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Abstract

In the Euclidean context, tent spaces, introduced by Coifman,
Meyer and Stein, admit an atomic decomposition. We generalize this
decomposition to the case of spaces of homogeneous type.
MSC (2000): 46E30 (primary) 43A85 (secondary).
Received 25 September 2006 / Accepted 8 December 2006.

Contents
1 Introduction 125

2 Proof of the atomic decomposition 128

1 Introduction
Tent spaces on Rn (n ≥ 1) were introduced by Coifman, Meyer and Stein
in [3] and this study was pursued and developed in [4]. These spaces naturally
arise in harmonic analysis for such questions as nontangential behavior, Car-
leson measures, duality between H1(Rn) (the Hardy space) and BMO(Rn)
and the atomic decomposition in H1(Rn). A relevant general setting for these
questions is the framework of spaces of homogeneous type, as introduced by
Coifman and Weiss in [5] and [6]. In the present note, we consider tent
spaces on such spaces, and prove that they admit an atomic decomposition,
following the original proof in [4].

We now define precisely our setting. Let (X, d) be a non-empty metric
space endowed with a σ-finite Borel measure µ. For all x ∈ X and all r > 0,
denote by B(x, r) the open ball centered at x with radius r, and by V (x, r)
its measure. We call (X, d, µ) a space of homogeneous type if, for all x ∈ X
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and all r > 0, V (x, r) < +∞ and there exists C > 0 such that, for all x ∈ X
and all r > 0,

V (x, 2r) ≤ CV (x, r). (1.1)

An easy consequence of (1.1) is that there exist C, D > 0 such that, for all
x ∈ X, all r > 0 and all θ > 1,

V (x, θr) ≤ CθDV (x, r). (1.2)

There are of course many examples of spaces of homogeneous type. The
simplest one is X = Rn, n ≥ 1, endowed with the Euclidean metric and
the Lebesgue measure. Let us describe another example. Let G be a real
connected Lie group endowed with a system of left-invariant vector fields X =
{X1, ...,Xk} satisfying the Hörmander condition. If d is the Carathéodory
metric associated to X and µ the left-invariant Haar measure, and if, for
any r > 0, V (r) denotes the volume of any ball with radius r, then there
exists d ∈ N∗ such that V (r) ∼ rd for 0 < r < 1 ( [11]). Moreover, either
G has polynomial volume growth, i.e. there exists D ∈ N∗ such that, for
all r > 1, V (r) ∼ rD, or G has exponential volume growth, i.e. there exists
c1, C1, c2, C2 > 0 such that c1ec2r ≤ V (r) ≤ C1eC2r for all r > 1 (see [8]).
Among the class of Lie groups with polynomial volume growth, there is the
strict subclass of nilpotent Lie groups, a strict subclass of which is made of
stratified Lie groups. A real connected Lie group with polynomial volume
growth is clearly a space of homogeneous type.

Another example of space of homogeneous type is the case of connected
Riemannian manifolds with nonnegative Ricci curvature (this follows from
the Bishop comparison theorem, see [2]). More generally, Riemannian man-
ifolds which are quasi-isometric to a manifold with nonnegative Ricci cur-
vature, or cocompact covering manifolds whose deck transformation group
have polynomial growth, are spaces of homogeneous type ( [7]).

In discrete settings, assumption (1.1) also plays a fundamental role in
analysis on graphs (see for instance [1] and the references therein), and is
satisfied for instance on the Cayley graph of a finitely generated group with
polynomial volume growth or on some fractal graphs, as the Sierpinsky car-
pet.

Let us now define tent spaces on X. For any α > 0 and any x ∈ X,
denote by Γα(x) the cone of aperture α with vertex x ∈ X, namely:

Γα(x) = {(y, t) ∈ X × (0, +∞); d(y, x) < αt} .
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For any closed subset F ⊂ X, let Rα(F ) be the union of all cones with
vertices in F :

Rα(F ) =
⋃

x∈X

Γα(x).

If α > 0 and O is an open subset of X, then the tent over O with aperture
α, denoted by Tα(O), is defined by:

Tα(O) = (Rα(Oc))c .

Notice that

Tα(O) = {(x, t) ∈ X × (0, +∞) ; d(x, Oc) ≥ αt} .

