ALMOST PERIODIC BEHAVIOUR OF UNBOUNDED SOLUTIONS OF DIFFERENTIAL EQUATIONS

BOLIS BASIT AND A. J. PRYDE

ABSTRACT. A key result in describing the asymptotic behaviour of bounded solutions of differential equations is the classical result of Bohl-Bohr: If $\phi : \mathbb{R} \to \mathbb{C}$ is almost periodic and $P\phi(t) = \int_0^t \phi(s) \, ds$ is bounded then $P\phi$ is almost periodic too. In this paper we reveal a new property of almost periodic functions: If $\psi(t) = t^N \phi(t)$ where ϕ is almost periodic and $P\psi(t)/(1+|t|)^N$ is bounded then $P\phi$ is bounded and hence almost periodic. As a consequence of this result and a theorem of Kadets, we obtain results on the almost periodic functions. This allows us to resolve the asymptotic behaviour of unbounded solutions of differential equations of the form $\sum_{j=0}^{m} b_j u^{(j)}(t) = t^N \phi(t)$. The results are new even for scalar valued functions. The techniques include the use of reduced Beurling spectra and ergodicity for functions of polynomial growth.

Keywords: almost periodic, almost automorphic, ergodic, reduced Beurling spectrum, primitive of weighted almost periodic functions, Esclangon-Landau.

1. INTRODUCTION, NOTATION AND PRELIMINARIES

A problem arising naturally from a theorem of Bohl-Bohr-Kadets [21], (see also [4], [9, Sections 5, 6] and references therein) is to investigate the almost periodicity of the primitive $P\psi$ when $\psi = t^N\phi$, where $\phi : \mathbb{R} \to X$ is almost periodic, X is a Banach space, and N is a non-negative integer. More generally we describe the asymptotic behaviour of solutions $u : \mathbb{R} \to X$ of differential equations of the form $\sum_{j=0}^{m} b_j u^{(j)}(t) = t^N \phi(t)$ where $b_j \in X$ and $m \in \mathbb{N}$.

We begin by introducing some notation. The function $w(t) = w_N(t)$ = $(1 + |t|)^N$ is a weight on \mathbb{R} , satisfying in particular $w(s + t) \leq w(s)w(t)$. By J we will mean \mathbb{R} , \mathbb{R}_+ or \mathbb{R}_- . A function $\phi: J \to X$ is called w-bounded if ϕ/w is bounded and $BC_w(J, X)$ is the space of all continuous w-bounded functions, a Banach space with norm $||\phi||_{w,\infty} = \sup_{t \in \mathbb{R}} \frac{||\phi(t)||}{w(t)}$. Following Reiter [28, p. 142], ϕ is w-uniformly continuous if $||\Delta_h \phi||_{w,\infty} \to 0$ as $h \to 0$ in J. Here $\Delta_h \phi$ denotes the difference of ϕ by h defined by $\Delta_h \phi(t) = \phi(h+t) - \phi(t)$. The closed subspace of $BC_w(J, X)$ consisting of all w-uniformly continuous functions is denoted $BUC_w(J, X)$. It is not hard to show that ϕ is w-uniformly continuous if and only if ϕ/w is uniformly continuous. Furthermore, $\|\phi_{t+h} - \phi_t\|_{w,\infty} \leq w(t) \|\phi_h - \phi\|_{w,\infty}$ and so

(1.1)
 if
$$\phi \in BUC_w(J, X)$$
 then the function $t \to \phi_t : J \to BUC_w(J, X)$ is continuous.

When N = 0 or equivalently w = 1 we will drop the subscript w from the names of various spaces.

As an example, note that for $\lambda, N \neq 0$, the function $\phi(t) = t^N e^{i\lambda t}$ is not bounded or uniformly continuous. However, ϕ is both w-bounded and w-uniformly continuous and so $\phi \in BUC_w(\mathbb{R}, X)$.

We define $TP_w(\mathbb{R}, X) = \operatorname{span}\{t^j e^{i\lambda t}: 0 \leq j \leq N \lambda \in \mathbb{R}\}$ and $AP_w(\mathbb{R}, X)$ to be the closure in $BUC_w(\mathbb{R}, X)$ of $TP_w(\mathbb{R}, X)$.

These are natural generalizations of the spaces $TP(\mathbb{R}, X)$ of X-valued trigonometric polynomials and $AP(\mathbb{R}, X)$ of almost periodic functions which correspond to the case N = 0.

Suppose now that $u' = \psi$ where $u \in BUC_w(\mathbb{R}, X)$, $\psi \in AP_w(\mathbb{R}, X)$ and $X \not\supseteq c_0$, that is X does not contain a subspace isomorphically isometric to c_0 . Kadets proved that necessarily $u \in AP_w(\mathbb{R}, X)$ when N = 0. However, the following example shows that this is not the case for general N. Indeed, we will show below that the general case is more delicate.

Example 1.1. Take $X = \mathbb{C}$, N = 1, w(t) = 1 + |t|, $\psi(t) = \frac{t}{w(t)} \cos \log w(t)$ and $u(t) = \frac{1}{2}w(t) \cos \log w(t) + \frac{1}{2}w(t) \sin \log w(t) - \sin \log w(t) - \frac{1}{2}$. Then $u \in BUC_w(\mathbb{R}, X)$, $\psi \in AP_w(\mathbb{R}, \mathbb{C})$ and $u' = \psi$. However, $u \notin AP_w(\mathbb{R}, \mathbb{C})$.

The proof of this assertion requires some further theory and will be given in Remark 4.4.

2. Some function spaces.

In [12] a function $\phi : J \to X$ is called *Maak-ergodic* with mean $M\phi = x \in X$ (see also [25], [19], [20], [11]) if for each $\varepsilon > 0$ there is a finite subset $F \subseteq J$ with $||R_F\phi - x)|| < \varepsilon$ where $R_F\phi = \frac{1}{|F|} \sum_{t \in F} \phi_t$. Moreover E(J, X) is the closed subspace of BC(J, X) consisting of Maak-ergodic functions and $E_0(J, X) = \{\phi \in E(J, X) : M\phi = 0\}$. If $M : E(J, X) \to X$ is the function $\phi \to M\phi$, it follows that M is linear and continuous and $E(J, X) = E_0(J, X) \oplus X$.

19

In [12] we also defined a notion of ergodicity that applies to unbounded functions. This ergodicity differs from both that of Maak and that of Basit-Günzler [9]. Indeed, the space of w-ergodic functions is defined by $E_w(J,X) = \{ \phi \in BC_w(J,X) : \phi/w \in E(J,X) \}$. Both $E_w(J,X)$ and $E_{w,0}(J,X) = \{ \phi \in E_w(J,X) : M(\phi/w) = 0 \}$ are closed subspaces of $BC_w(J,X)$. It is convenient to introduce an even larger class. For this we need $P_w(J,X)$ the closed subspace of $BC_w(J,X)$ consisting of polynomials on J with coefficients in X. We shall say a function $\phi : J \to X$ is w-polynomially ergodic with w-mean $p \in P_w(J,X)$ if $(\phi - p)/w \in E_0(J,X)$. The space of all such ϕ is denoted $PE_w(J,X)$ and satisfies $PE_w(J,X) = E_{w,0}(J,X) + P_w(J,X)$. For $N \neq 0$ a w-mean is not unique and this last sum is not direct.

Of course $P_w(J, \mathbb{C})$ is finite dimensional and so $PE_w(J, \mathbb{C})$ is a closed subspace of $BC_w(J, \mathbb{C})$. Moreover, we can choose a subspace $P_w^M(J, \mathbb{C})$ of $P_w(J, \mathbb{C})$ such that $PE_w(J, \mathbb{C}) = E_{w,0}(J, \mathbb{C}) \oplus P_w^M(J, \mathbb{C})$. The (continuous) projection map $M_w : PE_w(J, \mathbb{C}) \to P_w^M(J, \mathbb{C})$ then provides a unique w-polynomial mean $M_w(\phi)$ for each $\phi \in PE_w(J, \mathbb{C})$. Now set $P_w^M(J, X) = P_w^M(J, \mathbb{C}) \otimes X$ and define $M_w : PE_w(J, X) \to P_w^M(J, X)$ by $M_w(\phi) = \sum_{j=1}^k M_w(p_j) \otimes x_j$ where $\phi \in PE_w(J, X)$ has w-polynomial mean $p = \sum_{j=1}^k p_j \otimes x_j \in P_w(J, \mathbb{C}) \otimes X$.

Proposition 2.1. The map $M_w : PE_w(J,X) \to P_w^M(J,X)$ is welldefined and continuous. Moreover, for each $\phi \in PE_w(J,X)$, $M_w(\phi)$ is a w-polynomial mean for ϕ and for each of its translates. Finally, $PE_w(J,X)$ is a closed translation invariant subspace of $BC_w(J,X)$ and $PE_w(J,X) = E_{w,0}(J,X) \oplus P_w^M(J,X)$.

