∩ R}.

Proof. Take s ∈ R with pB(s) 6= 0. Choose f ∈ S(R) with f̂(γs) 6= 0
and set g = Bf . Then u∗g = ψ∗f and by Theorem 3.2(a), (ψ ∗ f) |J ∈
F . Hence g ∈ IF(u) whereas ĝ(γs) = pB(s)f̂(γs) 6= 0. So γs /∈ spF(u)
and the proof is completed. �

Theorem 6.2. Suppose Bu = ψ where u ∈ BCwN
(R, X) and ψ ∈

APwN
(R, X).

(a) If Z(B) ∩ R = ∅ then u(j) ∈ APwN
(R, X) for 0 ≤ j ≤ m.

(b) If Z(B)∩R 6= ∅, but X 6⊇ c0 and ψ = tNφ where φ ∈ AP (R, X)
then u(j) ∈ APwN

(R, X) for 0 ≤ j ≤ m.
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Proof. (a) Let F = APwN
(R, X). By Lemma 6.1, spF(u) ⊂ Z(B)∩R =

∅. Hence, by Theorem 3.2(b), u ∈ F . The Esclangon-Landau Theorem
5.2 shows u, u′, ..., u(m) ∈ BCwN

(R, X) and then Proposition 4.2(e)
shows u, u′, ..., u(m−1) ∈ BUCwN

(R, X). From Proposition 4.2(b) we
conclude u′, ..., u(m−1) ∈ F . Rearranging the differential equation, we
obtain u(m) ∈ F .

(b) The proof is by induction on m. Note first that by Theorem
5.2, u(j) ∈ BCwN

(R, X) for 0 ≤ j ≤ m. Let λ ∈ Z(B) ∩ R and make
the substitution η(t) = exp(−iλt)u(t) so that η(j) ∈ BCwN

(R, X) for
0 ≤ j ≤ m. If m = 1 the equation u′ − iλu = tNφ reduces to η′ =
exp(−iλt)tNφ. From Theorem 4.8 we conclude η ∈ F . Hence u, u′ ∈
F as claimed. For general m, the equation Bu = tNφ reduces to
an equation of the form

∑m
j=1 cjη

(j) = exp(−iλt)tNφ where cm = 1.
This is a differential equation in η′ of order m − 1. By the induction
hypothesis, or by part (a) if the characteristic polynomial has no real
zeros, η(j) ∈ F for 1 ≤ j ≤ m − 1. It remains to show η ∈ F . For
this, let k = min{j : cj 6= 0}. From

∑m
j=k cjη

(j) = exp(−iλt)tNφ we

obtain
∑m

j=k cjη
(j−k) = P k(exp(−iλt)tNφ)+p for some polynomial p of

degree at most k− 1. But η(j) ∈ BCwN
(R, X) for 0 ≤ j ≤ m and so by

Theorem 4.8 again we conclude P k(exp(−iλt)tNφ) ∈ F . Since ck 6= 0
we can rearrange the differential equation and obtain η ∈ F . �

Remark 6.3. The asymptotic behaviour of bounded solutions of equa-
tions more general than (5.1) are investigated by numerous authors (see
[2], [3], [6], [8], [13], [26], [27], [30]). In particular, it follows from
[12, Theorem 4.7] that if φ ∈ BUCw(J,X), spAPw(φ) is countable and
γ−1φ ∈ Ew(J,X) for all γ ∈ spAPw(φ), then φ ∈ APw(R, X). In this
paper for solutions of (5.1) we have replaced the ergodicity condition by
X 6⊇ c0. This is satisfied, in particular, if X is finite dimensional or
reflexive or weakly sequentially complete. So, the results of Theorems
4.6, 6.2 are new even for X = R or C.
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