In the sequel, we write Γ(x) (resp. R(F ) and T (O) instead of Γ1(x) (resp.
R1(F ) and T1(O)).
For any measurable function f on X × (0, +∞) and any x ∈ X, define

Sf(x) =

(∫∫

Γ(x)

|f(y, t)|2

V (x, t)
dµ(y)

dt

t

) 1
2

,

and, for all p > 0, say that f ∈ T p(X) if

‖f‖T p(X) := ‖Sf‖Lp(X) < +∞.

We have the following notion of atom (see [4], p. 312):

Definition 1.1. Let p ∈ (0, +∞). A measurable function a on X × (0, +∞)
is said to be a T p(X) atom if there exists a ball B ⊂ X such that a is
supported in T (B) and

∫∫

X×(0,+∞)

|a(y, t)|2 dµ(y)
dt

t
≤ 1

V (B)
2
p−1

.

It is plain to see that a T p(X)-atom belongs to T p(X) and that its norm
is controlled by a constant only depending on X and p. Conversely, when 0 <
p ≤ 1, it turns out that any function in T p(X) has an atomic decomposition,
and this is the result we prove in the sequel:
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Theorem 1.1. Let p ∈ (0, 1]. Then, there exists Cp > 0 with the following
property: for all f ∈ T p(X), there exist a sequence (λn)n∈N ∈ lp and a
sequence of T p(X) atoms (an)n∈N such that

f =
∞∑

n=0

λnan

and
∞∑

n=0

|λn|p ≤ Cp
p ‖f‖

p
T p(X) .

2 Proof of the atomic decomposition
The proof of Theorem 1.1, for which we closely follow [4], requires the notion
of γ-density (see [4]). Let F be a closed subset of X, and O = F c. Assume
that µ(O) < +∞. For any fixed γ ∈ ]0, 1[, say that x ∈ X has global γ-
density with respect to F if

µ(B ∩ F )

µ(B)
≥ γ

for any ball B centered at x. The set of all such x’s is denoted by F ∗. It
is a closed subset of F . Define also O∗ = (F ∗)c. It is clear that O ⊂ O∗.
Moreover,

O∗ = {x; M(1O)(x) > 1− γ}
where M denotes the Hardy-Littlewood maximal function. As a consequence,

µ(O∗) ≤ Cγµ(O). (2.1)

The following integration lemma will be used:

Lemma 2.1. Let η ∈ (0, 1). Then, there exists γ ∈ ]0, 1[ and Cγ,η > 0 such
that, for any closed subset F of X whose complement has finite measure and
any nonnegative measurable function H(y, t) on X × ]0, +∞[,
∫∫

R1−η(F ∗)

H(y, t)V (y, t)dµ(y)dt ≤ Cγ,η

∫

F

(∫∫

Γ(x)

H(y, t)dµ(y)dt

)
dµ(x),

where F ∗ denotes the set of points in X with global density γ with respect to
F .
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Proof: We claim that there exists c′ > 0 such that, for all (y, t) ∈
R1−η(F ∗),

µ(F ∩B(y, t)) ≥ c′V (y, t). (2.2)

Assume that this is proved. Write
∫

F

(∫∫

Γ(x)

H(y, t)dµ(y)dt

)
dµ(x) =

∫∫∫
H(y, t)1E(x, y, t)dµ(x)dµ(y)dt

where
E = {(x, y, t) ∈ F ×X × (0, +∞); d(y, x) < t} .

One therefore has
∫

F

(∫∫

Γ(x)

H(y, t)dµ(y)dt

)
dµ(x) =

∫∫

R(F )

H(y, t)µ(F ∩B(y, t))dµ(y)dt

≥
∫∫

R1−η(F ∗)

H(y, t)µ(F ∩B(y, t))dµ(y)dt

≥ c′
∫∫

R1−η(F ∗)

H(y, t)V (y, t)dµ(y)dt.

Let us now prove (2.2). If (y, t) ∈ R1−η(F ∗), then there exists x ∈ F ∗ such
that d(y, x) < (1− η)t. One may write

µ(F ∩B(y, t)) ≥ µ(F ∩B(x, t))− µ(B(x, t) ∩ (B(y, t))c).

But, since x ∈ F ∗, µ(F ∩ B(x, t)) ≥ γV (x, t). Moreover, since d(y, x) <
(1− η)t, B(x, ηt) ⊂ B(y, t), so that

µ(B(x, t) ∩B(y, t)) ≥ V (x, ηt) ≥ δV (x, t),

where δ = 1
C ηD and C, D are given by (1.2). It follows that there exists

c ∈ (0, 1) only depending on η and the constants in (1.2) such that

µ(B(x, t) ∩B(y, t)c) ≤ cV (x, t).

