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Abstract

We describe Salem’s proof of the Rademacher-Menshov Theorem,
which shows that one constant works for all orthogonal expansions in
all L2-spaces. By changing the emphasis in Salem’s proof we produce a
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tors in a Hilbert space. This inequality is applied to sums of columns
of an invertible matrix and to Lebesgue constants.
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1 Introduction
Here we give an exposition of Salem’s proof [14] of the Rademacher-Menshov
Theorem. Although it is more elaborate than some proofs and over sixty
years old, Salem’s method makes it clear that one constant works for all
orthogonal expansions in all L2-spaces. Furthermore, some of the inequalities
used in the proof lead to a general inequality concerning bi-orthogonal sets of
vectors in Hilbert spaces (Proposition 2 in the next section.) In recent work
[2] with Leonardo Colzani and Elena Prestini, we used the universal nature
of the constant in the Rademacher-Menshov Theorem [13, 11] to produce
some almost-everywhere convergence results for inverse Fourier Transforms.
Theorem 1 below contains the basic idea used in that work.

∗I am grateful to the organizers of the Murramarang conference for the opportunity to
participate.
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2 Statement of Main Results
Proposition 2.1. There is a positive constant C with the following property.
For every positive measure space (X, µ), for every n ≥ 1, and for every finite
set {F1, . . . , Fn} of orthogonal functions in L2 (X, µ), the maximal function

M(x) = max
1≤m≤n

∣∣∣∣∣

m∑

j=1

Fj(x)

∣∣∣∣∣ (2.1)

has norm

‖M‖2 ≤ C log (n + 1)

(
n∑

j=1

‖Fj‖2
2

)1/2

. (2.2)

Suppose H is a Hilbert space, with inner-product written as 〈v, w〉. We
say that two sets of vectors {v1, . . . , vn} and {w1, . . . , wn} are bi-orthogonal
when

〈vj, wk〉 = 0, ∀j (= k.

Proposition 2.2. There is a positive constant c with the following property.
For every Hilbert space H and every pair of bi-orthogonal sets {v1, . . . , vn}
and {w1, . . . , wn} in H,

(log n) min
1≤k≤n

|〈vk, wk〉| ≤ c max
1≤m≤n

‖wm‖ max
1≤k≤n

∥∥∥∥∥

k∑

j=1

vj

∥∥∥∥∥ . (2.3)

These are proved in Section 4. In the next section we give some applica-
tions.

3 Consequences

3.1 Almost everywhere convergence.
Suppose that (X, µ) is a positive measure space and that L2(X, µ) = ⊕∞n=1Hn

is an orthogonal decomposition into closed subspaces Hn. Let Pn be projec-
tion onto Hn. Each function f ∈ L2(X, µ) has an orthogonal expansion

∞∑

n=1

Pnf,
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which converges to f in norm. The partial sum operators are

SNf(x) =
N∑

n=1

Pnf(x), ∀N ≥ 1, x ∈ X.

Proposition 2.1 says that
∥∥∥∥ max

1≤m≤N
|Smf |

∥∥∥∥
2

≤ C log(N + 1) ‖SNf‖2 , ∀N ≥ 1, f ∈ L2(X, µ).

Define the maximal function

S∗f(x) = sup
N≥1

|SNf(x)| .

This is dominated by two pieces,

S∗f(x) ≤ sup
m≥0

|S2mf(x)| + sup
m≥0

(
max

2m≤n<2m+1
|Snf(x)− S2mf(x)|

)
.

We can apply the Cauchy-Schwarz inequality to control the dyadic piece, as
on pages 80–81 of [1],
∣∣∣∣∣

2m∑

n=2

Pnf(x)

∣∣∣∣∣

2

=

∣∣∣∣∣∣

m∑

k=1

2k∑

n=2k−1+1

Pnf(x)

∣∣∣∣∣∣

2

≤
(

m∑

k=1

1

k2

)


m∑

k=1

k2

∣∣∣∣∣∣

2k∑

n=2k−1+1

Pnf(x)

∣∣∣∣∣∣

2

 .

