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Abstract

We consider commutator estimates in non-commutative (opera-
tor) Lp-spaces associated with general semi-finite von Neumann al-
gebra. We discuss the difficulties which appear when one considers
commutators with an unbounded operator in non-commutative Lp-
spaces with p != ∞. We explain those difficulties using the example
of the classical differentiation operator. MSC (2000): 46L52, 47B47.
Received 31 July 2006 / Accepted 2 November 2006.

1 Introduction

Let us consider the spaces Lp := Lp(R), 1 ≤ p ≤ ∞, i.e. the spaces of all
Lebesgue measurable functions with integrable p-th power, if 1 ≤ p < ∞ and
which are essentially bounded, if p = ∞.

Let us fix a Lipschitz function f : R $→ C, i.e. a function for which there
exists a constant cf > 0, such that

|f(t1)− f(t2)| ≤ cf |t1 − t2|, t1, t2 ∈ R.

Let us take x ∈ L∞. We denote by 1
i

dx
dt (or x′) the derivative of x, taken

in the sense of tempered distributions. Let us recall that the chain rule says
that, for every Lipschitz function f ,

1

i

d

dt
(f(x)) = f ′(x) · 1

i

dx

dt
, (1.1)

where f ′ is the derivative of the tempered distribution f . If 1
i

dx
dt ∈ Lp for

some 1 ≤ p ≤ ∞, then the latter identity implies that 1
i

d
dt(f(x)) ∈ Lp as well
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and ∥∥∥∥
1

i

d

dt
(f(x))

∥∥∥∥
Lp

≤ cf

∥∥∥∥
1

i

dx

dt

∥∥∥∥
Lp

,

where cf is the Lipschitz constant of the function f . The latter relation may
serve as a criterion for a function f to be Lipschitz. Indeed, let us introduce
the following definition.

A function f : R $→ C is called p-Lipschitz, for some 1 ≤ p ≤ ∞, if and
only if there is a constant cf,p such that

∥∥∥∥
1

i

d

dt
(f(x))

∥∥∥∥
Lp

≤ cf,p

∥∥∥∥
1

i

dx

dt

∥∥∥∥
Lp

(1.2)

for every x ∈ L∞ such that 1
i

dx
dt ∈ Lp.1

In the classical (function) case we have the following result.

Theorem 1.1. Let f : R $→ C be a function. The following statements are
equivalent:

a. the function f is Lipschitz;

b. the function f is p-Lipschitz, for some 1 ≤ p ≤ ∞;

c. the function f is p-Lipschitz, for every 1 ≤ p ≤ ∞.

Proof. The proof uses a standard argument based on integration by parts
and using an approximation identity. We leave details to the reader.

We now introduce the class of p-Lipschitz functions in the general (oper-
ator) setting.

Let M be a semi-finite von Neumann algebra acting on a Hilbert space H

and equipped with normal semi-finite faithful (n.s.f.) trace τ . We denote the
operator norm by ‖ · ‖. Let M̃ stands for the collection of all τ -measurable
operators, i.e. the collection of all linear operators x : D(x) $→ H affiliated

1The latter inequality supposed to be read as follows. If x ∈ L∞ and the derivative 1
i

dx
dt

is a function in Lp, then the composition f(x) is a tempered distribution such that the
derivative 1

i
d
dt (f(x)) is a function in Lp and the inequality (1.2) holds.
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with M such that for every ε > 0 there is a projection pε ∈ M with τ(1−pε) <

ε and pε(H) ⊆ D(x). The class M̃ is a ∗-algebra. Furthermore, there is
a topology on the algebra M̃, which is called the measure topology. This
topology is defined by the collection of neighborhoods of the origin {Nε,δ}ε,δ>0,
where Nε,δ consists of all linear operators x : D(x) $→ H affiliated with M

such that there is a projection pε ∈ M for which τ(1− pε) < ε and ‖xp‖ ≤ δ.
The class M̃ equipped with the measure topology is a complete topological
algebra. We refer the reader to [19, 12, 15] for more details.

