Remarks on the Rademacher-Menshov Theorem

Christopher Meaney *

Abstract

We describe Salem's proof of the Rademacher-Menshov Theorem, which shows that one constant works for all orthogonal expansions in all L^{2}-spaces. By changing the emphasis in Salem's proof we produce a lower bound for sums of vectors coming from bi-orthogonal sets of vectors in a Hilbert space. This inequality is applied to sums of columns of an invertible matrix and to Lebesgue constants. Keywords: Orthogonal expansion, Rademacher-Menshov Theorem, Bessel's inequality, bi-orthogonal, Lebesgue constants. MSC (2000): 42C15, 46C05. Received 1 August 2006 / Accepted 18 October 2006.

1 Introduction

Here we give an exposition of Salem's proof [14] of the Rademacher-Menshov Theorem. Although it is more elaborate than some proofs and over sixty years old, Salem's method makes it clear that one constant works for all orthogonal expansions in all L^{2}-spaces. Furthermore, some of the inequalities used in the proof lead to a general inequality concerning bi-orthogonal sets of vectors in Hilbert spaces (Proposition 2 in the next section.) In recent work [2] with Leonardo Colzani and Elena Prestini, we used the universal nature of the constant in the Rademacher-Menshov Theorem [13, 11] to produce some almost-everywhere convergence results for inverse Fourier Transforms. Theorem 1 below contains the basic idea used in that work.

[^0]
2 Statement of Main Results

Proposition 2.1. There is a positive constant C with the following property. For every positive measure space (X, μ), for every $n \geq 1$, and for every finite set $\left\{F_{1}, \ldots, F_{n}\right\}$ of orthogonal functions in $L^{2}(X, \mu)$, the maximal function

$$
\begin{equation*}
\mathcal{M}(x)=\max _{1 \leq m \leq n}\left|\sum_{j=1}^{m} F_{j}(x)\right| \tag{2.1}
\end{equation*}
$$

has norm

$$
\begin{equation*}
\|\mathcal{M}\|_{2} \leq C \log (n+1)\left(\sum_{j=1}^{n}\left\|F_{j}\right\|_{2}^{2}\right)^{1 / 2} \tag{2.2}
\end{equation*}
$$

Suppose H is a Hilbert space, with inner-product written as $\langle v, w\rangle$. We say that two sets of vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ and $\left\{w_{1}, \ldots, w_{n}\right\}$ are bi-orthogonal when

$$
\left\langle v_{j}, w_{k}\right\rangle=0, \quad \forall j \neq k .
$$

Proposition 2.2. There is a positive constant c with the following property. For every Hilbert space H and every pair of bi-orthogonal sets $\left\{v_{1}, \ldots, v_{n}\right\}$ and $\left\{w_{1}, \ldots, w_{n}\right\}$ in H,

$$
\begin{equation*}
(\log n) \min _{1 \leq k \leq n}\left|\left\langle v_{k}, w_{k}\right\rangle\right| \leq c \max _{1 \leq m \leq n}\left\|w_{m}\right\| \max _{1 \leq k \leq n}\left\|\sum_{j=1}^{k} v_{j}\right\| . \tag{2.3}
\end{equation*}
$$

These are proved in Section 4. In the next section we give some applications.

3 Consequences

3.1 Almost everywhere convergence.

Suppose that (X, μ) is a positive measure space and that $L^{2}(X, \mu)=\oplus_{n=1}^{\infty} \mathcal{H}_{n}$ is an orthogonal decomposition into closed subspaces \mathcal{H}_{n}. Let P_{n} be projection onto \mathcal{H}_{n}. Each function $f \in L^{2}(X, \mu)$ has an orthogonal expansion

$$
\sum_{n=1}^{\infty} P_{n} f
$$

which converges to f in norm. The partial sum operators are

$$
S_{N} f(x)=\sum_{n=1}^{N} P_{n} f(x), \quad \forall N \geq 1, x \in X
$$

Proposition 2.1 says that

$$
\left\|\max _{1 \leq m \leq N}\left|S_{m} f\right|\right\|_{2} \leq C \log (N+1)\left\|S_{N} f\right\|_{2}, \quad \forall N \geq 1, f \in L^{2}(X, \mu)
$$