This implies that
∥∥∥∥sup

m≥0
|S2mf |

∥∥∥∥
2

2

≤ c
∞∑

n=1

(log(n + 1))2 ‖Pnf‖2
2 .

For the other term, notice that if we have a non-negative sequence (am)∞m=1

then

sup
m≥1

a2
m ≤

∞∑

m=1

a2
m.

We can use Proposition 2.1 to show that
∥∥∥∥sup

m≥0

(
max

2m≤n<2m+1
|Snf − S2mf |

)∥∥∥∥
2

2

≤ C2
∞∑

m=0

(log (2m + 1))2
2m+1−1∑

n=2m

‖Pnf‖2
2 .

Combining these facts gives the general form of the Rademacher-Menshov
Theorem.
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Theorem 3.1. There is a positive constant α so that for all f ∈ L2(X,µ),

‖S∗f ‖2 ≤ α

( ∞∑

n=1

(log(n + 1))2 ‖Pnf‖2
2

)1/2

.

If the right hand side is finite, then

f(x) = lim
N→∞

SNf(x), almost everywhere on X.

Remark 3.1. This method was used in [2, 9, 10].

3.2 Invertible Matrices.
Suppose we equip Cn with its usual inner product. If A is an invertible n×n
matrix with complex entries then the equation

A−1A = I

can be viewed as saying that the columns of A and the rows of A−1 form
a pair of bi-orthogonal sets in Cn. In this case, Proposition 2.2 gives the
following result.

Theorem 3.2. Suppose that {a1, . . . , an} are the columns of an n × n in-
vertible matrix with complex entries A and that {b1, . . . , bn} are the rows of
A−1. Then

log n ≤ c max
1≤j≤n

‖bj‖ max
1≤m≤n

‖a1 + · · · + am‖ ,

where c is a positive constant independent of n and A.

3.3 Lebesgue Constants
This example follows the methods of another paper of Salem [15]. Suppose
that {φ1, . . . ,φn} is an orthonormal subset of L2(X,µ) consisting of essen-
tially bounded functions, with

‖φj‖∞ ≤ M, ∀1 ≤ j ≤ n.

Define the maximal function

Φ(x) = max
1≤m≤n

∣∣∣∣∣

m∑

j=1

φj(x)

∣∣∣∣∣ ≤
n∑

j=1

|φj(x)| .
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If Φ(x) = 0 then φj(x) = 0 for 1 ≤ j ≤ n and so the set of places where
Φ(x) = 0 can be discarded from X without any effect on our calculations.
Notice that for all x where Φ(x) (= 0, we have

∣∣∣
∑m

j=1 φj(x)
∣∣∣

√
Φ(x)

≤
√

Φ(x), ∀1 ≤ m ≤ n.

On the set where Φ(x) (= 0, define gj = φj/
√

Φ and hj = φj

√
Φ. These give

bi-orthogonal sets {g1, . . . , gn} and {h1, . . . , hn} in L2 (X, µ). Furthermore,
〈gj, hk〉 = δjk,

∥∥∥∥∥

m∑

j=1

gj

∥∥∥∥∥

2

2

≤ ‖Φ‖1 and ‖hj‖2
2 ≤ M2 ‖Φ‖1 .

Proposition 2.2 says that

log n ≤ cM ‖Φ‖1 .

Theorem 3.3. There is a positive constant β with the following property.
Suppose that {φ1, . . . ,φn} is an orthonormal set in L2(X, µ) consisting of
essentially bounded functions, with

M = max
1≤j≤n

‖φj‖∞ .

Then ∥∥∥∥∥ max
1≤m≤n

∣∣∣∣∣

m∑

j=1

φj

∣∣∣∣∣

∥∥∥∥∥
1

≥ β log(n)/M.

Remark 3.2. This is a weak form of an inequality conjectured by Littlewood.
For much stronger results in the case of characters on compact abelian groups
see [8, 6]. For other orthonormal systems see [7, 3]. The inequality here can
also be viewed as a special case of Theorem 1 of Olevskĭı’s book [12].

