The atomic decomposition for tent spaces on spaces of homogeneous type

Emmanuel Russ

Abstract
In the Euclidean context, tent spaces, introduced by Coifman, Meyer and Stein, admit an atomic decomposition. We generalize this decomposition to the case of spaces of homogeneous type. MSC (2000): 46E30 (primary) 43A85 (secondary). Received 25 September 2006 / Accepted 8 December 2006.

Contents

1 Introduction 125
2 Proof of the atomic decomposition 128

1 Introduction

Tent spaces on $\mathbb{R}^{n}(n \geq 1)$ were introduced by Coifman, Meyer and Stein in [3] and this study was pursued and developed in [4]. These spaces naturally arise in harmonic analysis for such questions as nontangential behavior, Carleson measures, duality between $H^{1}\left(\mathbb{R}^{n}\right)$ (the Hardy space) and $B M O\left(\mathbb{R}^{n}\right)$ and the atomic decomposition in $H^{1}\left(\mathbb{R}^{n}\right)$. A relevant general setting for these questions is the framework of spaces of homogeneous type, as introduced by Coifman and Weiss in [5] and [6]. In the present note, we consider tent spaces on such spaces, and prove that they admit an atomic decomposition, following the original proof in [4].

We now define precisely our setting. Let (X, d) be a non-empty metric space endowed with a σ-finite Borel measure μ. For all $x \in X$ and all $r>0$, denote by $B(x, r)$ the open ball centered at x with radius r, and by $V(x, r)$ its measure. We call (X, d, μ) a space of homogeneous type if, for all $x \in X$
and all $r>0, V(x, r)<+\infty$ and there exists $C>0$ such that, for all $x \in X$ and all $r>0$,

$$
\begin{equation*}
V(x, 2 r) \leq C V(x, r) \tag{1.1}
\end{equation*}
$$

An easy consequence of (1.1) is that there exist $C, D>0$ such that, for all $x \in X$, all $r>0$ and all $\theta>1$,

$$
\begin{equation*}
V(x, \theta r) \leq C \theta^{D} V(x, r) \tag{1.2}
\end{equation*}
$$

There are of course many examples of spaces of homogeneous type. The simplest one is $X=\mathbb{R}^{n}$, $n \geq 1$, endowed with the Euclidean metric and the Lebesgue measure. Let us describe another example. Let G be a real connected Lie group endowed with a system of left-invariant vector fields $\mathbf{X}=$ $\left\{\mathbf{X}_{\mathbf{1}}, \ldots, \mathbf{X}_{\mathbf{k}}\right\}$ satisfying the Hörmander condition. If d is the Carathéodory metric associated to \mathbf{X} and μ the left-invariant Haar measure, and if, for any $r>0, V(r)$ denotes the volume of any ball with radius r, then there exists $d \in \mathbb{N}^{*}$ such that $V(r) \sim r^{d}$ for $0<r<1$ ([11]). Moreover, either G has polynomial volume growth, i.e. there exists $D \in \mathbb{N}^{*}$ such that, for all $r>1, V(r) \sim r^{D}$, or G has exponential volume growth, i.e. there exists $c_{1}, C_{1}, c_{2}, C_{2}>0$ such that $c_{1} e^{c_{2} r} \leq V(r) \leq C_{1} e^{C_{2} r}$ for all $r>1$ (see [8]). Among the class of Lie groups with polynomial volume growth, there is the strict subclass of nilpotent Lie groups, a strict subclass of which is made of stratified Lie groups. A real connected Lie group with polynomial volume growth is clearly a space of homogeneous type.

Another example of space of homogeneous type is the case of connected Riemannian manifolds with nonnegative Ricci curvature (this follows from the Bishop comparison theorem, see [2]). More generally, Riemannian manifolds which are quasi-isometric to a manifold with nonnegative Ricci curvature, or cocompact covering manifolds whose deck transformation group have polynomial growth, are spaces of homogeneous type ([7]).