Define the maximal function

$$
S^{*} f(x)=\sup _{N \geq 1}\left|S_{N} f(x)\right| .
$$

This is dominated by two pieces,

$$
S^{*} f(x) \leq \sup _{m \geq 0}\left|S_{2^{m}} f(x)\right|+\sup _{m \geq 0}\left(\max _{2^{m} \leq n<2^{m+1}}\left|S_{n} f(x)-S_{2^{m}} f(x)\right|\right)
$$

We can apply the Cauchy-Schwarz inequality to control the dyadic piece, as on pages $80-81$ of [1],

$$
\left|\sum_{n=2}^{2^{m}} P_{n} f(x)\right|^{2}=\left|\sum_{k=1}^{m} \sum_{n=2^{k-1}+1}^{2^{k}} P_{n} f(x)\right|^{2} \leq\left(\sum_{k=1}^{m} \frac{1}{k^{2}}\right)\left(\sum_{k=1}^{m} k^{2}\left|\sum_{n=2^{k-1}+1}^{2^{k}} P_{n} f(x)\right|^{2}\right) .
$$

This implies that

$$
\left\|\sup _{m \geq 0}\left|S_{2^{m}} f\right|\right\|_{2}^{2} \leq c \sum_{n=1}^{\infty}(\log (n+1))^{2}\left\|P_{n} f\right\|_{2}^{2} .
$$

For the other term, notice that if we have a non-negative sequence $\left(a_{m}\right)_{m=1}^{\infty}$ then

$$
\sup _{m \geq 1} a_{m}^{2} \leq \sum_{m=1}^{\infty} a_{m}^{2} .
$$

We can use Proposition 2.1 to show that

$$
\left\|\sup _{m \geq 0}\left(\max _{2^{m} \leq n<2^{m+1}}\left|S_{n} f-S_{2^{m}} f\right|\right)\right\|_{2}^{2} \leq C^{2} \sum_{m=0}^{\infty}\left(\log \left(2^{m}+1\right)\right)^{2} \sum_{n=2^{m}}^{2^{m+1}-1}\left\|P_{n} f\right\|_{2}^{2} .
$$

Combining these facts gives the general form of the Rademacher-Menshov Theorem.

Theorem 3.1. There is a positive constant α so that for all $f \in L^{2}(X, \mu)$,

$$
\left\|S^{*} f\right\|_{2} \leq \alpha\left(\sum_{n=1}^{\infty}(\log (n+1))^{2}\left\|P_{n} f\right\|_{2}^{2}\right)^{1 / 2}
$$

If the right hand side is finite, then

$$
f(x)=\lim _{N \rightarrow \infty} S_{N} f(x), \quad \text { almost everywhere on } X
$$

Remark 3.1. This method was used in [2, 9, 10].

3.2 Invertible Matrices.

Suppose we equip \mathbb{C}^{n} with its usual inner product. If A is an invertible $n \times n$ matrix with complex entries then the equation

$$
A^{-1} A=I
$$

can be viewed as saying that the columns of A and the rows of A^{-1} form a pair of bi-orthogonal sets in \mathbb{C}^{n}. In this case, Proposition 2.2 gives the following result.

Theorem 3.2. Suppose that $\left\{a_{1}, \ldots, a_{n}\right\}$ are the columns of an $n \times n$ invertible matrix with complex entries A and that $\left\{b_{1}, \ldots, b_{n}\right\}$ are the rows of A^{-1}. Then

$$
\log n \leq c \max _{1 \leq j \leq n}\left\|b_{j}\right\| \max _{1 \leq m \leq n}\left\|a_{1}+\cdots+a_{m}\right\|
$$

where c is a positive constant independent of n and A.