As a consequence, if 1 > γ > c, one obtains, using (1.1) once more,

µ(F ∩B(y, t)) ≥ (γ − c)V (x, t)

≥ c′V (y, t).
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This concludes the proof of Lemma 2.1.
We now turn to the proof of Theorem 1.1. Let f ∈ T p(X). For any

integer k ∈ Z, define
Ok =

{
x ∈ X; Sf(x) > 2k

}

and let Fk = Oc
k. The Ok’s are open subsets of X and, since Sf ∈ L1(X),

µ(Ok) < +∞ for all k ∈ Z. Fix η ∈ (0, 1) and consider also, for γ given by
Lemma 2.1, the set F ∗

k of all the points of global γ- density with respect to
Fk, and O∗

k = (F ∗
k )c.

We claim that
suppf ⊂

⋃

k

T1−η(O
∗
k). (2.3)

Indeed, according to Lemma 2.1, for any k ∈ Z,
∫∫

R1−η(F ∗k )

|f(y, t)|2 dµ(y)
dt

t
≤ C

∫

Fk

(∫∫

Γ(x)

|f(y, t)|2

V (y, t)
dµ(y)

dt

t

)
dµ(x)

≤ C ′
∫

Fk

(Sf)2 (x)dµ(x).

When k → −∞, the dominated convergence theorem shows that
∫

Fk

(Sf)2 (x)dµ(x) →

0. It follows that ∫∫

T
j

R1−η(F ∗j )

|f(y, t)|2 dµ(y)
dt

t
= 0.

This shows that f is zero on almost every point of
⋂
j

R1−η(F ∗
j ). In other

words, (2.3) holds.
We make use of the following lemma (see [3], Ch 3, Th 1.3; see also [9]):

Lemma 2.2. Let Ω be a proper open subset of finite measure of X. For

any x ∈ X, define r(x) =
d(x, Ωc)

10
. Then, there exist an integer M and a

sequence (xn)n∈N of points in X such that, if rn = r(xn),

Ω =
⋃

n

B(xn, rn),

i ,= j =⇒ 1

4
B(xi, ri) ∩

1

4
B(xj, rj) = Ø,

∀n, |{m; B(xn, 5rn) ∩B(xm, 5rm) ,= Ø}| ≤ M.
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Moreover, there exists a sequence of nonnegative functions (ϕn)n∈N on X
such that

supp ϕn ⊂ B(xn, 2rn),

∀x ∈ B(xn, rn), ϕn(x) ≥ 1

M
,

∑

n

ϕn = 1Ω.

Let k ∈ Z. If O∗
k is a proper subset of X, apply this lemma with Ω = O∗

k.
The points xn will be denoted by xk

n, the radii rn by rk
n, the balls B(xk

n, r
k
n)

by Bk
n and the functions ϕn by ϕk

n, where n ∈ Ik and Ik is a denumerable
set. If O∗

k = X, then µ(X) < +∞, which forces X to be bounded ( [10]). In
this situation, set Ik = {1}, and define Bk

1 = X (indeed, X is a ball itself)
and ϕk

1(x) = 1 for all x ∈ X. One has, for any (x, t) ∈ X × R∗
+,

(
1T1−η(O∗

k) − 1T1−η(O∗
k+1)

)
(x, t) =

∑

j∈Ik

ϕk
j (x)

(
1T1−η(O∗

k) − 1T1−η(O∗
k+1)

)
(x, t).

Indeed, if (x, t) ∈ T1−η(O∗
k) \ T1−η(O∗

k+1), then x ∈ O∗
k, and the two sides of

the identity are equal to 1. Otherwise, they are both equal to zero. From
this and (2.3), it follows that

f(x, t) =
∑

k∈Z
f(x, t)

(
1T1−η(O∗

k) − 1T1−η(O∗
k+1)

)
(x, t)

=
∑

k∈Z

∑

j∈Ik

f(x, t)ϕk
j (x)

(
1T1−η(O∗

k) − 1T1−η(O∗
k+1)

)
(x, t).

Define, for all k ∈ Z and all j ∈ Ik,

µk
j =

∫∫
|f(y, t)|2 ϕk

j (y)2
(
1T1−η(O∗

k) − 1T1−η(O∗
k+1)

)
(y, t)dµ(y)

dt

t
,

ak
j (y, t) = f(y, t)ϕk

j (y)
(
1T1−η(O∗

k) − 1T1−η(O∗
k+1)

)
(y, t)V (Bk

j )
1
2−

1
p (µk

j )
− 1

2 ,

λk
j = V (Bk

j )
1
p−

1
2 (µk

j )
1
2 .