We now construct the non-commutative Lp-spaces Lp := Lp(M, τ), 1 ≤
p ≤ ∞, see [10] and references therein. Indeed, the space Lp, is defined by

Lp := {x ∈ M̃ : ‖x‖Lp < ∞}

where
‖x‖Lp := τ

(
(x∗x)

p
2

) 1
p
, when p < ∞,

‖x‖L∞ := ‖x‖, x ∈ M̃.

The spaces Lp resemble their classical counterparts. The spaces L∞ coincides
with M and the space L1 is the predual of the algebra M. Furthermore, the
Hölder inequality is valid in the spaces Lp, that is

‖xy‖Lp ≤ ‖x‖Lq‖y‖Ls ,
1

p
=

1

q
+

1

s
, 1 ≤ p, q, s ≤ ∞. (1.3)

Remark 1.1. Let us mention two basic examples of the above construction.

a. The algebra of all complex n × n-matrices acting on the sequence
space $2

n which is usually denoted by B($2
n) equipped with the stan-

dard trace Tr, n ∈ N. The algebra of τ -measurable operators coincides
with B($2

n) in this case. The space Lp, 1 ≤ p ≤ ∞ consists of all
n× n-matrices and the norm ‖ · ‖Lp is given by the p-th Schatten-von
Neumann norm, i.e. ‖x‖Lp = ‖s(x)‖#p , where s(x) is the sequence of
singular values of the operator x counted with multiplicities, see [13].
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b. The algebra M = L∞ acting on the space L2, where every function x ∈
L∞ is considered as a multiplication operator, i.e.

x(ξ) := x · ξ, ξ ∈ L2.

The trace τ on the algebra L∞ is given by Lebesgue integration. The
algebra M̃ consists of all Lebesgue measurable functions which are
bounded except on a set of finite measure. The spaces Lp turn into
the classical Lp-spaces Lp(R).

Let us fix a linear self-adjoint operator D : D(D) $→ H (not necessary
affiliated with M) such that

(D1) eitD x e−itD ∈ L∞, whenever x ∈ L∞, t ∈ R;

(D2) τ(eitD x e−itD) = τ(x), whenever x ∈ L1 ∩ L∞.

Let us recall that the subspace D ⊆ D(D) is called a core of the opera-
tor D if and only if the closure (D|D) coincides with D.

Definition 1.1. Let x ∈ M. We say that the commutator [D, x] is defined
and belongs to Lp, for some 1 ≤ p ≤ ∞ if and only if there is a core D ⊆
D(D) of the operator D such that x(D) ⊆ D(D) and the operator Dx−xD,
initially defined on D , is closable, in which case the closure Dx− xD belongs
to Lp. In this case, the symbol [D, x] stands for the closure Dx− xD.

In the case p = ∞, we have the following observation.

Lemma 1.1 ( [5, Proposition 3.2.55]). Let D : D(D) $→ H be a self-adjoint
linear operator and x ∈ M. If [D, x] is bounded, then x(D(D)) ⊆ D(D).

The relation x(D(D)) ⊆ D(D) in the cases 1 ≤ p < ∞ may fail as it is
shown in the example with the differentiation operator below. On the other
hand, the weaker relation x(D) ⊆ D(D) for some core D ⊆ D(D) is much
easier to attack and, more importantly, is sufficient for the applications we
study; see Theorems 3.2, 3.3 and 3.4.

By analogy with the beginning of the section, we introduce the following
definition.
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Definition 1.2. A function f : R $→ C is called p-Lipschitz for some 1 ≤
p ≤ ∞ (with respect to the couple (M, τ) and the operator D) if and only if
there is a constant cf,p such that [D, f(x)] ∈ Lp and

‖[D, f(x)]‖Lp ≤ cf,p ‖[D, x]‖Lp ,

for every x = x∗ ∈ M such that [D, x] ∈ Lp.

The present note is concerned with the following problem.

Problem 1.1. Which the function f : R $→ C is p-Lipschitz?

Similar problems have been under considerable investigation over a long
period. We refer the reader to the works [7, 14, 1, 2, 3, 4, 10, 8, 20, 17].