4 Proofs
Recall Bessel’s inequality for orthogonal vectors in a Hilbert space (page 531
of [5].) Suppose that {v1, . . . , vn} is an orthogonal set of non-zero vectors in
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a Hilbert space H. Then {v1/ ‖v1‖ , . . . , vn/ ‖vn‖} is an orthonormal set in
H and for every vector w ∈ H we have

n∑

j=1

|〈w, vj〉|2

‖vj‖2 ≤ ‖w‖2 . (4.1)

4.1 Proof of 2.1
Here we rework the proof published by Salem [14] in 1941 in a slightly more
abstract setting.

4.1.1 The general set up.

Suppose that H is a Hilbert space. Now let V = L2 (X, µ) ⊗ H be the
Hilbert space of H-valued µ-measurable square-integrable functions on X.
Let {v1, . . . , vn} and {w1, . . . , wn} be a bi-orthogonal pair of subsets of H
and define some elements of V by multiplying terms,

pk(x) = Fk(x)wk, 1 ≤ k ≤ n.

Then {p1, . . . , pn} is an orthogonal subset of V and (4.1) states that

n∑

k=1

|〈P, pk〉V |2

‖pk‖2
V

≤ ‖P‖2
V , ∀P ∈ V. (4.2)

Let f1 ≥ f2 ≥ · · · ≥ fn ≥ fn+1 = 0 be a decreasing sequence of characteristic
functions of measurable subsets of X. For G ∈ L2 (X, µ) define an element
of V by

PG(x) = G(x)
n∑

j=1

fj(x)vj. (4.3)

The Abel transformation lets us rewrite this as

PG(x) = G(x)
n∑

k=1

∆fk(x)σk,

where σk =
∑k

j=1 vj and ∆fk = fk − fk+1, for 1 ≤ k ≤ n. Notice that
{∆f1, . . . , ∆fn} is a set of characteristic functions of mutually disjoint subsets
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of X. For each x ∈ X, at most one of the terms ∆fk(x) is non-zero. In
particular,

‖PG(x)‖2
H = |G(x)|2

n∑

k=1

∆fk(x) ‖σk‖2
H .

Integrating over X gives

‖PG‖2
V ≤ ‖G‖2

2 max
1≤k≤n

‖σk‖2
H .

Combining this with (4.2), we have

n∑

k=1

∣∣∣∣
∫

X

G fk
Fk

‖Fk‖2

dµ

∣∣∣∣
2 |〈vk, wk〉|2

‖wk‖2
H

≤ ‖G‖2
2 max

1≤k≤n
‖v1 + · · · + vk‖2

H . (4.4)

4.1.2 A specific case.

Following Salem, let us now assume that H = L2(0, 1) and

vk(t) =
√

t sin (2πkt) and wk(t) = sin (2πkt) /
√

t, ∀0 < t < 1, k ≥ 1.

The usual estimates on Lebesgue constants (page 67 in [16]) show that

‖wk‖2
H ≤ A log (k + 1) and ‖v1 + · · · + vk‖2

H ≤ B log (k + 1) , ∀1 ≤ k ≤ n.

The constants A and B are independent of k and n. Furthermore,

〈vk, wk〉 =
1

2
, ∀1 ≤ k ≤ n.

For this choice of H, inequality (4.4) becomes

n∑

k=1

1

log(k + 1)

∣∣∣∣
∫

X

G fk
Fk

‖Fk‖2

dµ

∣∣∣∣
2

≤ 2AB ‖G‖2
2 log(n + 1),

and the constant 2AB is independent of X, µ, and n. Moving the logarithm
term from the left hand side gives

n∑

k=1

∣∣∣∣
∫

X

G fk
Fk

‖Fk‖2

dµ

∣∣∣∣
2

≤ 2AB ‖G‖2
2 (log(n + 1))2. (4.5)
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4.1.3 Controlling the maximal function.