Proof. Let $\phi \in PE_w(J,X)$ have means $p = \sum_{j=1}^k p_j \otimes x_j$ and $q = \sum_{j=1}^m q_j \otimes y_j$. Then $p - q \in E_{w,0}(J,X)$ and so $x^* \circ (p - q) \in E_{w,0}(J,\mathbb{C})$ for all $x^* \in X^*$. Hence $M_w(x^* \circ (p - q)) = 0 = x^* \circ (\sum_{j=1}^k M_w(p_j) \otimes x_j - \sum_{j=1}^m M_w(q_j) \otimes y_j)$ which gives $\sum_{j=1}^k M_w(p_j) \otimes x_j = \sum_{j=1}^m M_w(q_j) \otimes y_j$ showing M_w is well-defined. Also, $p_j - M_w(p_j) \in E_{w,0}(J,\mathbb{C})$ and so by Lemma 2.2(a) below $p - M_w(p) \in E_{w,0}(J,X)$. Hence $M_w(\phi)$ is a mean for ϕ . Moreover, $\|x^* \circ M_w(\phi)\|_{w,\infty} = \|M_w(x^* \circ \phi)\|_{w,\infty} \leq c \|x^* \circ \phi\|_{w,\infty} = c \sup_{t \in J} \|x^* \circ \phi(t)\| / w(t) \leq c \|x^*\| \|\phi\|_{w,\infty}$. Hence, $\|\|M_w(\phi)\|\| \leq c \|\phi\|_{w,\infty}$ where $\|\|\psi\|\| = \sup_{x^* \in X^*} \frac{\|x^* \circ \psi\|_{w,\infty}}{\|x^*\|}$ for $\psi \in P_w(J,X)$. By Lemma 2.2(b) below, M_w is continuous. If (ϕ_n) is a sequence in $PE_w(J,X)$ converging to ϕ in $BC_w(J,X)$, let $p_n = M_w(\phi_n)$. Then (p_n) converges to some $p \in P_w^M(J,X)$ and so $(\frac{\phi_n - p_n}{w})$ converges to $\frac{\phi - p}{w}$ in BC(J,X). By the continuity of the Maak mean function, $M(\frac{\phi - p}{w}) = 0$ and so $PE_w(J,X)$ is closed. That $PE_w(J,X) =$

 $E_{w,0}(J,X) + P_w^M(J,X)$ is clear and that the sum is direct follows from the Hahn-Banach theorem. Finally, for each $t \in J$ we have $\frac{\phi_t - p}{w} = \frac{\Delta_t \phi}{w} + \frac{\phi - p}{w}$ and so, by Lemma 2.2(c) below, p is a w-polynomial mean of ϕ_t and $PE_w(J,X)$ is translation invariant. \Box

Lemma 2.2.

(a) If $p \in P_w(J, X)$ and $x^* \circ p \in E_{w,0}(J, \mathbb{C})$ for each $x^* \in X^*$ then $p \in E_{w,0}(J, X)$.

(b) On $P_w(J, X)$ the norms $\|\phi\|_{w,\infty}$ and $\||\phi\|\| = \sup_{x^* \in X^*} \frac{\|x^* \circ \phi\|_{w,\infty}}{\|x^*\|}$ are equivalent.

(c) If $\phi \in BC_w(J,X)$ then $\Delta_t \phi \in E_{w,0}(J,X)$ for all $t \in J$.

(d) If $\phi \in PE_w(\mathbb{R}, X)$ has w-mean p, then $\phi|_J \in PE_w(J, X)$ and $\phi|_J$ has w-mean $p|_J$.

(e) $P_w(J, X) \subseteq BUC_w(J, X)$.

(f) Let $\phi \in BUC_w(\mathbb{R}, X)$, $f \in L^1_w(\mathbb{R})$ and suppose $\phi|_J$ is w-polynomially ergodic with w-mean $p|_J$ where $p \in P_w(\mathbb{R}, X)$. Then $(\phi * f)|_J$ is w-polynomially ergodic with w-mean $(p * f)|_J$.

Proof. (a) We can choose $q_1, ..., q_m \in P_w(J, \mathbb{C})$ and linearly independent unit vectors $x_1, ..., x_m \in X$ such that $p = \sum_{j=1}^m q_j \otimes x_j$. Also choose unit vectors $x_j^* \in X^*$ such that $\langle x_j^*, x_i \rangle = \delta_{i,j}$. Given $\varepsilon > 0$ there are finite subsets F_j of J such that $||R_{Fj}(x_j^* \circ p/w)|| < \varepsilon/m$. Setting $F = F_1 + ... + F_m$ we find

$$\|R_F(p/w)\| = \left\|\sum_{j=1}^m R_F(q_j/w) \otimes x_j\right\| \le \sum_{j=1}^m \|R_F(q_j/w)\|$$
$$= \sum_{j=1}^m \|R_F(x_j^* \circ p/w)\| \le \sum_{j=1}^m \|R_{F_j}(x_j^* \circ p/w)\| < \varepsilon.$$

This proves that $p \in E_{w,0}(J, X)$

(b) Let $\{p_1, ..., p_k\}$ be a basis of $P_w(J, \mathbb{C})$ consisting of unit vectors for the norm $\|p\|_{w,\infty}$. If $p = \sum_{j=1}^k c_j p_j$, where $c_j \in \mathbb{C}$ then $\|p\|_{w,\infty} \sim \sum_{j=1}^k \|c_j\|$, \sim denoting equivalence of norms. Every $\phi \in P_w(J, X)$ has a unique representation $\phi = \sum_{j=1}^k p_j \otimes x_j$, where $x_j \in X$, and by the closed graph theorem, $\|\phi\|_{w,\infty} \sim \sum_{j=1}^k \|x_j\|$. Hence, $\|\|\phi\|\| = \sup \left\|\sum_{j=1}^k p_j \langle x^*, x_j \rangle\right\| / \|x^*\| \leq \sum_{j=1}^k \|x_j\| \sim \|\phi\|_{w,\infty}$. Conversely, choose j_0 such that $\|x_j\| \leq \|x_{j_0}\|$ for each j. Then choose $x^* \in X^*$ such that $\langle x^*, x_{j_0} \rangle = \|x_{j_0}\|$ and $\|x^*\| = 1$. Hence,

$$\begin{aligned} |||\phi||| \ge \left\| \sum_{j=1}^{k} p_j \left\langle x^*, x_j \right\rangle \right\|_{w,\infty} \\ \sim \sum_{j=1}^{k} |\langle x^*, x_j \rangle| \ge \|x_{j_0}\| \ge \frac{1}{k} \sum_{j=1}^{k} \|x_j\| \sim \|\phi\|_{w,\infty} \end{aligned}$$

(c) We have $\frac{\Delta_t \phi}{w} = \Delta_t(\frac{\phi}{w}) + (\frac{\phi}{w})_t \frac{\Delta_t w}{w}$ where $\Delta_t(\frac{\phi}{w}) \in E_0(J, X)$ by [11, Proposition 3.2] and $(\frac{\phi}{w})_t \frac{\Delta_t w}{w} \in C_0(J, X)$. (d) We prove the case $J = \mathbb{R}_+$. Given $\varepsilon > 0$ there is a finite subset

(d) We prove the case $J = \mathbb{R}_+$. Given $\varepsilon > 0$ there is a finite subset $F = \{t_1, ..., t_m\} \subseteq \mathbb{R}$ such that $\left\|\frac{1}{m} \sum_{j=1}^m (\frac{\phi-p}{w})(t_j+t)\right\| < \varepsilon$ for all $t \in \mathbb{R}$. choose $u_j, v_j \in \mathbb{R}_+$ such that $t_j = u_j - v_j$. Let $v = v_1 + ... + v_m$ and set $s_j = t_j + v$. So $s_j \in \mathbb{R}_+$ and $\left\|\frac{1}{m} \sum_{j=1}^m (\frac{\phi-p}{w})(s_j+t)\right\| < \varepsilon$ for all $t \in \mathbb{R}_+$. (e) Given $p \in P^n(J, X)$ we may choose $p_j \in P^n(J, X)$ and $q_j \in P^n(J, X)$ and $q_j \in P^n(J, X)$

(e) Given $p \in P^{-}(J, X)$ we may choose $p_j \in P^{-}(J, X)$ and $q_j \in P^n(J, \mathbb{C})$ with $q_j(0) = 0$ such that $\Delta_h p(t) = \sum_{j=1}^k p_j(t)q_j(h)$ for all $h, t \in J$. Hence $\|\Delta_h p(t)\| \le cw(t) \sum_{j=1}^k |q_j(h)|$, where $c = \sup_j \|p_j\|_{w,\infty}$, and so $p \in BUC_w(\mathbb{R}, X)$.