In this note, we shall show some sufficient criteria for a function to be
p-Lipschitz stated in terms of (scalar) smoothness properties of this function.
The main results, Theorems 3.2, 3.3 and 3.4, are essentially proved in [16].
The purpose of the present note is to give an additional insight in the matter
and explain some interesting points about the construction of commutators
in the non-commutative Lp-spaces with respect to atomless algebras using
the example of the classical differentiation operator.

2 Commutators with the differentiation opera-
tor 1

i
d
dt

In the present section, we fix M = L∞ (see Remark 1.1) and τ(·) =
∫

(·) dt.
Let us consider the operator D := 1

i
d
dt : D(D) $→ L2 with the domain given

by

D(D) :=

{
ξ ∈ L2 :

1

i

dξ

dt
∈ L2

}
.

The operator D is self-adjoint and the unitary group {eitD}t∈R is given by
the translations, i.e.

eitD(ξ)(s) = ξ(s + t), s ∈ R. (2.1)
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Consequently,

(eitDxe−itDξ)(s) = (xe−itDξ)(s + t) = x(s + t)(e−itDξ)(s + t)

= x(s + t)ξ(s), ξ ∈ L2, t, s ∈ R.

Therefore, for every x ∈ L∞, the operator eitDxe−itD is a multiplication
operator on L2 induced by the translated function x(· + t) ∈ L∞. The latter
readily yields the fact that the operator D satisfies (D1)–(D2).

Let x ∈ L∞ be such that [D, x] ∈ Lp, 1 ≤ p ≤ ∞. By Definition 1.1,
there is a core D ⊆ D(D) such that x(D) ⊆ D(D) and

(Dx− xD)(ξ) =
1

i

d

dt
(x · ξ)− x · 1

i

dξ

dt
=

1

i

dx

dt
· ξ, ξ ∈ D . (2.2)

Thus, if the derivative 1
i

dx
dt is a function, then the operator Dx − xD acts

as a multiplication operator on D . Clearly, Dx − xD is closable and the
closure Dx− xD ∈ Lp if and only if 1

i
dx
dt ∈ Lp.

In other words, by Definition 1.1, the operator [D, x] belongs to Lp, 1 ≤
p ≤ ∞, for a given x ∈ L∞ if and only if there is a core D ⊆ D(D) such that

x(D) ⊆ D(D) and
1

i

dx

dt
∈ Lp. (2.3)

Furthermore, let us note that the inclusion x(D) ⊆ D(D) means that for
every function ξ ∈ D , the function x · ξ is differentiable and

1

i

d

dt
(x · ξ) ∈ L2. (2.4)

Since x · 1
i

dξ
dt ∈ L2, for every ξ ∈ D(D), x ∈ L∞, it follows from the last

identity in (2.2) that (2.4) is equivalent to 1
i

dx
dt · ξ ∈ L2. The latter means

that, if D ⊆ D(D) is a core, then

x(D) ⊆ D(D) ⇐⇒ 1

i

dx

dt
(D) ⊆ L2. (2.5)

Thus, we can restate (2.3) as [D, x] ∈ Lp, 1 ≤ p ≤ ∞ for a given x ∈ L∞ if
and only if there exists a core D ⊆ D(D) such that

1

i

dx

dt
(D) ⊆ L2 and

1

i

dx

dt
∈ Lp. (2.6)
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Thus, in general, a verification of the statement [D, x] ∈ Lp, 1 ≤ p <

∞ consists of two steps whose nature is quite different. A verification of
the condition 1

i
dx
dt ∈ Lp is carried out in the literature almost exclusively

via methods related to Banach space geometry (Schur multipliers, double
operator integrals, vector-valued Fourier multipliers [9, 6, 11, 10]). However,
the first condition in (2.6) has an operator-theoretical nature and does not
correspond to the methods listed above. We outline an approach to this
problem when D = 1

i
d
dt .