Define an integer-valued function m(x) on X by

m(x) = min

{
m :

∣∣∣∣∣

m∑

k=1

Fk(x)

∣∣∣∣∣ = M(x)

}
, ∀x ∈ X,

and let fk be the characteristic function of the subset {x ∈ X : m(x) ≥ k}.
For each x ∈ X there is the partial sum

Sm(x)(x) =
m(x)∑

k=1

Fk(x) =
n∑

k=1

fk(x)Fk(x).

For an element G ∈ L2(X,µ), Cauchy-Schwarz gives
∣∣∣∣
∫

X

G(x)Sm(x)(x) dµ(x)

∣∣∣∣ =

∣∣∣∣∣

n∑

k=1

‖Fk‖2

∫

X

G fk
Fk

‖Fk‖2

dµ

∣∣∣∣∣ (4.6)

≤
(

n∑

k=1

‖Fk‖2
2

)1/2 (
n∑

k=1

∣∣∣∣
∫

X

G fk
Fk

‖Fk‖2

dµ

∣∣∣∣
2
)1/2

.

(4.7)

Using inequality (4.5) gives

∣∣∣∣
∫

X

G(x)Sm(x)(x) dµ(x)

∣∣∣∣ ≤
√

2AB ‖G‖2 log(n + 1)

(
n∑

k=1

‖Fk‖2
2

)1/2

.

This is true for all G ∈ L2(X, µ) and so it follows that

‖M‖2 =
∥∥Sm(·)

∥∥
2
≤ C log(n + 1)

(
n∑

k=1

‖Fk‖2
2

)1/2

.

This completes the proof of Proposition 2.1. For alternative proofs, see 2.3.1
on page 79 of [1] and Chapter 8 of [4].

4.2 Menshov’s Result
In 1923 Menshov [11] showed that the logarithm term in Proposition 2.1 is
best possible. The following is taken from page 255 of [4].
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Lemma 4.1. There is a positive constant c0 so that for every n ≥ 2 there is
an orthonormal subset {ψn

1 , ψn
2 , . . . ,ψn

n} in L2(0, 1) for which the set
{

x ∈ [0, 1] ; max
1≤j≤n

∣∣∣∣∣

j∑

k=1

ψn
k (x)

∣∣∣∣∣ > c0

√
n log(n)

}

has Lebesgue measure greater than 1/4.

Notice that this means that the maximal function Ψn(x) = max1≤j≤n

∣∣∣
∑j

k=1 ψn
k (x)

∣∣∣
satisfies

‖Ψn‖2
2 ≥ c2

0

n (log(n))2

4

and yet
∑n

j=1

∥∥ψn
j

∥∥2

2
= n.

4.3 Proof of Proposition 2.2
We use the set {ψn

1 , ψn
2 , . . . ,ψn

n} as the orthonormal set in Salem’s proof of
Proposition 2.1. Keeping the earlier notation, fix a function G on [0, 1] for
which |G(x)| = 1 and

G(x)Sm(x)(x) = Ψn(x) ≥ 0.

Since Ψn is nonnegative, inequality (4.6) becomes

‖Ψn‖1 ≤
√

n

(
n∑

k=1

∣∣∣∣
∫ 1

0

G(x)fk(x)ψn
k (x) dx

∣∣∣∣
2
)1/2

.

Put this back into inequality (4.4) to get

‖Ψn‖2
1

n

min1≤k≤n |〈vk, wk〉|2

max1≤m≤n ‖wm‖2
H

≤ max
1≤k≤n

‖v1 + · · · + vk‖2
H .

Lemma 4.1 shows that
‖Ψn‖2

1

n
≥ c2

0

(log(n))2

16
and so

c2
0 (log(n))2

16
min

1≤k≤n
|〈vk, wk〉|2 ≤ max

1≤m≤n
‖wm‖2

H max
1≤k≤n

‖v1 + · · · + vk‖2
H .

This completes the proof of Proposition 2.2.
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