(f) If χ is the characteristic function of a compact set $K \subseteq \mathbb{R}$ then $(\phi - p) * \chi(s) = \int_{-K} (\phi - p)_t(s) dt$ for each $s \in \mathbb{R}$. But for each $t \in \mathbb{R}$, $(\phi - p)_t = \Delta_t(\phi - p) + (\phi - p)$ and so by (c), $(\phi - p)_t|_J \in E_{w,0}(J,X)$. Also, by (e), $\phi - p \in BUC_w(\mathbb{R}, X)$. By (1.1), the function $t \to (\phi - p)_t|_J : \mathbb{R} \to E_{w,0}(J,X)$ is continuous and hence weakly measurable and separably-valued on -K. The integral $\int_{-K} (\phi - p)_t|_J dt$ is therefore a convergent Haar-Bochner integral and so belongs to $E_{w,0}(J,X)$. As evaluation at $s \in J$ is continuous on $E_{w,0}(J,X)$ we conclude that $((\phi - p) * \chi)|_J \in E_{w,0}(J,X)$. Hence also $((\phi - p) * \sigma)|_J \in E_{w,0}(J,X)$ for any step function $\sigma : \mathbb{R} \to \mathbb{C}$ By [28, p. 83] the step functions are dense in $L^1_w(\mathbb{R})$ and so $((\phi - p) * f)|_J \in E_{w,0}(J,X)$ for any $f \in L^1_w(\mathbb{R})$.

The difference theorem below, included here in order to characterize $E_w(J, X)$ will also be used later. We use the notation $C_{w,0}(J, X) = \{w\xi : \xi \in C_0(J, X)\}$, clearly a closed subspace of $BUC_w(J, X)$.

Theorem 2.3. Let \mathcal{F} be any translation invariant closed subspace of $BC_w(J, X)$. If $\phi \in PE_w(J, X)$ has w-mean p and $\Delta_t \phi \in \mathcal{F}$ for each $t \in J$, then $\phi - p \in \mathcal{F} + C_{w,0}(J, X)$. If also w = 1, then $\phi - p \in \mathcal{F}$.

Proof. For any finite subset $F \subseteq J$, $\frac{\phi-p}{w} - R_F(\frac{\phi-p}{w}) = -\frac{1}{|F|} \sum_{t \in F} \Delta_t(\frac{\phi-p}{w})$ and so $\phi - p = wR_F(\frac{\phi-p}{w}) - \frac{1}{|F|} \sum_{t \in F} \Delta_t \phi + \frac{1}{|F|} \sum_{t \in F} (\frac{\phi-p}{w})_t \Delta_t w + \frac{1}{|F|} \sum_{t \in F} \Delta_t p$. The first term on the right may be made arbitrarily small in norm by suitable choice of F. The second term is in \mathcal{F} by assumption, the third and fourth terms are in $C_{w,0}(J,X)$ since $\Delta_t p$, $\Delta_t w \in C_{w,0}(J,X)$ for $t \in J$. If w = 1 then $\Delta_t w = \Delta_t p = 0$ which shows $\phi - p \in \mathcal{F}$.

We are now able to characterize *w*-polynomially ergodic functions. Denote by $D_{w,0}(J, X)$ the closed span of $\{\Delta_t \phi : t \in J, \phi \in BC_w(J, X)\} \cup C_{w,0}(J, X)$ and by $D_w(J, X)$ the closed span of $\{\Delta_t \phi : t \in J, \phi \in BC_w(J, X)\}$.

Corollary 2.4. $E_{w,0}(J,X) = D_{w,0}(J,X)$. If w = 1, then $D_{w,0}(J,X) = D_w(J,X) = E_0(J,X)$.

Proof. Since $C_{w,0}(J,X) \subset E_{w,0}(J,X)$, by Lemma 2.2 (c) and the closedness of $E_{w,0}(J,X)$, we have $D_{w,0}(J,X) \subset E_{w,0}(J,X)$. Conversely, let $\phi \in E_{w,0}(J,X)$. Then $\Delta_t \phi \in D_w(J,X)$ for all $t \in J$ and by Theorem 2.3, $\phi \in D_{w,0}(J,X)$. If w = 1, then for any $\psi \in C_{w,0}(J,X)$ and any finite subset F of J, we have $\psi = -\frac{1}{|F|} \sum_{t \in F} \Delta_t \psi + R_F \psi$. As $||R_F \psi||_{w,\infty}$ may be made arbitrarily small, we conclude that $\psi \in D_w(J,X)$ and hence $D_{w,0}(J,X) = D_w(J,X)$.

We conclude this section with a characterization of $AP_w(\mathbb{R}, X)$.

Theorem 2.5. If $N \ge 1$, then $AP_w(\mathbb{R}, X) = t^N AP(\mathbb{R}, X) \oplus C_{w,0}(\mathbb{R}, X)$.

Proof. Note firstly that the sum on the right is direct. For suppose $t^N\psi_1 + \xi_1 = t^N\psi_2 + \xi_2$ for $\psi_j \in AP(\mathbb{R}, X)$ and $\xi_j \in C_{w,0}(\mathbb{R}, X)$. Set $q(t) = (1+t)^N - t^N$ and $J = \mathbb{R}_+$. Then $(\psi_1 - \psi_2)|_J = \frac{1}{w}(\xi_2 - \xi_1 - q\psi_2 + q\psi_1)|_J \in C_0(J, X)$. This is impossible unless $\psi_1 = \psi_2$ (see [31] or [5, Proposition 2.1.6). The sum is also topological. For suppose $\phi_n = t^N\psi_n + \xi_n$ where $\psi_n \in AP(\mathbb{R}, X)$ and $\xi_n \in C_{w,0}(\mathbb{R}, X)$ and (ϕ_n) converges to ϕ in $BC_w(\mathbb{R}, X)$. Then $\frac{\phi_n}{w}|_J = \psi_n|_J + \frac{\xi_n - q\psi_n}{w}|_J \in AP(\mathbb{R}, X)|_J \oplus C_0(J, X)$. But this last sum is a topological direct sum (see [5, 31]) and so $(\psi_n|_J)$ converges to $\psi|_J$ for some $\psi \in AP(\mathbb{R}, X)$. Hence (ψ_n) converges to ψ in $AP(\mathbb{R}, X)$ and $(t^N\psi_n)$ converges to $t^N\psi$ in $AP_w(\mathbb{R}, X)$. It follows that (ξ_n) converges to some ξ in $C_{w,0}(\mathbb{R}, X)$ and that $\phi = t^N\psi + \xi$.

Next, given $\phi \in AP_w(\mathbb{R}, X)$ we may choose a sequence $(\pi_n) \subset TP_w(\mathbb{R}, X)$ converging to ϕ in $AP_w(\mathbb{R}, X)$. But $\pi_n = t^N \psi_n + \xi_n$ where $\psi_n \in TP(\mathbb{R}, X)$ and $\xi_n \in C_{w,0}(\mathbb{R}, X)$. It follows from the previous paragraph that $\phi = t^N \psi + \xi$ for some $\psi \in AP(\mathbb{R}, X)$ and $\xi \in C_{w,0}(\mathbb{R}, X)$.

Conversely, let $\phi = t^N \psi + \xi$ for some $\psi \in AP(\mathbb{R}, X)$ and $\xi \in C_{w,0}(\mathbb{R}, X)$. We may choose $\alpha_n \in TP(\mathbb{R}, X)$ such that $\|\psi(t) - \alpha_n(t)\| \leq \frac{1}{n}$ (see[1, (1.2), p. 15] or [23]). Moreover, $\frac{\xi}{w} \in C_0(\mathbb{R}, X)$ and $\|\xi(s)\| \leq \frac{1}{n}$

 $\begin{aligned} \|\xi\|_{\infty,w} w(s) \text{ for all } s. \text{ Hence we may choose } \tilde{t}_n > 0 \text{ such that } \|\xi(t)\| \leq \\ \frac{1}{n}w(t) \text{ for all } |t| \geq \tilde{t}_n. \text{ Then choose } t_n > \tilde{t}_n \text{ such that } \|\xi\|_{\infty,w} w(\tilde{t}_n) \leq \\ \frac{1}{n}w(t_n). \text{ It follows that } \|\xi(t)\| \leq \frac{1}{n}w(t) \text{ and } \|\xi(s)\| \leq \frac{1}{n}w(t_n) \text{ for all } |t| \geq t_n \text{ and all } |s| \leq t_n. \text{ Since } \xi \text{ is continuous we may choose } \\ \beta_n \in TP(\mathbb{R}, X) \text{ such that } \|\xi(s) - \beta_n(s)\| \leq \frac{1}{n} \text{ and } \|\beta_n(t)\| \leq \frac{1}{n}w(t_n) + \frac{1}{n} \\ \text{for all } |s| \leq t_n \text{ and all } t. \text{ Thus } \|\xi(s) - \beta_n(s)\| \leq \frac{3}{n}w(s) \text{ for all } s. \text{ Set } \\ \pi_n = t^N \alpha_n + \beta_n \in TP_w(\mathbb{R}, X). \text{ Then } (\pi_n) \text{ converges to } \phi \text{ in } BC_w(\mathbb{R}, X) \\ \text{ and so } \phi \in AP_w(\mathbb{R}, X). \ \Box \end{aligned}$

Corollary 2.6. $AP_w(\mathbb{R}, X) \subset PE_w(\mathbb{R}, X)$.