In discrete settings, assumption (1.1) also plays a fundamental role in analysis on graphs (see for instance [1] and the references therein), and is satisfied for instance on the Cayley graph of a finitely generated group with polynomial volume growth or on some fractal graphs, as the Sierpinsky carpet.

Let us now define tent spaces on X. For any $\alpha>0$ and any $x \in X$, denote by $\Gamma_{\alpha}(x)$ the cone of aperture α with vertex $x \in X$, namely:

$$
\Gamma_{\alpha}(x)=\{(y, t) \in X \times(0,+\infty) ; d(y, x)<\alpha t\} .
$$

For any closed subset $F \subset X$, let $\mathcal{R}_{\alpha}(F)$ be the union of all cones with vertices in F :

$$
\mathcal{R}_{\alpha}(F)=\bigcup_{x \in X} \Gamma_{\alpha}(x)
$$

If $\alpha>0$ and O is an open subset of X, then the tent over O with aperture α, denoted by $T_{\alpha}(O)$, is defined by:

$$
T_{\alpha}(O)=\left(\mathcal{R}_{\alpha}\left(O^{c}\right)\right)^{c}
$$

Notice that

$$
T_{\alpha}(O)=\left\{(x, t) \in X \times(0,+\infty) ; d\left(x, O^{c}\right) \geq \alpha t\right\}
$$

In the sequel, we write $\Gamma(x)$ (resp. $\mathcal{R}(F)$ and $T(O)$ instead of $\Gamma_{1}(x)$ (resp. $\mathcal{R}_{1}(F)$ and $\left.T_{1}(O)\right)$.
For any measurable function f on $X \times(0,+\infty)$ and any $x \in X$, define

$$
\mathcal{S} f(x)=\left(\iint_{\Gamma(x)} \frac{|f(y, t)|^{2}}{V(x, t)} d \mu(y) \frac{d t}{t}\right)^{\frac{1}{2}}
$$

and, for all $p>0$, say that $f \in T^{p}(X)$ if

$$
\|f\|_{T^{p}(X)}:=\|\mathcal{S} f\|_{L^{p}(X)}<+\infty .
$$

We have the following notion of atom (see [4], p. 312):
Definition 1.1. Let $p \in(0,+\infty)$. A measurable function a on $X \times(0,+\infty)$ is said to be a $T^{p}(X)$ atom if there exists a ball $B \subset X$ such that a is supported in $T(B)$ and

$$
\iint_{X \times(0,+\infty)}|a(y, t)|^{2} d \mu(y) \frac{d t}{t} \leq \frac{1}{V(B)^{\frac{2}{p}-1}} .
$$

It is plain to see that a $T^{p}(X)$-atom belongs to $T^{p}(X)$ and that its norm is controlled by a constant only depending on X and p. Conversely, when $0<$ $p \leq 1$, it turns out that any function in $T^{p}(X)$ has an atomic decomposition, and this is the result we prove in the sequel:

Theorem 1.1. Let $p \in(0,1]$. Then, there exists $C_{p}>0$ with the following property: for all $f \in T^{p}(X)$, there exist a sequence $\left(\lambda_{n}\right)_{n \in \mathbb{N}} \in l^{p}$ and a sequence of $T^{p}(X)$ atoms $\left(a_{n}\right)_{n \in \mathbb{N}}$ such that

$$
f=\sum_{n=0}^{\infty} \lambda_{n} a_{n}
$$

and

$$
\sum_{n=0}^{\infty}\left|\lambda_{n}\right|^{p} \leq C_{p}^{p}\|f\|_{T^{p}(X)}^{p}
$$

2 Proof of the atomic decomposition

The proof of Theorem 1.1, for which we closely follow [4], requires the notion of γ-density (see [4]). Let F be a closed subset of X, and $O=F^{c}$. Assume that $\mu(O)<+\infty$. For any fixed $\gamma \in] 0,1[$, say that $x \in X$ has global γ density with respect to F if

$$
\frac{\mu(B \cap F)}{\mu(B)} \geq \gamma
$$

for any ball B centered at x. The set of all such x 's is denoted by F^{*}. It is a closed subset of F. Define also $O^{*}=\left(F^{*}\right)^{c}$. It is clear that $O \subset O^{*}$. Moreover,

$$
O^{*}=\left\{x ; M\left(\mathbf{1}_{O}\right)(x)>1-\gamma\right\}
$$

where M denotes the Hardy-Littlewood maximal function. As a consequence,

$$
\begin{equation*}
\mu\left(O^{*}\right) \leq C_{\gamma} \mu(O) \tag{2.1}
\end{equation*}
$$