3.3 Lebesgue Constants

This example follows the methods of another paper of Salem [15]. Suppose that $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ is an orthonormal subset of $L^{2}(X, \mu)$ consisting of essentially bounded functions, with

$$
\left\|\phi_{j}\right\|_{\infty} \leq M, \quad \forall 1 \leq j \leq n
$$

Define the maximal function

$$
\Phi(x)=\max _{1 \leq m \leq n}\left|\sum_{j=1}^{m} \phi_{j}(x)\right| \leq \sum_{j=1}^{n}\left|\phi_{j}(x)\right| .
$$

If $\Phi(x)=0$ then $\phi_{j}(x)=0$ for $1 \leq j \leq n$ and so the set of places where $\Phi(x)=0$ can be discarded from X without any effect on our calculations. Notice that for all x where $\Phi(x) \neq 0$, we have

$$
\frac{\left|\sum_{j=1}^{m} \phi_{j}(x)\right|}{\sqrt{\Phi(x)}} \leq \sqrt{\Phi(x)}, \quad \forall 1 \leq m \leq n
$$

On the set where $\Phi(x) \neq 0$, define $g_{j}=\phi_{j} / \sqrt{\Phi}$ and $h_{j}=\phi_{j} \sqrt{\Phi}$. These give bi-orthogonal sets $\left\{g_{1}, \ldots, g_{n}\right\}$ and $\left\{h_{1}, \ldots, h_{n}\right\}$ in $L^{2}(X, \mu)$. Furthermore, $\left\langle g_{j}, h_{k}\right\rangle=\delta_{j k}$,

$$
\left\|\sum_{j=1}^{m} g_{j}\right\|_{2}^{2} \leq\|\Phi\|_{1} \quad \text { and } \quad\left\|h_{j}\right\|_{2}^{2} \leq M^{2}\|\Phi\|_{1} .
$$

Proposition 2.2 says that

$$
\log n \leq c M\|\Phi\|_{1} .
$$

Theorem 3.3. There is a positive constant β with the following property. Suppose that $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ is an orthonormal set in $L^{2}(X, \mu)$ consisting of essentially bounded functions, with

$$
M=\max _{1 \leq j \leq n}\left\|\phi_{j}\right\|_{\infty}
$$

Then

$$
\left\|\max _{1 \leq m \leq n}\left|\sum_{j=1}^{m} \phi_{j}\right|\right\|_{1} \geq \beta \log (n) / M
$$

Remark 3.2. This is a weak form of an inequality conjectured by Littlewood. For much stronger results in the case of characters on compact abelian groups see [8, 6]. For other orthonormal systems see [7, 3]. The inequality here can also be viewed as a special case of Theorem 1 of Olevskií's book [12].

4 Proofs

Recall Bessel's inequality for orthogonal vectors in a Hilbert space (page 531 of [5].) Suppose that $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthogonal set of non-zero vectors in
a Hilbert space H. Then $\left\{v_{1} /\left\|v_{1}\right\|, \ldots, v_{n} /\left\|v_{n}\right\|\right\}$ is an orthonormal set in H and for every vector $w \in H$ we have

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{\left|\left\langle w, v_{j}\right\rangle\right|^{2}}{\left\|v_{j}\right\|^{2}} \leq\|w\|^{2} \tag{4.1}
\end{equation*}
$$

4.1 Proof of 2.1

Here we rework the proof published by Salem [14] in 1941 in a slightly more abstract setting.

4.1.1 The general set up.

Suppose that H is a Hilbert space. Now let $V=L^{2}(X, \mu) \otimes H$ be the Hilbert space of H-valued μ-measurable square-integrable functions on X. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ and $\left\{w_{1}, \ldots, w_{n}\right\}$ be a bi-orthogonal pair of subsets of H and define some elements of V by multiplying terms,

$$
p_{k}(x)=F_{k}(x) w_{k}, \quad 1 \leq k \leq n
$$

Then $\left\{p_{1}, \ldots, p_{n}\right\}$ is an orthogonal subset of V and (4.1) states that

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{\left|\left\langle P, p_{k}\right\rangle_{V}\right|^{2}}{\left\|p_{k}\right\|_{V}^{2}} \leq\|P\|_{V}^{2}, \quad \forall P \in V \tag{4.2}
\end{equation*}
$$