Proof. Let $\phi = t^N \psi + \xi$ where $\psi \in AP(\mathbb{R}, X)$ and $\xi \in C_{w,0}(\mathbb{R}, X)$. Set $p = t^N M \psi$ and $\psi_0 = \psi - M \psi$. Then $\frac{\phi - p}{w} = \psi_0 - \frac{\psi_0}{w} + \frac{\xi}{w}$ on \mathbb{R}_+ and $\frac{\phi - p}{w} = -\psi_0 + \frac{\psi_0}{w} + \frac{\xi}{w}$ on \mathbb{R}_- . Hence $\frac{\phi - p}{w}|_J \in E_0(J, X)$ for $J = \mathbb{R}_+$ or \mathbb{R}_- and thus $\frac{\phi - p}{w} \in E_0(\mathbb{R}, X)$.

3. Spectral analysis

Throughout this section we will assume that \mathcal{F} is a BUC_w -invariant closed subspace of $BC_w(J, X)$. A subspace \mathcal{F} of $BC_w(J, X)$ is called BUC_w -invariant (see [12]) if $\phi_t|_J \in \mathcal{F}$ whenever $\phi \in BUC_w(\mathbb{R}, X)$, $\phi|_J \in \mathcal{F}$ and $t \in \mathbb{R}$. Numerous examples are provided in [12].

The dual group of \mathbb{R} is denoted $\widehat{\mathbb{R}} = \{\gamma_s : \gamma_s(t) = e^{ist} \text{ for } s, t \in \mathbb{R}\}$ and the Fourier transform of $f \in L^1(\mathbb{R})$ by $\widehat{f}(\gamma_s) = \int_{-\infty}^{\infty} f(t)\gamma_s(-t)dt$.

Let $\phi \in BC_w(\mathbb{R}, X)$. The set $I_w(\phi) = \{f \in L^1_w(\mathbb{R}) : \phi * f = 0\}$ is a closed ideal of $L^1_w(\mathbb{R})$ and the *Beurling spectrum* of ϕ is defined to be $sp_w(\phi) = \cos(I_w(\phi)) = \{\gamma \in \widehat{\mathbb{R}} : \widehat{f} = 0 \text{ for all } \gamma \in I_w(\phi)\}$. More generally, following [5, Section 4], the set $I_{\mathcal{F}}(\phi) = \{f \in L^1_w(\mathbb{R}) : (\phi * f)|_J \in \mathcal{F}\}$ is a closed translation invariant subspace of $L^1_w(\mathbb{R})$ and therefore an ideal. We define the *spectrum of* ϕ *relative to* \mathcal{F} , or the *reduced Beurling spectrum*, to be $sp_{\mathcal{F}}(\phi) = \cos(I_{\mathcal{F}}(\phi))$.

The following proposition contains some basic properties of these spectra. The proofs are the same as for the Beurling spectrum. See for example [17, p. 988] or [29] also [6], [15], [27].

Proposition 3.1. Let $\phi, \psi \in BC_w(\mathbb{R}, X)$.

- (a) $sp_{\mathcal{F}}(\phi_t) = sp_{\mathcal{F}}(\phi)$ for all $t \in \mathbb{R}$.
- (b) $sp_{\mathcal{F}}(\phi * f) \subseteq sp_{\mathcal{F}}(\phi) \cap supp(\hat{f})$ for all $f \in L^1_w(\mathbb{R})$.
- (c) $sp_{\mathcal{F}}(\phi + \psi) \subseteq sp_{\mathcal{F}}(\phi) \cup sp_{\mathcal{F}}(\psi).$

(d) $sp_{\mathcal{F}}(\gamma\phi) = \gamma sp_{\mathcal{F}}(\phi)$, provided \mathcal{F} is invariant under multiplication by $\gamma \in \widehat{\mathbb{R}}$.

(e) If $f \in L^1_w(\mathbb{R})$ and $\hat{f} = 1$ on a neighbourhood of $sp_{\mathcal{F}}(\phi)$, then $sp_{\mathcal{F}}(\phi * f - \phi) = \emptyset$.

The following theorem is proved in [12](see also [10], [11]). It gives our motivation for introducing $sp_{\mathcal{F}}(\phi)$.

Theorem 3.2. Let $\phi \in BUC_w(\mathbb{R}, X)$.

- (a) If $f \in L^1_w(G)$ and $\phi|_J \in \mathcal{F}$, then $(\phi * f)|_J \in \mathcal{F}$.
- (b) $sp_{\mathcal{F}}(\phi) = \emptyset$ if and only if $\phi|_J \in \mathcal{F}$.
- (c) If $\Delta_t^k \phi|_J \in \mathcal{F}$ for all $t \in \mathbb{R}$ and some $k \in \mathbb{N}$, then $sp_{\mathcal{F}}(\phi) \subseteq \{1\}$.

(d) $sp_{\mathcal{F}}(\phi) \subseteq \{\gamma_1, ..., \gamma_n\}$ if and only if $\phi = \psi + \sum_{j=1}^n \eta_j \gamma_j$ for some $\psi, \eta_j \in BUC_w(\mathbb{R}, X)$ with $\psi|_J \in \mathcal{F}$ and $\Delta_t \eta_j|_J \in \mathcal{F}$ for each $t \in \mathbb{R}^{N+1}$.

4. PRIMITIVES AND DERIVATIVES

Throughout this section we assume that \mathcal{F} is a translation invariant closed subspace of $BUC_w(J, X)$. Examples of such classes are

 $P_w(J,X), C_{w,0}(J,X), AP_w(\mathbb{R},X), E_{w,0}(J,X) \cap BUC_w(J,X)$ and $PE_w(J,X) \cap BUC_w(J,X).$

We define the *primitive* $P\phi$ of a function $\phi \in BC_w(\mathbb{R}, X)$ by $P\phi(t) = \int_0^t \phi(s) ds$.

Theorem 4.1.

(a) If \mathcal{F}_w denotes any of $BC_w(J,X)$, $C_{w,0}(J,X)$, $E_{w,0}(J,X)$, $P_w(J,X)$, $PE_w(J,X)$ or $AP_w(\mathbb{R},X)$ then P maps \mathcal{F}_w continuously into \mathcal{F}_{ww_1} .

- (b) If $\phi \in E_{w,0}(J,X)$ then $P\phi \in C_{ww_1,0}(J,X)$.
- (c) If $\phi \in AP_w(J, X)$ has w-mean p. Then $P(\phi p) \in C_{ww_1,0}(\mathbb{R}, X)$.

Proof. Take $J = \mathbb{R}_+$, the other cases being proved similarly. If $\phi \in BC_w(J,X)$ and $t \in J$ then $||P\phi(t)|| \leq t.||\phi||_{w,\infty}w(t)$. Hence P maps $BC_w(J,X)$ continuously into $BC_{ww_1}(J,X)$. If also $\phi \in C_{w,0}(J,X)$ then given $\varepsilon > 0$ there exists $t_0 > 0$ such that $||\phi(t)|| < \varepsilon w(t)$ whenever $t > t_0$. For these t we have $||P\phi(t)|| \leq \int_0^{t_0} ||\phi(s)|| \, ds + \varepsilon w(t)(t-t_0)$ and so P maps $C_{w,0}(J,X)$ into $C_{ww_1,0}(J,X)$. Next, $P(\Delta_t\phi) = \Delta_t(P\phi) - P\phi(t)$ and since P is continuous it follows from Corollary 2.4 that P maps $E_{w,0}(J,X)$ into $E_{ww_1,0}(J,X)$. The result for $P_w(J,X)$ is clear and so therefore is the result for $PE_w(J,X)$. For (b) note that $||\Delta_t P\phi(s)|| \leq t.w(t)w(s) ||\phi||_{w,\infty}$ for all $s \in J$. Hence $\Delta_t(P\phi) \in C_{ww_1,0}(J,X)$. If $\phi \in E_{w,0}(J,X)$, we can apply Theorem 2.3 to $P\phi$ to obtain $P\phi \in C_{ww_1,0}(J,X)$. Finally, (c) follows from (b) using Corollary 2.6, and then (a) with $\mathcal{F}_w = AP_w(\mathbb{R}, X)$ follows from (c) using Theorem 2.5.

25

Proposition 4.2.

(a) If $\phi \in BC_w(\mathbb{R}, X)$ and $sp_w(\phi)$ is compact, then $\phi^{(j)} \in BUC_w(\mathbb{R}, X)$ for all $j \ge 0$.

(b) If $\phi \in \mathcal{F}$ and ϕ' is w-uniformly continuous, then $\phi' \in \mathcal{F}$.

(c) If $\phi \in BC_w(J, X)$ and ϕ' is w -uniformly continuous, then $\phi' \in E_{w,0}(J, X) \cap BUC_w(J, X)$.