The following integration lemma will be used:
Lemma 2.1. Let $\eta \in(0,1)$. Then, there exists $\gamma \in] 0,1\left[\right.$ and $C_{\gamma, \eta}>0$ such that, for any closed subset F of X whose complement has finite measure and any nonnegative measurable function $H(y, t)$ on $X \times] 0,+\infty[$,

$$
\iint_{\mathcal{R}_{1-\eta}\left(F^{*}\right)} H(y, t) V(y, t) d \mu(y) d t \leq C_{\gamma, \eta} \int_{F}\left(\iint_{\Gamma(x)} H(y, t) d \mu(y) d t\right) d \mu(x),
$$

where F^{*} denotes the set of points in X with global density γ with respect to F.

Proof: We claim that there exists $c^{\prime}>0$ such that, for all $(y, t) \in$ $\mathcal{R}_{1-\eta}\left(F^{*}\right)$,

$$
\begin{equation*}
\mu(F \cap B(y, t)) \geq c^{\prime} V(y, t) \tag{2.2}
\end{equation*}
$$

Assume that this is proved. Write

$$
\int_{F}\left(\iint_{\Gamma(x)} H(y, t) d \mu(y) d t\right) d \mu(x)=\iiint H(y, t) \mathbf{1}_{E}(x, y, t) d \mu(x) d \mu(y) d t
$$

where

$$
E=\{(x, y, t) \in F \times X \times(0,+\infty) ; d(y, x)<t\}
$$

One therefore has

$$
\begin{aligned}
\int_{F}\left(\iint_{\Gamma(x)} H(y, t) d \mu(y) d t\right) d \mu(x) & =\iint_{\mathcal{R}(F)} H(y, t) \mu(F \cap B(y, t)) d \mu(y) d t \\
& \geq \iint_{\mathcal{R}_{1}-\eta\left(F^{*}\right)} H(y, t) \mu(F \cap B(y, t)) d \mu(y) d t \\
& \geq c^{\prime} \iint_{\mathcal{R}_{1-\eta}\left(F^{*}\right)} H(y, t) V(y, t) d \mu(y) d t .
\end{aligned}
$$

Let us now prove (2.2). If $(y, t) \in \mathcal{R}_{1-\eta}\left(F^{*}\right)$, then there exists $x \in F^{*}$ such that $d(y, x)<(1-\eta) t$. One may write

$$
\mu(F \cap B(y, t)) \geq \mu(F \cap B(x, t))-\mu\left(B(x, t) \cap(B(y, t))^{c}\right) .
$$

But, since $x \in F^{*}, \mu(F \cap B(x, t)) \geq \gamma V(x, t)$. Moreover, since $d(y, x)<$ $(1-\eta) t, B(x, \eta t) \subset B(y, t)$, so that

$$
\mu(B(x, t) \cap B(y, t)) \geq V(x, \eta t) \geq \delta V(x, t)
$$

where $\delta=\frac{1}{C} \eta^{D}$ and C, D are given by (1.2). It follows that there exists $c \in(0,1)$ only depending on η and the constants in (1.2) such that

$$
\mu\left(B(x, t) \cap B(y, t)^{c}\right) \leq c V(x, t)
$$

As a consequence, if $1>\gamma>c$, one obtains, using (1.1) once more,

$$
\begin{aligned}
\mu(F \cap B(y, t)) & \geq(\gamma-c) V(x, t) \\
& \geq c^{\prime} V(y, t)
\end{aligned}
$$