Let us first consider [D, x] ∈ Lp when 2 ≤ p < ∞. We shall show that
in the present setting, the required core D appears very naturally due to the
fact that the underlying Hilbert space L2 possesses the additional Banach
structure induced by the Lp-scale. Indeed, let us set

D := D(D) ∩ Lq, where
1

2
=

1

p
+

1

q
. (2.7)

Clearly, the Hölder inequality implies that (2.6) holds for the subset D and
any x ∈ L∞ such that 1

i
dx
dt ∈ Lp. We shall verify that D is a core of D in

Theorem 3.3 below. What we would like to emphasize is that the core D

is found purely by a Banach space construction. Thus, we see that in the
case 2 ≤ p < ∞, we have

[D, x] ∈ Lp ⇐⇒ 1

i

dx

dt
∈ Lp.

Finally, we comment on the case 1 ≤ p < 2. Here, the problem of finding
the core D satisfying the first condition in (2.6) cannot be resolved by a purely
Banach space approach as in (2.7) above. Indeed, let C(R) be the class of
all continuous functions on R. We note that D(D) ⊆ C(R), [18, Theorem 2,
p. 124]. If we now consider the function x ∈ L∞ such that

1

i

dx

dt
∈ Lp, but

1

i

dx

dt
!∈ L2

loc,

then
1

i

dx

dt
· ξ !∈ L2, for every ξ ∈ D(D), ξ !≡ 0.
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That means that despite the fact that the derivative 1
i

dx
dt exists in the sense

of tempered distributions and belongs to Lp, there is no core such that the
commutator [D, x] may be defined according to Definition 1.1.

3 Main result

As we have seen in the example with the operator D = 1
i

d
dt , a meaningful

resolution of Problem 1.1 requires locating a core D of the operator D satis-
fying the first condition in (2.5). As we indicated in that example, a possible
candidate on the role of such D is the space

D(D) ∩ L1 ∩ L∞.

Unfortunately, in general, the domain D(D) ⊆ H may have an empty inter-
section with the space L1 ∩ L∞. We shall show below that this is not the
case when M is taken in the left regular representation (see Theorem 3.3).

3.1 The left regular representation

Let M be a semi-finite von Neumann algebra equipped with n.s.f. trace τ

and let Lp := Lp(M, τ), 1 ≤ p ≤ ∞ be the corresponding non-commutative
Lp-spaces.

Let us consider the mapping L : M $→ B(L2), given by L(x) := Lx,
x ∈ M, where the operator Lx ∈ B(L2) is given by

Lx(ξ) := x · ξ, ξ ∈ L2.

The image ML := L(M) is a von Neumann algebra acting on L2. The map-
ping L is a ∗-isomorphism between the algebras M and ML. The algebra ML

is equipped with n.s.f trace τL := τ ◦L−1. With this definition of τL, the map-
ping L becomes a trace preserving ∗-isomorphism. Consequently, it extends
to a ∗-homeomorphism between topological ∗-algebras M̃ and M̃L := (ML)∼.
We shall denote the latter extension by L also. Alternatively, the map-
ping L : M̃ $→ M̃L is given by L(x) = Lx, where Lx : D(Lx) $→ L2 is an
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operator given by

D(Lx) = {ξ ∈ L2 : x · ξ ∈ L2} and Lx(ξ) = x · ξ, ξ ∈ D(Lx).

Since the mapping L : M̃ $→ M̃L is trace preserving, its restriction to the
space Lp becomes an isometry between the spaces Lp and Lp

L := Lp(ML, τL),
for every 1 ≤ p ≤ ∞.

3.1.1 Approximation of the commutator [D, x]

In the present section we shall consider the construction of an approxi-
mation of the commutator [D, x] by means of the corresponding unitary
group {eitD}t∈R.