(d) If $\phi, \phi' \in BC_w(\mathbb{R}, X)$ then $sp_w(\phi') \subseteq sp_w(\phi) \subseteq sp_w(\phi') \cup \{1\}$.

(e) If $\phi, \phi' \in BC_w(J, X)$ then $\phi \in BUC_w(J, X)$.

Proof. (a) Choose $f \in S(\mathbb{R})$, the Schwartz space of rapidly decreasing functions, such that f has compact support and is 1 on a neighbourhood of $sp_w(\phi)$. Then $f^{(j)} \in L^1_w(\mathbb{R})$ for all $j \geq 0$. Moreover, $\phi = \phi * f$ and so $\phi^{(j)} = \phi * f^{(j)}$ for all $j \geq 0$. Hence $\phi^{(j)} \in BUC_w(\mathbb{R}, X)$.

(b) If $\psi_n = n\Delta_{1/n}\phi$ then $\psi_n \in \mathcal{F}$. Moreover, by the *w*-uniform continuity of ϕ' , given $\varepsilon > 0$ there exists n_{ε} such that

$$\|\psi_n(t) - \phi'(t)\| = \left\| n \int_0^{1/n} (\phi'(t+s) - \phi'(t)) ds \right\| < \varepsilon w(t)$$

for all $t \in J$ and $n > n_{\varepsilon}$. Hence $\phi' \in \mathcal{F}$.

(c) With the notation used in the proof of (b), $\psi_n \in E_{w,0}(J,X) \cap BUC_w(J,X)$ by Lemma 2.2(c). Hence, so does ϕ' .

(d) For any $f \in L^1_w(\mathbb{R})$ we have $(\phi * f)' = \phi' * f$ and so $I_w(\phi') \supseteq I_w(\phi)$. Hence, $sp_w(\phi') \subseteq sp_w(\phi)$. For the second inclusion, let $g(t) = \exp(-t^2)$ so that $g, g' \in L^1_w(\mathbb{R})$ and \hat{g} is never zero. Now take $\gamma \in \widehat{\mathbb{R}}$ $(sp_w(\phi') \cup \{1\})$. So $\gamma(t) = e^{ist}$ for some $s \neq 0$ and there exists $f \in L^1_w(\mathbb{R})$ such that $\phi' * f = 0$ but $\hat{f}(\gamma) \neq 0$. Let $h = f * g' \in L^1_w(\mathbb{R})$. Then $\phi * h = \phi * f * g' = \phi' * f * g = 0$ whereas $\hat{h}(\gamma) = is\hat{f}(\gamma)\hat{g}(\gamma) \neq 0$. So $\gamma \notin sp_w(\phi')$ showing $sp_w(\phi) \subseteq sp_w(\phi') \cup \{1\}$.

(e) For any $h, t \in J$ we have $\|\Delta_h \phi(t)\| = \left\|\int_t^{t+h} \phi'(s) ds\right\| \le |h| \cdot \|\phi'\|_{w,\infty} w(h)w(t)$ from which it follows that ϕ is *w*-uniformly continuous.

Proposition 4.3. Let $\phi \in \mathcal{F}$ and assume that \mathcal{F} is BUC_w -invariant. (a) If $P\phi$ is w-polynomially ergodic with w-mean p, then $P\phi - p \in \mathcal{F}$

 $\mathcal{F} + C_{w,0}(J,X).$ (b) If $\mathcal{F} = AP_w(\mathbb{R},X)$ and $P\phi \in PE_w(\mathbb{R},X)$, then $P\phi \in AP_w(\mathbb{R},X).$

(b) If $\mathcal{F} = AP_w(\mathbb{K}, \Lambda)$ and $P\phi \in PE_w(\mathbb{K}, \Lambda)$, then $P\phi \in AP_w(\mathbb{K}, \Lambda)$.

(c) If $\mathcal{F} = AP_w(\mathbb{R}, X)$ and $P\phi \in BUC_w(\mathbb{R}, X)$, then $sp_{\mathcal{F}}(P\phi) \subseteq \{1\}$.

(d) If $\mathcal{F} = C_0(\mathbb{R}_+, X)$ and $P\phi$ is ergodic with mean c, then $P\phi - c \in C_0(\mathbb{R}_+, X)$.

Proof. (a) Take $J = \mathbb{R}_+$, the other cases being proved similarly. Extend ϕ to an even function $\tilde{\phi} \in BUC_w(\mathbb{R}, X)$. For $t \geq 0$ set $\chi_t = \chi_{[-t,0]}$ so that $\Delta_t P \phi = (\tilde{\phi} * \chi_t)|_J = \int_{\mathbb{R}} (\tilde{\phi}_{-s})|_J \chi_t(s) ds$. Since $\tilde{\phi} \in BUC_w(\mathbb{R}, X)$ the integral converges as a Lebesgue-Bochner integral. Since \mathcal{F} is BUC_w -invariant $(\tilde{\phi}_{-s})|_J \in \mathcal{F}$ and therefore $\Delta_t P \phi \in \mathcal{F}$. The result follows from Theorem 2.3.

(b) In view of Theorem 2.5, this follows from (a).

(c) Let $s, t \in \mathbb{R}$ With χ_s as in the previous proof, $(\Delta_s P \phi)_t = \phi_t * \chi_s$ and by Proposition 3.2 (a), $(\Delta_s P \phi)_t \in \mathcal{F}$. By Proposition 3.2(c), $sp_{\mathcal{F}}(P\phi) \subseteq \{1\}$.

(d) This is a special case of part (a).

Remark 4.4. Recall $u(t) = \frac{1}{2}w(t) \cos \log w(t) + \frac{1}{2}w(t) \sin \log w(t) - \sin \log w(t) - \frac{1}{2}$ from Example 1.1. So $u'(t) = \frac{t}{w(t)} \cos \log w(t)$ and therefore $u' \in C_{w,0}(\mathbb{R},\mathbb{C}) \subset AP_w(\mathbb{R},\mathbb{C}) \subset PE_w(\mathbb{R},\mathbb{C})$. However, $u \notin PE_w(\mathbb{R},\mathbb{C})$. Indeed, if $u \in PE_w(\mathbb{R},\mathbb{C})$ then for $t \in \mathbb{R}_+$ set $\xi(t) = w(t) \cos \log w(t) + w(t) \sin \log w(t)$. So $\xi \in PE_w(\mathbb{R}_+,\mathbb{C})$ and for some polynomial p(t) = at + b we have $(\xi - p)/w \in E_0(\mathbb{R}_+,\mathbb{C})$. Thus $\eta = \xi/w \in E(\mathbb{R}_+,\mathbb{C})$. But $\eta'(t) = [-\sin \log w(t) + \cos \log w(t)]/w(t)$ and so $\eta' \in C_0(\mathbb{R},\mathbb{C})$. By Proposition 4.3(d) we conclude $\eta \in C_0(\mathbb{R}_+,\mathbb{C}) + \mathbb{C}$ which is false.

Lemma 4.5. For natural numbers m, N and non-negative integers j, k set $a(m, j) = (-1)^j {N \choose j} {m-1+j \choose j} j!$.

(a) $P^m(t^N\phi) = \sum_{j=0}^N a(m,j) t^{N-j} P^{m+j}\phi$ for any $\phi \in L^1_{loc}(J,X)$.

(b)
$$\sum_{j=0}^{N} \frac{a(m,j)}{(j+k)!} = \begin{cases} \binom{N+k-m}{N} \frac{N!}{(N+k)!} & \text{if } m \le k \\ 0 & \text{if } k+1 \le m \le k+N \\ (-1)^{N} \binom{m-k-1}{N} \frac{N!}{(N+k)!} & \text{if } m > k+N \end{cases}$$

(c)
$$\sum_{j=0}^{N} a(m,j) t^{N-j} P^{j+1} r = P \sum_{j=0}^{N} a(m-1,j) t^{N-j} P^{j} r$$
 for any $r \in P_{m-2}(J,X).$

Proof. (a) For N = 1 the claim is readily proved by induction on m. The general case is then proved by induction on N.

(b) For $m \ge k+1$ we have

$$\sum_{j=0}^{N} \frac{a(m,j)}{(j+k)!} = \sum_{j=0}^{N} (-1)^{j} \binom{N}{j} \binom{m-1+j}{j} \frac{j!}{(j+k)!}$$

$$= \frac{1}{(m-1)!} \sum_{j=0}^{N} (-1)^{j} {N \choose j} \frac{(m-1+j)!}{(k+j)!}$$

$$= \frac{1}{(m-1)!} \sum_{j=0}^{N} (-1)^{j} {N \choose j} D^{m-k-1} t^{m+j-1}|_{t=1}$$

$$= \frac{1}{(m-1)!} D^{m-k-1} t^{m-1} \sum_{j=0}^{N} (-1)^{j} {N \choose j} t^{j}|_{t=1}$$

$$= \frac{1}{(m-1)!} D^{m-k-1} t^{m-1} (1-t)^{N}|_{t=1}.$$

For m - k - 1 < N this last expression is 0 and for $m - k - 1 \ge N$ it is $\frac{1}{(m-1)!} \binom{m-k-1}{N} (D^{m-k-1-N} t^{m-1}) D^N (1-t)^N|_{t=1}$ $= \frac{1}{(m-1)!} \binom{m-k-1}{N} \frac{(m-1)!}{(N+k)!} (-1)^N N!$

as claimed. For $m \leq k$ the claim follows readily by substituting $\phi(t) = t^{k-m}$ in (a).