Let $f_{1} \geq f_{2} \geq \cdots \geq f_{n} \geq f_{n+1}=0$ be a decreasing sequence of characteristic functions of measurable subsets of X. For $G \in L^{2}(X, \mu)$ define an element of V by

$$
\begin{equation*}
P_{G}(x)=G(x) \sum_{j=1}^{n} f_{j}(x) v_{j} . \tag{4.3}
\end{equation*}
$$

The Abel transformation lets us rewrite this as

$$
P_{G}(x)=G(x) \sum_{k=1}^{n} \Delta f_{k}(x) \sigma_{k},
$$

where $\sigma_{k}=\sum_{j=1}^{k} v_{j}$ and $\Delta f_{k}=f_{k}-f_{k+1}$, for $1 \leq k \leq n$. Notice that $\left\{\Delta f_{1}, \ldots, \Delta f_{n}\right\}$ is a set of characteristic functions of mutually disjoint subsets
of X. For each $x \in X$, at most one of the terms $\Delta f_{k}(x)$ is non-zero. In particular,

$$
\left\|P_{G}(x)\right\|_{H}^{2}=|G(x)|^{2} \sum_{k=1}^{n} \Delta f_{k}(x)\left\|\sigma_{k}\right\|_{H}^{2}
$$

Integrating over X gives

$$
\left\|P_{G}\right\|_{V}^{2} \leq\|G\|_{2}^{2} \max _{1 \leq k \leq n}\left\|\sigma_{k}\right\|_{H}^{2}
$$

Combining this with (4.2), we have

$$
\begin{equation*}
\sum_{k=1}^{n}\left|\int_{X} G f_{k} \frac{\overline{F_{k}}}{\left\|F_{k}\right\|_{2}} d \mu\right|^{2} \frac{\left|\left\langle v_{k}, w_{k}\right\rangle\right|^{2}}{\left\|w_{k}\right\|_{H}^{2}} \leq\|G\|_{2}^{2} \max _{1 \leq k \leq n}\left\|v_{1}+\cdots+v_{k}\right\|_{H}^{2} \tag{4.4}
\end{equation*}
$$

4.1.2 A specific case.

Following Salem, let us now assume that $H=L^{2}(0,1)$ and
$v_{k}(t)=\sqrt{t} \sin (2 \pi k t) \quad$ and $\quad w_{k}(t)=\sin (2 \pi k t) / \sqrt{t}, \quad \forall 0<t<1, k \geq 1$.
The usual estimates on Lebesgue constants (page 67 in [16]) show that
$\left\|w_{k}\right\|_{H}^{2} \leq A \log (k+1) \quad$ and $\quad\left\|v_{1}+\cdots+v_{k}\right\|_{H}^{2} \leq B \log (k+1), \quad \forall 1 \leq k \leq n$.
The constants A and B are independent of k and n. Furthermore,

$$
\left\langle v_{k}, w_{k}\right\rangle=\frac{1}{2}, \quad \forall 1 \leq k \leq n
$$

For this choice of H, inequality (4.4) becomes

$$
\sum_{k=1}^{n} \frac{1}{\log (k+1)}\left|\int_{X} G f_{k} \frac{\overline{F_{k}}}{\left\|F_{k}\right\|_{2}} d \mu\right|^{2} \leq 2 A B\|G\|_{2}^{2} \log (n+1)
$$

and the constant $2 A B$ is independent of X, μ, and n. Moving the logarithm term from the left hand side gives

$$
\begin{equation*}
\sum_{k=1}^{n}\left|\int_{X} G f_{k} \frac{\overline{F_{k}}}{\left\|F_{k}\right\|_{2}} d \mu\right|^{2} \leq 2 A B\|G\|_{2}^{2}(\log (n+1))^{2} \tag{4.5}
\end{equation*}
$$