Then
f =

∑

k∈Z

∑

j∈Ik

λk
j a

k
j .

131



We claim that, up to a multiplicative constant, the ak
j ’s are T p(X) atoms.

To begin with, notice that

supp ak
j ⊂ T (CBk

j ) (2.4)

where C := 2 + 12
1−η . Indeed, this is obvious when O∗

k = X, since Bk
1 = X

in this case. Assume therefore that O∗
k is a proper subset of X and let

(y, t) ∈ T1−η(O∗
k) such that ϕk

j (y) > 0. Then, d(y, (O∗
k)

c) ≥ (1 − η)t and
y ∈ 2Bk

j . We intend to prove that d(y, (CBk
j )c) ≥ t. Let z ∈ (CBk

j )c. Then

d(y, z) ≥ d(z, xk
j )− d(y, xk

j )

≥ (C − 2)rk
j .

Moreover, by definition of rk
j , d(xk

j , (O
∗
k)

c) = 10rk
j . Let ε > 0. There exists

u /∈ O∗
k such that d(xk

j , u) < 10rk
j + ε. Since u ∈ (O∗

k)
c while d(y, (O∗

k)
c) ≥

(1− η)t, one has

(1− η)t ≤ d(y, u)

≤ d(y, xk
j ) + d(xk

j , u)

≤ 2rk
j + 10rk

j + ε

and, since it is true for every ε > 0, it follows that (1− η)t ≤ 12rk
j . Finally,

by the choice of C, one has d(y, z) ≥ t. Thus, (2.4) holds.
The very definition of ak

j implies that
∫∫ ∣∣ak

j (y, t)
∣∣2 dµ(y)

dt

t
=

1

V (Bk
j )

2
p−1

≤ C ′

V (CBk
j )

2
p−1

,

where the last line is due to (1.2). What remains to be proved is that
∑

k∈Z

∑

j∈Ik

∣∣λk
j

∣∣p ≤ C ‖Sf‖p
p .

To this purpose, write

µk
j ≤

∫∫

T (CBk
j )∩(T1−η(O∗

k+1))c

|f(y, t)|2 dµ(y)
dt

t
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and apply Lemma 2.1 to

H(y, t) =
|f(y, t)|2

tV (y, t)
1T (CBk

j )(y, t)

and
F = Fk+1 = Oc

k+1.

This yields

∫∫

T (CBk
j )∩(T1−η(O∗

k+1))c

|f(y, t)|2 dµ(y)
dt

t
≤ C

∫

Oc
k+1

(∫∫

Γ(x)∩T (CBk
j )

|f(y, t)|2

V (y, t)
dµ(y)

dt

t

)
dµ(x).

If (y, t) ∈ Γ(x) ∩ T (CBk
j ), then x ∈ CBk

j . It follows that
∫∫

T (CBk
j )∩(T (O∗

k+1))c

|f(y, t)|2 dµ(y)
dt

t
≤ C

∫

CBk
j ∩Oc

k+1

(Sf)2 (x)dµ(x)

≤ C(2k+1)2V (CBk
j )

≤ C ′22kV (Bk
j ).

Thus, µk
j ≤ C22kV (Bk

j ), and, by (1.2),

λk
j = V (Bk

j )
1
p−

1
2 (µk

j )
1
2

≤ C2kV (Bk
j )

1
p

≤ C2kV

(
1

4
Bk

j

) 1
p

.

Since, for all k ∈ Z, the 1
4B

k
j are pairwise disjoint for i ∈ Ik and included in
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O∗
k, one has, by (2.1),

∑

k∈Z

∑

j∈Ik

∣∣λk
j

∣∣p ≤ C
∑

k∈Z
2kpµ(O∗

k)

≤ C ′
∑

k∈Z
2kpµ(Ok)

≤ Cp
∑

k∈Z
(2k−1)2k(p−1)µ

({
Sf > 2k

})

≤ Cp
∑

k∈Z

∫ 2k

2k−1

tp−1µ ({Sf > t}) dt

= Cp

∫ +∞

0

tp−1µ ({Sf > t}) dt

= C ‖Sf‖p
p .

The proof of Theorem 1.1 is complete.
Acknowledgements: The author would like to thank the referee for an
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