(c) It follows readily from (b) that $\sum_{j=0}^{N} \frac{a(m-1,j)}{(j+k)!} = (N+k+1) \times \sum_{j=0}^{N} \frac{a(m,j)}{(j+k+1)!}$ if $0 \le k \le m-2$. So setting $r(t) = \sum_{k=0}^{m-2} c_k t^k$ we find

$$\begin{split} \sum_{j=0}^{N} a(m,j) \ t^{N-j} \ P^{j+1}r(t) \\ &= \sum_{k=0}^{m-2} c_k k! t^{N+k+1} \sum_{j=0}^{N} \ \frac{a(m,j)}{(j+k+1)!} \\ &= \sum_{k=0}^{m-2} c_k k! t^{N+k+1} \frac{1}{N+k+1} \sum_{j=0}^{N} \ \frac{a(m-1,j)}{(j+k)!} \\ &= P \sum_{k=0}^{m-2} c_k k! t^{N+k} \sum_{j=0}^{N} \ \frac{a(m-1,j)}{(j+k)!} \\ &= P \sum_{j=0}^{N} a(m-1,j) \ t^{N-j} P^j r(t). \end{split}$$

Our main result is the following:

Theorem 4.6. Assume $\phi \in AP(\mathbb{R}, X)$ and that $\sum_{j=0}^{N} b_j t^{N-j} P^{j+1} \phi \in BUC_{w_N}(\mathbb{R}, X)$ for some $b_j \in \mathbb{C}$, $b_0 \neq 0$.

(a)
$$P\phi \in BUC(\mathbb{R}, X)$$
 and if $\sum_{j=0}^{N} \frac{b_j}{(j+1)!} \neq 0$ then $M\phi = 0$.
(b) If $X \not\supseteq c_0$ then $P(\phi - M\phi) \in AP(\mathbb{R}, X)$.

Proof. Let $a = M\phi$ and $\psi = \sum_{j=0}^{N} b_j t^{N-j} P^{j+1}\phi$. Then we have $\psi = \sum_{j=0}^{N} b_j t^{N-j} P^{j+1}(\phi - a) + t^{N+1} a \sum_{j=0}^{N} \frac{b_j}{(j+1)!}$. By Theorem 4.1(c), $\psi - \sum_{j=0}^{N} b_j t^{N-j} P^{j+1}(\phi - a) \in C_{w_{N+1},0}(\mathbb{R}, X)$ and so either a = 0 or $\sum_{j=0}^{N} \frac{b_j}{(j+1)!} = 0$. To prove the rest of the theorem, we may assume a = 0. By Theorem 4.1(c), $P^j \phi(t) / w_j(t) \to 0$ as $t \to \infty$. Since ϕ is almost periodic we may choose $(t_n) \subset \mathbb{R}$ such that $t_n \to \infty$ and $\phi_{t_n} \to \phi$ uniformly on \mathbb{R} . Moreover, as $M\phi = 0$, by Theorem 4.1(c), $P^j \phi(s+t_n) / w_j(s+t_n) \to 0$ uniformly on \mathbb{R} for j > 0. Given $x^* \in X^*$, it follows that $x^* \circ P \phi_{t_n} \to x^* \circ P \phi$ locally uniformly. Moreover, by passing to a subsequence if necessary, we may assume $x^* \circ \psi(t_n) / w_N(t_n) \to b$ for some $b \in \mathbb{C}$. By Theorem 4.1(c) again, we obtain

$$\psi(t+t_n) = \sum_{j=0}^{N} b_j (t+t_n)^{N-j} \left[\int_0^t P^j \phi(s+t_n) ds + P^{j+1} \phi(t_n) \right]$$
$$= \psi(t_n) + b_0 t_n^N P \phi(t+t_n) + o(t_n^N).$$

Therefore $x^* \circ \psi(t+t_n)/w_N(t+t_n) \to b+b_0x^* \circ P\phi(t)$ for each $t \in \mathbb{R}$. Hence, since ψ/w_N is bounded, so too is $x^* \circ P\phi$. Since x^* is arbitrary, $P\phi$ is weakly bounded and therefore bounded. From Proposition 4.2(e) it follows that $P\phi \in BUC(\mathbb{R}, X)$. If also $X \not\supseteq c_0$ then by Kadet's theorem [21] (see also [4]), $P\phi$ is almost periodic. \Box

Corollary 4.7. Assume $\phi \in AP(\mathbb{R}, X)$ and $P(t^N \phi) \in BUC_{w_N}(\mathbb{R}, X)$.

- (a) $P\phi \in BUC(\mathbb{R}, X)$ and $M\phi = 0$.
- (b) If $X \not\supseteq c_0$ then $P\phi \in AP(\mathbb{R}, X)$.

Proof. Since $P^m(t^N\phi) = \sum_{j=0}^N a(m,j) t^{N-j} P^{m+j}\phi$ the result follows from Theorem 4.6 and Lemma 4.5.

Theorem 4.8. Assume $\phi \in AP(\mathbb{R}, X)$, $X \not\supseteq c_0$, $P^m(t^N\phi) + p \in BUC_{w_N}(\mathbb{R}, X)$ for natural numbers m, N and some $p \in P_{m-1}(\mathbb{R}, X)$. Then $P^j(t^N\phi) + p^{(m-j)} \in AP_{w_N}(\mathbb{R}, X)$ for $1 \leq j \leq m$. Moreover, there is a polynomial $q \in P_{m-1}(\mathbb{R}, X)$ such that $P^j\phi + q^{(m-j)} \in AP(\mathbb{R}, X)$ for $1 \leq j \leq m$ and, if $p(t) = \sum_{k=0}^{m-1} b_k t^k$ then $\sum_{j=0}^{N} a(m, j) t^{N-j} P^j q = \sum_{k=N+1}^{m-1} b_k t^k$.

Proof. The proof is by induction on m. If m = 1 then, by Lemma 4.5 $\sum_{j=0}^{N} \frac{a(1,j)}{(j+1)!} = \frac{1}{N+1}$ and $P(t^N \phi) = \sum_{j=0}^{N} a(1,j) t^{N-j} P^{j+1} \phi \in$

 $BUC_{w_N}(\mathbb{R}, X)$. Therefore, by Theorem 4.6, $M\phi = 0$ and $P\phi \in AP(\mathbb{R}, X)$. Moreover, by Lemma 4.5(b),

$$\sum_{j=0}^{N} a(1,j) t^{N-j} P^{j}(MP\phi) = (MP\phi) t^{N} \sum_{j=0}^{N} \frac{a_{j}}{j!} = 0.$$

Hence $P(t^N\phi) = \sum_{j=0}^N a(1,j) t^{N-j} P^j (P\phi - MP\phi)$ and by Theorem 4.1(c), $P(t^N\phi) \in AP_{w_N}(\mathbb{R}, X)$. For m > 1, Theorem 5.2 below shows $P^j(t^N\phi) + p^{(m-j)} \in BUC_{w_N}(\mathbb{R}, X)$ for $1 \le j \le m$. Hence, as induction hypothesis we may assume there is a polynomial $r \in P_{m-2}(\mathbb{R}, X)$ such that for $1 \le j \le m-1$ we have $P^j\phi + r^{(m-1-j)} \in AP(\mathbb{R}, X), P^j(t^N\phi) + p^{(m-j)} \in AP_{w_N}(\mathbb{R}, X)$ and $\sum_{j=0}^N a(m-1, j) t^{N-j} P^j r = \sum_{k=N+2}^{m-1} kb_k t^{k-1}$. In particular, $\eta = P^{m-1}\phi + r + c \in AP(\mathbb{R}, X)$ where the constant c is to be chosen. Moreover, by Lemma 4.5(d), $\sum_{j=0}^N a(m, j) t^{N-j} P^{j+1}r = \sum_{k=N+2}^{m-1} b_k t^k$.