This concludes the proof of Lemma 2.1.
We now turn to the proof of Theorem 1.1. Let $f \in T^{p}(X)$. For any integer $k \in \mathbb{Z}$, define

$$
O_{k}=\left\{x \in X ; \mathcal{S} f(x)>2^{k}\right\}
$$

and let $F_{k}=O_{k}^{c}$. The O_{k} 's are open subsets of X and, since $\mathcal{S} f \in L^{1}(X)$, $\mu\left(O_{k}\right)<+\infty$ for all $k \in \mathbb{Z}$. Fix $\eta \in(0,1)$ and consider also, for γ given by Lemma 2.1, the set F_{k}^{*} of all the points of global γ - density with respect to F_{k}, and $O_{k}^{*}=\left(F_{k}^{*}\right)^{c}$.

We claim that

$$
\begin{equation*}
\operatorname{supp} f \subset \bigcup_{k} T_{1-\eta}\left(O_{k}^{*}\right) \tag{2.3}
\end{equation*}
$$

Indeed, according to Lemma 2.1, for any $k \in \mathbb{Z}$,

$$
\begin{aligned}
\iint_{\mathcal{R}_{1-\eta}\left(F_{k}^{*}\right)}|f(y, t)|^{2} d \mu(y) \frac{d t}{t} & \leq C \int_{F_{k}}\left(\iint_{\Gamma(x)} \frac{|f(y, t)|^{2}}{V(y, t)} d \mu(y) \frac{d t}{t}\right) d \mu(x) \\
& \leq C^{\prime} \int_{F_{k}}(\mathcal{S} f)^{2}(x) d \mu(x) .
\end{aligned}
$$

When $k \rightarrow-\infty$, the dominated convergence theorem shows that $\int_{F_{k}}(\mathcal{S} f)^{2}(x) d \mu(x) \rightarrow$ 0 . It follows that

$$
\iint_{\bigcap_{j} \mathcal{R}_{1-\eta}\left(F_{j}^{*}\right)}|f(y, t)|^{2} d \mu(y) \frac{d t}{t}=0 .
$$

This shows that f is zero on almost every point of $\bigcap_{j} \mathcal{R}_{1-\eta}\left(F_{j}^{*}\right)$. In other words, (2.3) holds.

We make use of the following lemma (see [3], Ch 3, Th 1.3; see also [9]): Lemma 2.2. Let Ω be a proper open subset of finite measure of X. For any $x \in X$, define $r(x)=\frac{d\left(x, \Omega^{c}\right)}{10}$. Then, there exist an integer M and a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of points in X such that, if $r_{n}=r\left(x_{n}\right)$,

$$
\begin{aligned}
& \Omega=\bigcup_{n} B\left(x_{n}, r_{n}\right), \\
& i \neq j \Longrightarrow \frac{1}{4} B\left(x_{i}, r_{i}\right) \cap \frac{1}{4} B\left(x_{j}, r_{j}\right)=\varnothing, \\
& \forall n,\left|\left\{m ; B\left(x_{n}, 5 r_{n}\right) \cap B\left(x_{m}, 5 r_{m}\right) \neq \varnothing\right\}\right| \leq M .
\end{aligned}
$$

Moreover, there exists a sequence of nonnegative functions $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ on X such that

$$
\begin{aligned}
& \text { supp } \varphi_{n} \subset B\left(x_{n}, 2 r_{n}\right), \\
& \forall x \in B\left(x_{n}, r_{n}\right), \varphi_{n}(x) \geq \frac{1}{M}, \\
& \sum_{n} \varphi_{n}=\mathbf{1}_{\Omega} .
\end{aligned}
$$