For illustration, let us again consider the example of the differentiation
operator. If x ∈ L∞(R) and D = 1

i
d
dt , then we have the well known relations

x(t + s)− x(s) = i

∫ t

0

1

i

dx

dt
(s + τ) dτ, t, s ∈ R, (3.1)

1

i

dx

dt
(s) = lim

t→0

x(s + t)− x(s)

it
. (3.2)

An operator version of (3.1) and (3.2), in the case p = ∞ may be found
in [5, Section 3.2.5]

Theorem 3.1. Let D : D(D) $→ H be a self-adjoint linear operator, satisfy-
ing (D1)–(D2) and let x ∈ M. If [D, x] ∈ L∞, then

a. eitDxe−itD − x = i

∫ t

0

eisD[D, x]e−isD ds, t ∈ R;

b.
∥∥∥∥
eitDxe−itD − x

t

∥∥∥∥
L∞
≤ ‖[D, x]‖L∞;

c. lim
t→0

eitDxe−itD − x

t
= i[D, x];

where the integral and the limit converge with respect to the weak operator
topology.
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The natural framework to deal with the commutator [D, x] ∈ Lp when p <

∞ is the setting of the left regular representation. Thus, from now on,
we consider the algebra ML with the n.s.f. trace τL. We denote by Lp

L :=

Lp(ML, τL), 1 ≤ p ≤ ∞ the corresponding non-commutative Lp-space.
We shall discuss the extension of Theorem 3.1 to the spaces Lp

L, 1 ≤ p <

∞.
To explain the next step, let us note that the proof of Theorem 3.1

crucially depends on the fact that the domain D(D) where the commuta-
tor [D, x], initially defined, according to Definition 1.1 and Lemma 1.1, is
invariant with respect to the group {eitD}t∈R. On the other hand, the core D

in Definition 1.1 lacks this invariance when p < ∞. We now extend Defini-
tion 1.1.

Definition 3.1. Let x ∈ ML and let D : D(D) $→ L2 be a linear self-adjoint
operator. We shall say that the commutator [D, x] is defined and belongs
to Lp

L, for some 1 ≤ p ≤ ∞ if and only if

a. there is a core D ⊆ L1 ∩L∞ of the operator D such that eitD(D) ⊆ D ,
for every t ∈ R, and x(D) ⊆ D(D);

b. the operator Dx− xD, initially defined on D , is closable;

c. the closure Dx− xD belongs to Lp. In this case, the symbol [D, x]

stands for the closure Dx− xD.

The next result provides an extension of Theorem 3.1 over the spaces Lp
L,

1 ≤ p < ∞.

Theorem 3.2. Let D : D(D) $→ L2 be a self-adjoint linear operator, sat-
isfying (D1)–(D2) and let x ∈ ML. If [D, x] ∈ Lp

L, for some 1 ≤ p < ∞,
then

a. eitDxe−itD − x = i

∫ t

0

eisD[D, x]e−isD ds, t ∈ R;

b.
∥∥∥∥
eitDxe−itD − x

t

∥∥∥∥
Lp

L

≤ ‖[D, x]‖Lp
L
;
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c. lim
t→0

eitDxe−itD − x

t
= i[D, x];

where the integral and the limit converge with respect to the norm topology
in Lp

L.

3.1.2 Commutator estimates

Let us recall that we have fixed the pair (M, τ) and we consider the left
regular representation (ML, τL). Let D : D(D) $→ L2 be a linear self-adjoint
operator satisfying (D1)–(D2).

Let us again consider the subspace

D0(D) := D(D) ∩ L1 ∩ L∞ ⊆ L2. (3.3)

Unfortunately, in general case when the operator D is not affiliated with the
algebra ML, there is no hope to expect that the latter subspace will be a
core of the operator D. To single out the class of operators D for which the
subspace D0(D) is a core let us introduce the assumption

(D3) the unitary group {eitD}t∈R is a σ(L1∩L∞, L1+L∞)-continuous group
of contractions in the space L1 ∩ L∞.

If D = 1
i

d
dt , then the assumption (D3) is clearly satisfied, since {eitD}t∈R is

a group of translations, see (2.1). Also, if D is affiliated with ML, then (D3)
holds, due to the fact that eitD = L(ut), for every t ∈ R, where {ut}t∈R ⊆ M

is a group of unitaries.