Now set $q = P(r + c - M\phi)$ so that $P^m\phi + q = P(\eta - M\phi)$. By Theorem 4.6, to show $P^m\phi + q \in AP(\mathbb{R}, X)$, it suffices to show that $\sum_{j=0}^N a(m, j) t^{N-j} P^{j+1} \eta \in BUC_{w_N}(\mathbb{R}, X)$. By Lemma 4.5(a),

$$P^{m}(t^{N}\phi) = \sum_{j=0}^{N} a(m,j) t^{N-j} P^{m+j}\phi$$
$$= \sum_{j=0}^{N} a(m,j) t^{N-j} P^{j+1}(\eta - r - c).$$

Since $P^m(t^N\phi) + p \in BUC_{w_N}(\mathbb{R}, X)$, it suffices to show $\sum_{j=0}^N \{a(m, j) \times t^{N-j}P^{j+1}(r+c)\} = \sum_{k=N+1}^{m-1} b_k t^k$. If N > m-2 we choose c = 0 as then both sides are 0. Other-

If N > m-2 we choose c = 0 as then both sides are 0. Otherwise $N \le m-2$ and by Lemma 4.5(c) we may choose c such that $\sum_{j=0}^{N} a(m,j) t^{N-j} P^{j+1}c = b_{N+1}t^{N+1}$, that is $c \sum_{j=0}^{N} \frac{a(m,j)}{(j+1)!} = b_{N+1}$. In this case also we have by Theorem 4.6, $M\eta = 0$. In either case $\sum_{j=0}^{N} a(m,j) t^{N-j} P^{j}q = \sum_{j=0}^{N} a(m,j) t^{N-j} P^{j+1}(r+c) = \sum_{k=N+1}^{m-1} b_{k}t^{k}$ and $\sum_{j=0}^{N} a(m,j) t^{N-j} P^{j+1}M\eta = 0$. Finally,

$$P^{m}(t^{N}\phi) + p = \sum_{j=0}^{N} a(m,j) t^{N-j} P^{j+1}(\eta - r - c - M\phi) + p$$
$$= \sum_{j=0}^{N} a(m,j) t^{N-j} P^{j}(P^{m}\phi + q) + \sum_{k=0}^{N} b_{k}t^{k}$$

and by Theorem 4.1, $P^m(t^N\phi) + p \in AP_{w_N}(\mathbb{R}, X)$.

Remark 4.9. (a) In Theorem 4.6(a) the space $AP(\mathbb{R}, X)$ may be replaced by the class of Poisson stable functions. These are functions $\xi \in C(\mathbb{R}, X)$ for which there exist sequences $(t_n) \subset \mathbb{R}$ such that $t_n \to \infty$ and $\xi_{t_n} \to \xi$ locally uniformly on \mathbb{R} . In part (b), $AP(\mathbb{R}, X)$ may be replaced by any class for which Kadet's theorem remains valid. These include Poisson stable functions, almost automorphic functions and recurrent functions (see [4]).

(b) If p = 0 in Theorem 4.8 then $\sum_{j=0}^{N} a(m, j) t^{N-j} P^{j} q = 0$, which reduces to $q^{(k)}(0) = 0$ for $0 \le k \le m - N - 1$.

(c) Assume $\phi \in AP(\mathbb{R}, X)$ where $X \not\supseteq c_0$. By Theorem 4.8, if $P^m(t^N\phi) + p \in BUC_{w_N}(\mathbb{R}, X)$ for some p then $P^m\phi + q \in AP(\mathbb{R}, X)$ for some q.

The converse is also true. Indeed, $P^m(t^N\phi) = \sum_{j=1}^N \{a(m,j) \times t^{N-j}P^{m+j}\phi\} + t^N P^m\phi$ and the result follows from Theorem 4.1(c).

(d) These results are dependent on the Poisson stability property of ϕ . Indeed, consider the function $\phi \in C_0(\mathbb{R}, \mathbb{C})$ given by $\phi(t) = \frac{1}{1+|t|}$. Then $P(t\phi) = |t| - \ln(1+|t|)$ and $P\phi = sgn(t)\ln(1+|t|)$. Hence $P(t\phi) \in BUC_{w_1}(\mathbb{R}, \mathbb{C})$ whereas $P\phi \notin BC(\mathbb{R}, \mathbb{C})$.

(e) A well-known example to show that the condition $X \not\supseteq c_0$ may not be omitted from Theorem 4.6 is as follows. Let $X = c_0$ and $\phi(t) = (\frac{1}{n} \sin \frac{t}{n})_{n=1}^{\infty}$ so that $P\phi(t) = (2 \sin^2 \frac{t}{2n})_{n=1}^{\infty}$. Then $\phi \in AP(\mathbb{R}, c_0)$ and $P\phi \in BUC(\mathbb{R}, c_0)$. However, $P\phi$ does not have relatively compact range so it is not almost periodic.

5. ESCLANGON-LANDAU THEOREM

In this section we use the abbreviations

(5.2)
$$Bu = \sum_{j=0}^{m} b_j u^{(j)}$$

and assume $b_m = 1, b_j \in \mathbb{C}, u : J \to X$.

We prove a theorem of Esclangon-Landau type ([18], [22], [14], [7], [16] and references therein).

Lemma 5.1. If $Bu = \psi$ where $u, \psi \in BC_{w_N}(J, X)$ then $u^{(j)}(t) = O(|t|^{N+m-1})$ for $1 \le j \le m$.

Proof. Since $u^{(m)} = \psi - \sum_{j=0}^{m-1} b_j u^{(j)}$, taking P^{m-k} we obtain

$$u^{(k)} = \sum_{j=1}^{m-k} P^{j-1}(u^{(j+k-1)}(0)) + P^{m-k}\psi - \sum_{j=0}^{m-1} b_j P^{m-k}u^{(j)}.$$

Setting k = 1 we conclude that $u'(t) = O(|t|^{N+m-1})$. In general $u^{(k)}(t) = O(|t|^{N+m-1}) - \sum_{j=m-k+1}^{m-1} b_j P^{m-k} u^{(j)}(t) = O(|t|^{N+m-1}) + \sum_{j=1}^{k-1} O(|u^{(j)}(t)|)$ from which the result follows by induction. \Box

Theorem 5.2. If $Bu = \psi$ where $u, \psi \in BC_{w_N}(J, X)$ then $u^{(j)} \in BC_{w_N}(J, X)$ for $1 \leq j \leq m$.

Proof. Take $J = \mathbb{R}_+$, the other cases being proved similarly. The proof is by induction on m. First, if m = 1 the equation becomes $u' + b_0 u = \psi$ showing $u' \in BC_{w_N}(J,X)$. For the general case we use the functions f and \tilde{u} defined by $f(t) = \exp(-t)$ for $t \ge 0$, f(t) =0 for t < 0, $\tilde{u}(t) = u(-t)$ for $-t \in J$ and $\tilde{u}(t) = 0$ for $-t \notin J$. It follows that $e^t \int_t^{\infty} e^{-s} u(s) ds = \int_0^{\infty} e^{-s} u(s+t) ds = \tilde{u} * f(-t)$ and $\tilde{u} * f \in BC_{w_N}(\mathbb{R},X)$. Moreover, using repeated integration by parts and Lemma 5.1, we find $e^t \int_t^{\infty} e^{-s} u^{(k)}(s) ds = -\sum_{j=1}^{k-1} u^{(j)}(t) + \tilde{u} * f$ (-t). Hence the equation $B\phi = \psi$ may be transformed to the equation $\sum_{k=1}^m b_k \sum_{j=1}^{k-1} u^{(j)}(t) = (\sum_{k=0}^m b_k)\tilde{u} * f(-t) - \tilde{\psi} * f(-t)$. This is an equation of order m - 1 and so by the induction hypothesis $u^{(j)} \in$ $BC_{w_N}(J,X)$ for $1 \le j \le m - 1$. Hence $u^{(m)} = \psi - \sum_{j=0}^{m-1} b_j u^{(j)} \in$ $BC_{w_N}(J,X)$ which finishes the proof. \Box

6. Application

Again we use the abbreviation $Bu = \sum_{j=0}^{m} b_j u^{(j)}$ and assume $b_m = 1$. By p_B we denote the characteristic polynomial of the differential operator B. Thus $p_B(s) = \sum_{j=0}^{m} b_j (is)^j$ and for smooth f we have $\widehat{Bf}(\gamma_s) = p_B(s)\widehat{f}(\gamma_s)$. The set of complex zeros of p_B is denoted Z(B).

Lemma 6.1. Assume $u \in BC_{w_N}(\mathbb{R}, X)$ and \mathcal{F} is a BUC_{w_N} -invariant closed subspace of $BC_{w_N}(J, X)$. If $Bu = \psi$ where $\psi \in BUC_{w_N}(\mathbb{R}, X)$ and $\psi|_J \in \mathcal{F}$ then $sp_{\mathcal{F}}(u) \subset \{\gamma_s : s \in Z(B) \cap \mathbb{R}\}.$

Proof. Take $s \in \mathbb{R}$ with $p_B(s) \neq 0$. Choose $f \in S(\mathbb{R})$ with $\hat{f}(\gamma_s) \neq 0$ and set g = Bf. Then $u * g = \psi * f$ and by Theorem 3.2(a), $(\psi * f) |_J \in \mathcal{F}$. Hence $g \in I_{\mathcal{F}}(u)$ whereas $\hat{g}(\gamma_s) = p_B(s)\hat{f}(\gamma_s) \neq 0$. So $\gamma_s \notin sp_{\mathcal{F}}(u)$ and the proof is completed.