Let $k \in \mathbb{Z}$. If O_{k}^{*} is a proper subset of X, apply this lemma with $\Omega=O_{k}^{*}$. The points x_{n} will be denoted by x_{n}^{k}, the radii r_{n} by r_{n}^{k}, the balls $B\left(x_{n}^{k}, r_{n}^{k}\right)$ by B_{n}^{k} and the functions φ_{n} by φ_{n}^{k}, where $n \in I^{k}$ and I^{k} is a denumerable set. If $O_{k}^{*}=X$, then $\mu(X)<+\infty$, which forces X to be bounded ([10]). In this situation, set $I^{k}=\{1\}$, and define $B_{1}^{k}=X$ (indeed, X is a ball itself) and $\varphi_{1}^{k}(x)=1$ for all $x \in X$. One has, for any $(x, t) \in X \times \mathbb{R}_{+}^{*}$,

$$
\left(\mathbf{1}_{T_{1-\eta}\left(O_{k}^{*}\right)}-\mathbf{1}_{T_{1-\eta}\left(O_{k+1}^{*}\right)}\right)(x, t)=\sum_{j \in I^{k}} \varphi_{j}^{k}(x)\left(\mathbf{1}_{T_{1-\eta}\left(O_{k}^{*}\right)}-\mathbf{1}_{T_{1-\eta}\left(O_{k+1}^{*}\right)}\right)(x, t) .
$$

Indeed, if $(x, t) \in T_{1-\eta}\left(O_{k}^{*}\right) \backslash T_{1-\eta}\left(O_{k+1}^{*}\right)$, then $x \in O_{k}^{*}$, and the two sides of the identity are equal to 1 . Otherwise, they are both equal to zero. From this and (2.3), it follows that

$$
\begin{aligned}
f(x, t) & =\sum_{k \in \mathbb{Z}} f(x, t)\left(\mathbf{1}_{T_{1-\eta}\left(O_{k}^{*}\right)}-\mathbf{1}_{T_{1-\eta}\left(O_{k+1}^{*}\right)}\right)(x, t) \\
& =\sum_{k \in \mathbb{Z}} \sum_{j \in I^{k}} f(x, t) \varphi_{j}^{k}(x)\left(\mathbf{1}_{T_{1-\eta}\left(O_{k}^{*}\right)}-\mathbf{1}_{T_{1-\eta}\left(O_{k+1}^{*}\right)}\right)(x, t) .
\end{aligned}
$$

Define, for all $k \in \mathbb{Z}$ and all $j \in I^{k}$,

$$
\begin{aligned}
\mu_{j}^{k} & =\iint|f(y, t)|^{2} \varphi_{j}^{k}(y)^{2}\left(\mathbf{1}_{T_{1-\eta}\left(O_{k}^{*}\right)}-\mathbf{1}_{T_{1-\eta}\left(O_{k+1}^{*}\right)}\right)(y, t) d \mu(y) \frac{d t}{t}, \\
a_{j}^{k}(y, t) & =f(y, t) \varphi_{j}^{k}(y)\left(\mathbf{1}_{T_{1-\eta}\left(O_{k}^{*}\right)}-\mathbf{1}_{T_{1-\eta}\left(O_{k+1}^{*}\right)}\right)(y, t) V\left(B_{j}^{k}\right)^{\frac{1}{2}-\frac{1}{p}}\left(\mu_{j}^{k}\right)^{-\frac{1}{2}}, \\
\lambda_{j}^{k} & =V\left(B_{j}^{k}\right)^{\frac{1}{p}-\frac{1}{2}}\left(\mu_{j}^{k}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Then

$$
f=\sum_{k \in \mathbb{Z}} \sum_{j \in I^{k}} \lambda_{j}^{k} a_{j}^{k} .
$$

We claim that, up to a multiplicative constant, the a_{j}^{k} 's are $T^{p}(X)$ atoms. To begin with, notice that

$$
\begin{equation*}
\operatorname{supp} a_{j}^{k} \subset T\left(C B_{j}^{k}\right) \tag{2.4}
\end{equation*}
$$

where $C:=2+\frac{12}{1-\eta}$. Indeed, this is obvious when $O_{k}^{*}=X$, since $B_{1}^{k}=X$ in this case. Assume therefore that O_{k}^{*} is a proper subset of X and let $(y, t) \in T_{1-\eta}\left(O_{k}^{*}\right)$ such that $\varphi_{j}^{k}(y)>0$. Then, $d\left(y,\left(O_{k}^{*}\right)^{c}\right) \geq(1-\eta) t$ and $y \in 2 B_{j}^{k}$. We intend to prove that $d\left(y,\left(C B_{j}^{k}\right)^{c}\right) \geq t$. Let $z \in\left(C B_{j}^{k}\right)^{c}$. Then

$$
\begin{aligned}
d(y, z) & \geq d\left(z, x_{j}^{k}\right)-d\left(y, x_{j}^{k}\right) \\
& \geq(C-2) r_{j}^{k} .
\end{aligned}
$$