4.1.3 Controlling the maximal function.

Define an integer-valued function $m(x)$ on X by

$$
m(x)=\min \left\{m:\left|\sum_{k=1}^{m} F_{k}(x)\right|=\mathcal{M}(x)\right\}, \quad \forall x \in X,
$$

and let f_{k} be the characteristic function of the subset $\{x \in X: m(x) \geq k\}$. For each $x \in X$ there is the partial sum

$$
S_{m(x)}(x)=\sum_{k=1}^{m(x)} F_{k}(x)=\sum_{k=1}^{n} f_{k}(x) F_{k}(x) .
$$

For an element $G \in L^{2}(X, \mu)$, Cauchy-Schwarz gives

$$
\begin{align*}
\left|\int_{X} G(x) \overline{S_{m(x)}(x)} d \mu(x)\right| & =\left|\sum_{k=1}^{n}\left\|F_{k}\right\|_{2} \int_{X} G f_{k} \frac{\overline{F_{k}}}{\left\|F_{k}\right\|_{2}} d \mu\right| \tag{4.6}\\
& \leq\left(\sum_{k=1}^{n}\left\|F_{k}\right\|_{2}^{2}\right)^{1 / 2}\left(\sum_{k=1}^{n}\left|\int_{X} G f_{k} \frac{\overline{F_{k}}}{\left\|F_{k}\right\|_{2}} d \mu\right|^{2}\right)^{1 / 2} \tag{4.7}
\end{align*}
$$

Using inequality (4.5) gives

$$
\left|\int_{X} G(x) \overline{S_{m(x)}(x)} d \mu(x)\right| \leq \sqrt{2 A B}\|G\|_{2} \log (n+1)\left(\sum_{k=1}^{n}\left\|F_{k}\right\|_{2}^{2}\right)^{1 / 2} .
$$

This is true for all $G \in L^{2}(X, \mu)$ and so it follows that

$$
\|\mathcal{M}\|_{2}=\left\|S_{m(\cdot)}\right\|_{2} \leq C \log (n+1)\left(\sum_{k=1}^{n}\left\|F_{k}\right\|_{2}^{2}\right)^{1 / 2}
$$

This completes the proof of Proposition 2.1. For alternative proofs, see 2.3.1 on page 79 of [1] and Chapter 8 of [4].

4.2 Menshov's Result

In 1923 Menshov [11] showed that the logarithm term in Proposition 2.1 is best possible. The following is taken from page 255 of [4].

Lemma 4.1. There is a positive constant c_{0} so that for every $n \geq 2$ there is an orthonormal subset $\left\{\psi_{1}^{n}, \psi_{2}^{n}, \ldots, \psi_{n}^{n}\right\}$ in $L^{2}(0,1)$ for which the set

$$
\left\{x \in[0,1] ; \max _{1 \leq j \leq n}\left|\sum_{k=1}^{j} \psi_{k}^{n}(x)\right|>c_{0} \sqrt{n} \log (n)\right\}
$$

has Lebesgue measure greater than $1 / 4$.
Notice that this means that the maximal function $\Psi^{n}(x)=\max _{1 \leq j \leq n}\left|\sum_{k=1}^{j} \psi_{k}^{n}(x)\right|$ satisfies

$$
\left\|\Psi^{n}\right\|_{2}^{2} \geq c_{0}^{2} \frac{n(\log (n))^{2}}{4}
$$

and yet $\sum_{j=1}^{n}\left\|\psi_{j}^{n}\right\|_{2}^{2}=n$.

4.3 Proof of Proposition 2.2

We use the set $\left\{\psi_{1}^{n}, \psi_{2}^{n}, \ldots, \psi_{n}^{n}\right\}$ as the orthonormal set in Salem's proof of Proposition 2.1. Keeping the earlier notation, fix a function G on $[0,1]$ for which $|G(x)|=1$ and

$$
G(x) \overline{S_{m(x)}(x)}=\Psi^{n}(x) \geq 0 .
$$

Since Ψ^{n} is nonnegative, inequality (4.6) becomes

$$
\left\|\Psi^{n}\right\|_{1} \leq \sqrt{n}\left(\sum_{k=1}^{n}\left|\int_{0}^{1} G(x) f_{k}(x) \overline{\psi_{k}^{n}(x)} d x\right|^{2}\right)^{1 / 2}
$$