Theorem 6.2. Suppose $Bu = \psi$ where $u \in BC_{w_N}(\mathbb{R}, X)$ and $\psi \in AP_{w_N}(\mathbb{R}, X)$.

(a) If $Z(B) \cap \mathbb{R} = \emptyset$ then $u^{(j)} \in AP_{w_N}(\mathbb{R}, X)$ for $0 \le j \le m$.

(b) If $Z(B) \cap \mathbb{R} \neq \emptyset$, but $X \not\supseteq c_0$ and $\psi = t^N \phi$ where $\phi \in AP(\mathbb{R}, X)$ then $u^{(j)} \in AP_{w_N}(\mathbb{R}, X)$ for $0 \leq j \leq m$. Proof. (a) Let $\mathcal{F} = AP_{w_N}(\mathbb{R}, X)$. By Lemma 6.1, $sp_{\mathcal{F}}(u) \subset Z(B) \cap \mathbb{R} = \emptyset$. Hence, by Theorem 3.2(b), $u \in \mathcal{F}$. The Esclangon-Landau Theorem 5.2 shows $u, u', ..., u^{(m)} \in BC_{w_N}(\mathbb{R}, X)$ and then Proposition 4.2(e) shows $u, u', ..., u^{(m-1)} \in BUC_{w_N}(\mathbb{R}, X)$. From Proposition 4.2(b) we conclude $u', ..., u^{(m-1)} \in \mathcal{F}$. Rearranging the differential equation, we obtain $u^{(m)} \in \mathcal{F}$.

(b) The proof is by induction on m. Note first that by Theorem 5.2, $u^{(j)} \in BC_{w_N}(\mathbb{R}, X)$ for $0 \leq j \leq m$. Let $\lambda \in Z(B) \cap \mathbb{R}$ and make the substitution $\eta(t) = \exp(-i\lambda t)u(t)$ so that $\eta^{(j)} \in BC_{w_N}(\mathbb{R}, X)$ for $0 \leq j \leq m$. If m = 1 the equation $u' - i\lambda u = t^N \phi$ reduces to $\eta' = \exp(-i\lambda t)t^N \phi$. From Theorem 4.8 we conclude $\eta \in \mathcal{F}$. Hence $u, u' \in \mathcal{F}$ as claimed. For general m, the equation $Bu = t^N \phi$ reduces to an equation of the form $\sum_{j=1}^m c_j \eta^{(j)} = \exp(-i\lambda t)t^N \phi$ where $c_m = 1$. This is a differential equation in η' of order m - 1. By the induction hypothesis, or by part (a) if the characteristic polynomial has no real zeros, $\eta^{(j)} \in \mathcal{F}$ for $1 \leq j \leq m - 1$. It remains to show $\eta \in \mathcal{F}$. For this, let $k = \min\{j : c_j \neq 0\}$. From $\sum_{j=k}^m c_j \eta^{(j)} = \exp(-i\lambda t)t^N \phi$ we obtain $\sum_{j=k}^m c_j \eta^{(j-k)} = P^k(\exp(-i\lambda t)t^N \phi) + p$ for some polynomial p of degree at most k - 1. But $\eta^{(j)} \in BC_{w_N}(\mathbb{R}, X)$ for $0 \leq j \leq m$ and so by Theorem 4.8 again we conclude $P^k(\exp(-i\lambda t)t^N \phi) \in \mathcal{F}$. Since $c_k \neq 0$ we can rearrange the differential equation and obtain $\eta \in \mathcal{F}$.

Remark 6.3. The asymptotic behaviour of bounded solutions of equations more general than (5.1) are investigated by numerous authors (see [2], [3], [6], [8], [13], [26], [27], [30]). In particular, it follows from [12, Theorem 4.7] that if $\phi \in BUC_w(J,X)$, $sp_{AP_w}(\phi)$ is countable and $\gamma^{-1}\phi \in E_w(J,X)$ for all $\gamma \in sp_{AP_w}(\phi)$, then $\phi \in AP_w(\mathbb{R},X)$. In this paper for solutions of (5.1) we have replaced the ergodicity condition by $X \not\supseteq c_0$. This is satisfied, in particular, if X is finite dimensional or reflexive or weakly sequentially complete. So, the results of Theorems 4.6, 6.2 are new even for $X = \mathbb{R}$ or \mathbb{C} .

References

- L. Amerio and G. Prouse, Almost-Periodic Functions and Functional Equations, Van Nostrand, 1971
- [2] W. Arendt and C.J.K. Batty, Almost periodic solutions of first and second order Cauchy problems, J. Differential Equations 137 (1997), 363-383
- W. Arendt and C.J.K. Batty, Asymptotically almost periodic solutions of of the inhomogeneous Cauchy problems on the half line, London Math. Soc. 31(1999), 291-304
- [4] B. Basit, Generalization of two theorems of M.I.Kadets concerning the indefinite integral of abstract almost periodic functions, Math. Notes 9 (1971), 181-186

- [5] B. Basit, Some problems concerning different types of vector valued almost periodic functions, Dissertationes Math. 338 (1995), 26 pages
- [6] B. Basit, Harmonic analysis and asymptotic behavior of solutions to the abstract Cauchy problem, Semigroup Forum 54 (1997), 58-74
- B. Basit and H. Günzler, Generalized Esclangon-Landau Conditions for Differential-Difference Equations, J. Math. Analysis and applications 221 (1998), 595-624
- [8] B. Basit and H. Günzler, Asymptotic behavior of solutions of neutral equations, J. Differential Equations 149 (1998), 115-142
- [9] B. Basit and H. Günzler, Generalized vector valued almost periodic and ergodic distributions, (Monash University, Analysis Paper 113, September 2002, 65 pages), submitted
- [10] B. Basit and A.J. Pryde, Polynomials and functions with finite spectra on locally compact abelian groups, Bull. Austral. Math. Soc. 51 (1995), 33-42
- [11] B. Basit and A.J.Pryde, Ergodicity and differences of functions on semigroups, J. Austral. Math. Soc. 149 (1998), 253-265
- [12] B. Basit and A.J.Pryde, Ergodicity and stability of orbits of unbounded semigroup representations, submitted to J. Austral. Math. Soc.
- [13] C.J.K. Batty, J. V. Neerven and F. Räbiger, Tauberian theorems and stability of solutions of the Cauchy problem, Trans. Amer. Math. Soc. 350 (1998), 2087-2103
- [14] H. Bohr and O. Neugebauer, Uber lineare Differentialgleichungen mit konstanten Koeffizienten und fastperiodischer rechter Seite, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Klasse (1926), 8-22
- [15] Y. Domar, Harmonic analysis based on certain commutative Banach algebras, Acta Math. 96 (1956), 1-66
- [16] R. Doss, On the almost periodic solutions of a class of integro-differentialdifference equations, Ann. Math. 81 (1965), 117-123
- [17] N. Dunford and J. T. Schwartz, *Linear Operators, Part II: Spectral Theory*, Interscience Pub., New York, London, 1967
- [18] E. Esclangon, Nouvelles reserches sur les fonction quasi périodiques, Ann. Observatoire Bordeaux 16 (1921), 51-177
- [19] K. Iseki, Vector valued functions on semigroups I, II, III. Proc. Japan Acad. 31 (1955), 16-19, 152-155, 699-701
- [20] K. Jacobs, Ergodentheorie und Fastperiodische Funktionen auf Halbgruppen, Math. Zeit. 64 (1956), 298-338
- [21] M. I. Kadets, On the integration of almost periodic functions with values in Banach spaces, Functional Analysis Appl. 3 (1969), 228-230
- [22] E. Landau, Uber einen Satz von Herrn Esclangon, Math. Ann. 102 (1930), 177-188
- [23] B.M. Levitan and V.V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, Cambridge, 1982
- [24] L.H. Loomis, Spectral characterization of almost periodic functions, Ann. of Math. 72 (1960), 362-368
- [25] W. Maak, Integralmittelwerte von Funktionen auf Gruppen und Halbgruppen, J. reine angew. Math. 190 (1952), 40-48
- [26] V.Q. Phóng, Semigroups with nonquasianalytic growth, Studia Mathematica 104 (1993), 229-241

- [27] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser Verlag, Basel, Boston, Berlin, 1993
- [28] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Oxford Math. Monographs, Oxford Univ., 1968
- [29] W. Rudin, Harmonic Analysis on Groups, Interscience Pub., New York, London, 1962
- [30] W.M. Ruess and V.Q. Phóng, Asymptotically almost periodic solutions of evolution equations in Banach spaces, J. Differential Equations 122 (1995), 282-301.
- [31] W. M. Ruess and W. H. Summers, Ergodic theorems for semigroups of operators, Proc. Amer. Math. Soc. 114 (1992), 423-432

School of Mathematical Sciences, Monash University, PO Box 28M, VIC 3800, Australia

E-mail address: bbasit@vaxc.cc.monash.edu.au

School of Mathematical Sciences, Monash University, PO Box 28M, VIC 3800, Australia

E-mail address: a.pryde@sci.monash.edu.au