Moreover, by definition of $r_{j}^{k}, d\left(x_{j}^{k},\left(O_{k}^{*}\right)^{c}\right)=10 r_{j}^{k}$. Let $\varepsilon>0$. There exists $u \notin O_{k}^{*}$ such that $d\left(x_{j}^{k}, u\right)<10 r_{j}^{k}+\varepsilon$. Since $u \in\left(O_{k}^{*}\right)^{c}$ while $d\left(y,\left(O_{k}^{*}\right)^{c}\right) \geq$ $(1-\eta) t$, one has

$$
\begin{aligned}
(1-\eta) t & \leq d(y, u) \\
& \leq d\left(y, x_{j}^{k}\right)+d\left(x_{j}^{k}, u\right) \\
& \leq 2 r_{j}^{k}+10 r_{j}^{k}+\varepsilon
\end{aligned}
$$

and, since it is true for every $\varepsilon>0$, it follows that $(1-\eta) t \leq 12 r_{j}^{k}$. Finally, by the choice of C, one has $d(y, z) \geq t$. Thus, (2.4) holds.

The very definition of a_{j}^{k} implies that

$$
\begin{aligned}
\iint\left|a_{j}^{k}(y, t)\right|^{2} d \mu(y) \frac{d t}{t} & =\frac{1}{V\left(B_{j}^{k}\right)^{\frac{2}{p}-1}} \\
& \leq \frac{C^{\prime}}{V\left(C B_{j}^{k}\right)^{\frac{2}{p}-1}}
\end{aligned}
$$

where the last line is due to (1.2). What remains to be proved is that

$$
\sum_{k \in \mathbb{Z}} \sum_{j \in I^{k}}\left|\lambda_{j}^{k}\right|^{p} \leq C\|\mathcal{S} f\|_{p}^{p}
$$

To this purpose, write

$$
\mu_{j}^{k} \leq \iint_{T\left(C B_{j}^{k}\right) \cap\left(T_{1-\eta}\left(O_{k+1}^{*}\right)\right)^{c}}|f(y, t)|^{2} d \mu(y) \frac{d t}{t}
$$

and apply Lemma 2.1 to

$$
H(y, t)=\frac{|f(y, t)|^{2}}{t V(y, t)} \mathbf{1}_{T\left(C B_{j}^{k}\right)}(y, t)
$$

and

$$
F=F_{k+1}=O_{k+1}^{c} .
$$

This yields

$$
\iint_{T\left(C B_{j}^{k}\right) \cap\left(T_{1-\eta}\left(O_{k+1}^{*}\right)\right)^{c}}|f(y, t)|^{2} d \mu(y) \frac{d t}{t} \leq C \int_{O_{k+1}^{c}}\left(\iint_{\Gamma(x) \cap T\left(C B_{j}^{k}\right)} \frac{|f(y, t)|^{2}}{V(y, t)} d \mu(y) \frac{d t}{t}\right) d \mu(x) .
$$

If $(y, t) \in \Gamma(x) \cap T\left(C B_{j}^{k}\right)$, then $x \in C B_{j}^{k}$. It follows that

$$
\begin{aligned}
\iint_{T\left(C B_{j}^{k}\right) \cap\left(T\left(O_{k+1}^{*}\right)\right)^{c}}|f(y, t)|^{2} d \mu(y) \frac{d t}{t} & \leq C \int_{C B_{k}^{k} \cap O_{k+1}^{c}}(\mathcal{S} f)^{2}(x) d \mu(x) \\
& \leq C\left(2^{k+1}\right)^{2} V\left(C B_{j}^{k}\right) \\
& \leq C^{\prime} 2^{2 k} V\left(B_{j}^{k}\right) .
\end{aligned}
$$