Theorem 3.3. If D : D(D) $→ L2 is a linear self-adjoint operator satisfy-
ing (D1)–(D3), then the subspace D0(D) is a core of the operator D.

To state the main result, let us first recall that a Borel function f : R $→ C
is called of bounded β-variation, 1 ≤ β < ∞ if and only if

‖f‖Vβ
:= sup

[
+∞∑

j=−∞

|f(tj)− f(tj+1)|β
] 1

β

< ∞, (3.4)
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where the supremum is taken over all possible increasing two-sided se-
quences {tj}+∞

j=−∞ ⊆ R. Vβ will stand for the class of all functions of bounded
β-variation, 1 ≤ β < ∞. The class Vβ is equipped with the norm ‖ · ‖Vβ

de-
fined in (3.4). We also define V∞ to be the collection of all bounded Borel
functions equipped with the uniform norm.

Let us next state the main result of the text. Its proof consists of a
combination of the technique developed in [8] with the approach explained
above. In the special case M = B(H), the result which follows gives an
alternative (and simpler) proof of [4, Example III]. Let us note that the
result distinguishes two different cases p < 2 and p ≥ 2 as discussed in the
example of Section 2.

Theorem 3.4. Let D : D(D) $→ L2 be a linear self-adjoint operator satis-
fying (D1)–(D3) and let x = x∗ ∈ ML. Let a function f : R $→ C be such
that f ′ ∈ Vβ for some 1 ≤ β ≤ ∞.

a. For every 2 ≤ p < 2β
β−1 there is a constant c′p such that if [D, x] ∈ Lp

L,
then [D, f(x)] ∈ Lp

L and

‖[D, f(x)]‖Lp
L
≤ c′p ‖f ′‖Vβ

‖[D, x]‖Lp
L
.

b. For every 2β
β+1 < p < 2 there is a constant c′′p such that if [D, x] ∈

Lp
L ∩ L2

L, then [D, f(x)] ∈ Lp
L ∩ L2

L and

‖[D, f(x)]‖Lp
L
≤ c′′p ‖f ′‖Vβ

‖[D, x]‖Lp
L
.

Now we state the answer to Problem 1.1 in the setting of the left regular
representation.

Theorem 3.5. Any function f : R $→ C such that f ′ ∈ Vβ, for some 1 ≤
β ≤ ∞ is p-Lipschitz for every 2 ≤ p < 2β

β−1 , with respect to any operator D :

D(D) $→ L2 and every semi-finite von Neumann algebra (ML, τL).
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[13] I. C. Gohberg and M. G. Krĕın, Vvedenie v teoriyu lineinykh nesamoso-
pryazhennykh operatorov v gilbertovom prostranstve, Izdat. “Nauka”, Moscow,
1965.

123



[14] A. McIntosh, Functions and derivations of C∗-algebras, J. Funct. Anal. 30
(1978), no. 2, 264–275.

[15] E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974),
103–116.

[16] D. S. Potapov and F. A. Sukochev, Lipschitz and commutator estimates in
symmetric operator spaces, to appear in J. Oper. Theory.

[17] , Non-quantum differentiable C1-functions in the spaces with trivial
Boyd indices, preprint.

[18] E. M. Stein, Singular integrals and differentiability properties of functions,
Princeton Mathematical Series, No. 30, Princeton University Press, Princeton,
N.J., 1970.

[19] Ş. Strătilă and L. Zsidó, Lectures on von Neumann algebras, Editura
Academiei, Bucharest, 1979.

[20] W. van Ackooij, B. de Pagter, and F. A. Sukochev, Domains of infinitesimal
generators of automorphism flows, J. Funct. Anal. 218 (2005), no. 2, 409–424.

Denis Potapov, School of Informatics and Engineering, Flinders University
of South Australia, Bedfork Park, 5042, Adelaide, SA, Australia.
denis.potapov@flinders.edu.au

Fyodor Sukochev, School of Informatics and Engineering, Flinders Uni-
versity of South Australia, Bedfork Park, 5042, Adelaide, SA, Australia.
sukochev@infoeng.flinders.edu.au

124