Put this back into inequality (4.4) to get

$$
\frac{\left\|\Psi^{n}\right\|_{1}^{2}}{n} \frac{\min _{1 \leq k \leq n}\left|\left\langle v_{k}, w_{k}\right\rangle\right|^{2}}{\max _{1 \leq m \leq n}\left\|w_{m}\right\|_{H}^{2}} \leq \max _{1 \leq k \leq n}\left\|v_{1}+\cdots+v_{k}\right\|_{H}^{2}
$$

Lemma 4.1 shows that

$$
\frac{\left\|\Psi^{n}\right\|_{1}^{2}}{n} \geq c_{0}^{2} \frac{(\log (n))^{2}}{16}
$$

and so

$$
\frac{c_{0}^{2}(\log (n))^{2}}{16} \min _{1 \leq k \leq n}\left|\left\langle v_{k}, w_{k}\right\rangle\right|^{2} \leq \max _{1 \leq m \leq n}\left\|w_{m}\right\|_{H}^{2} \max _{1 \leq k \leq n}\left\|v_{1}+\cdots+v_{k}\right\|_{H}^{2}
$$

This completes the proof of Proposition 2.2.

References

[1] György Alexits, Convergence problems of orthogonal series, Translated from the German by I. Földer. International Series of Monographs in Pure and Applied Mathematics, Vol. 20, Pergamon Press, New York, 1961.
[2] Leonardo Colzani, Christopher Meaney, and Elena Prestini, Almost everywhere convergence of inverse Fourier transforms, Proc. Amer. Math. Soc. 134 (2006), no. 6, 1651-1660.
[3] Saverio Giulini, Paolo M. Soardi, and Giancarlo Travaglini, A Cohen type inequality for compact Lie groups, Proc. Amer. Math. Soc. 77 (1979), no. 3, 359-364.
[4] B. S. Kashin and A. A. Saakyan, Orthogonal series, Translations of Mathematical Monographs, vol. 75, American Mathematical Society, Providence, RI, 1989.
[5] Anthony W. Knapp, Basic real analysis, Cornerstones, Birkhäuser Boston Inc., Boston, MA, 2005.
[6] S. V. Konyagin, On the Littlewood problem, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 2, 243-265, 463.
[7] C. Markett, Cohen type inequalities for Jacobi, Laguerre and Hermite expansions, SIAM J. Math. Anal. 14 (1983), no. 4, 819-833.
[8] O. Carruth McGehee, Louis Pigno, and Brent Smith, Hardy's inequality and the L^{1} norm of exponential sums, Ann. of Math. (2) 113 (1981), no. 3, 613-618.
[9] Christopher Meaney, On almost-everywhere convergent eigenfunction expansions of the Laplace-Beltrami operator, Math. Proc. Cambridge Philos. Soc. 92 (1982), no. 1, 129-131.
[10] Christopher Meaney, Detlef Müller, and Elena Prestini, A. e. convergence of spectral sums on Lie groups, to appear in Ann. l'Inst. Fourier.
[11] D. Menchoff, Sur les séries de fonctions orthogonales. (Premiére Partie. La convergence.), Fundamenta math. 4 (1923), 82-105.
[12] A. M. Olevskiĭ, Fourier series with respect to general orthogonal systems, Springer-Verlag, New York, 1975.
[13] H. Rademacher, Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen, Math. Ann. 87 (1922), 112-138.
[14] Raphaël Salem, A new proof of a theorem of Menchoff, Duke Math. J. 8 (1941), 269-272.
[15] Raphaël Salem, On a problem of Littlewood, Amer. J. Math. 77 (1955), 535-540.
[16] Antoni Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959.

Christopher Meaney, Department of Mathematics, Macquarie University, North Ryde, NSW 2109 Australia. chrism@maths.mq.edu.au

[^0]: *I am grateful to the organizers of the Murramarang conference for the opportunity to participate.