Thus, $\mu_{j}^{k} \leq C 2^{2 k} V\left(B_{j}^{k}\right)$, and, by (1.2),

$$
\begin{aligned}
\lambda_{j}^{k} & =V\left(B_{j}^{k}\right)^{\frac{1}{p}-\frac{1}{2}}\left(\mu_{j}^{k}\right)^{\frac{1}{2}} \\
& \leq C 2^{k} V\left(B_{j}^{k}\right)^{\frac{1}{p}} \\
& \leq C 2^{k} V\left(\frac{1}{4} B_{j}^{k}\right)^{\frac{1}{p}} .
\end{aligned}
$$

Since, for all $k \in \mathbb{Z}$, the $\frac{1}{4} B_{j}^{k}$ are pairwise disjoint for $i \in I^{k}$ and included in
O_{k}^{*}, one has, by (2.1),

$$
\begin{aligned}
\sum_{k \in \mathbb{Z}} \sum_{j \in I^{k}}\left|\lambda_{j}^{k}\right|^{p} & \leq C \sum_{k \in \mathbb{Z}} 2^{k p} \mu\left(O_{k}^{*}\right) \\
& \leq C^{\prime} \sum_{k \in \mathbb{Z}} 2^{k p} \mu\left(O_{k}\right) \\
& \leq C p \sum_{k \in \mathbb{Z}}\left(2^{k-1}\right) 2^{k(p-1)} \mu\left(\left\{S f>2^{k}\right\}\right) \\
& \leq C p \sum_{k \in \mathbb{Z}} \int_{2^{k-1}}^{2^{k}} t^{p-1} \mu(\{\mathcal{S} f>t\}) d t \\
& =C p \int_{0}^{+\infty} t^{p-1} \mu(\{\mathcal{S} f>t\}) d t \\
& =C\|\mathcal{S} f\|_{p}^{p}
\end{aligned}
$$

The proof of Theorem 1.1 is complete.
Acknowledgements: The author would like to thank the referee for an interesting suggestion to improve the paper.

References

[1] P. Auscher, T. Coulhon, Gaussian lower bounds for random walks from elliptic regularity, Ann. Inst. Henri Poincaré (B) Probabilités et Statistiques, 35, 5, 605-630, 1999.
[2] R. Bishop, R. Crittenden, Geometry of manifolds, Academic Press, N. York, 1964.
[3] R. Coifman, Y. Meyer, E. M. Stein, Un nouvel espace adapté à l'étude des opérateurs définis par des intégrales singulières, in: Proc. Conf. Harmonic Analysis (Cortona), Lecture Notes in Math. 992, Springer, Berlin, 1-15, 1983.
[4] R. Coifman, Y. Meyer, E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62, 304-335, 1985.
[5] R. Coifman, G. Weiss, Analyse harmonique non commutative sur certains espaces homogènes, Lect. Notes Math. 242, Springer Verlag, 1971.
[6] R. Coifman, G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83, 569-645, 1977.
[7] T. Coulhon, L. Saloff-Coste, Variétés Riemanniennes isométriques à l'infini, Rev. Mat. Iberoamericana, 11, 687-726, 1995.
[8] Y. Guivarch, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France, 101, 333-379, 1973.
[9] R. Macias, C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Advances in Math. 33, 271-309, 1979.
[10] J. M. Martell, Desigualdades con pesos en el Análisis de Fourier: de los espacios de tipo homogéneo a las medidas no doblantes, Ph. D., Universidad Autónoma de Madrid, 2001.
[11] A. Nagel, E. M. Stein, S. Wainger, Balls and metrics defined by vector fields I: Basic properties, Acta Math. 155, 103-147, 1985.

Emmanuel Russ, Université Paul Cézanne, LATP, CNRS UMR 6632, Faculté des Sciences et Techniques, Case cour A, Avenue Escadrille NormandieNiémen, F-13397 Marseille Cedex 20, France. emmanuel.russ@univ-cezanne.fr

