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1 Introduction
It is well known that there is no ‘natural’ integral representation formula
for holomorphic functions of several complex variables in dimensions greater
than one, see [8, p. 25] or [15, p. 144]. However, Clifford analysis does
possess a natural analogue of the Cauchy integral formula in C; the cost
is that in Clifford analysis, regular functions take their values in an anti-
commutative algebra. This note is a report on joint work with John Ryan
exploring the connection between Clifford analysis and functions of several
complex variables by using elementary ideas arising from spectral theory
and the functional calculus of systems of operators. The details will appear
elsewhere.

The integral representation formula of Clifford analysis has recently been
applied to functional calculi for systems of operators by analogy with the
Riesz-Dunford functional calculus for a single operator, see [4] for a descrip-
tion and applications to harmonic analysis, PDE and quantum physics. If
A = (A1, . . . , An) is an n-tuple of linear operators acting in a Banach space
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X, we can attempt to form the function f(A) of the operators A1, . . . , An

via the higher dimensional analogue

f(A) =

∫

∂Ω

Gx(A)n(x)f(x) dµ(x) (1.1)

of the Riesz-Dunford functional calculus, for a suitable open subset Ω of Rn+1

with smooth oriented boundary ∂Ω, outward unit normal n(x) at x ∈ ∂Ω and
surface measure µ. The function f is assumed to have suitable decay and be
left monogenic in a neighbourhood of Ω in Rn+1, that is, it takes values in a
Clifford algebra C"(Cn) generated by the n standard basis vectors in Cn and
satisfies higher dimensional analogues of the Cauchy-Riemann equations. If
the operators A1, . . . , An do not commute with each other, then a symmetric
functional calculus f "−→ f(A) is obtained.

The Cauchy kernel Gx(A) may be formed in a number of ways. If A
satisfies exponential growth estimates, then the Weyl functional calculus WA

is applicable and we can set Gx(A) := WA(Gx) [5], [4, Section 4.1]. If
the spectra of the operators 〈A, ξ〉 =

∑n
j=1 Ajξj lie in a sector in C and

satisfy uniform resolvent bounds for ξ ∈ Rn with |ξ| = 1, then a plane
wave decomposition can be used [6], [4, Chapter 6]. In the commuting case
Gx(A) may be defined via Taylor’s functional calculus [18], [13], [1], [14].
Whichever method is used to obtain the Cauchy kernel, the set γ(A) ⊂ Rn+1

of singularities of the function x "−→ Gx(A) is called the monogenic spectrum
of the n-tuple A, by analogy with the spectrum σ(A) of a single operator A
interpreted as the set of singularities of its resolvent map λ "−→ (λI−A)−1. If
A satisfies exponential growth estimates, then γ(A) is precisely the support
of the Weyl functional calculus [5], [4, Section 4.1].

By viewing ζ = (ζ1, . . . , ζn) ∈ Cn as an n-tuple of multiplication operators
in the Clifford algebra C"(Cn) in equation (1.1), we obtain the formula

f̃(ζ) =

∫

∂Ωζ

Gx(ζ)n(x)f(x) dµ(x) (1.2)

associating a left monogenic function f with its holomorphic counterpart
f̃ . Cauchy’s theorem in Clifford analysis ensures that f̃(ξ) = f(ξ) for ξ ∈
Rn because the Cauchy kernel Gx(ζ) is the maximal analytic continuation
into Cn of ξ "−→ Gx(ξ), ξ ∈ Rn, ξ (= x. It is the straightforward integral
representation theorem of Clifford analysis that facilitates the representation
(1.2). The monogenic spectrum γ(ζ) of the complex vector ζ ∈ Cn is an
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(n − 1) dimensional hypersphere (n odd) or n dimensional ball (n even) in
Rn+1 centred at Re ζ = (Re ζ1, . . . , Re ζn) with radius | Im ζ| where Im ζ =
(Im ζ1, . . . , Im ζn).

The main result of the paper [3] was that the mapping f "−→ f̃ from
left monogenic functions f uniformly bounded on subsectors of a fixed sector
in Rn+1 to holomorphic functions f̃ uniformly bounded on subsectors of a
corresponding sector in Cn is actually a bijection. As a consequence, if DΣ

is the n-tuple of differentiation operators on a Lipschitz surface Σ in Rn+1,
then the equality f(DΣ) = f̃(DΣ) extends to all monogenic functions f
uniformly bounded on subsectors of a fixed sector in Rn+1 determined by the
tangent hyperplanes of Σ. Here f(DΣ) is defined by formula (1.1) in the case
that f has decay at zero and infinity and f̃(DΣ) is defined via the Fourier
theory of [9], [12]. It is known that DΣ satisfies “square function estimates",
so the mapping f "−→ f(DΣ) has a uniformly bounded extension from left
monogenic functions with decay at zero and infinity to all left monogenic
functions uniformly bounded on a sector containing almost all hyperplanes
tangent to Σ in its interior.

An essential observation of the paper [3] was that the set of all complex
vectors ζ ∈ Cn whose monogenic spectrum γ(ζ) lies in a fixed sector Sω(Rn+1)
of angle 0 < ω < π/2 in Rn+1 coincides with a sector Sω(Cn) in Cn, see
Proposition 5.1 below. The sector Sω(Cn) has the property that for each
ζ ∈ Sω(Cn), the exponential function e(x, ζ) defined in [9, p. 685] has decay
as |x| → ∞ for x ∈ Sν(Rn+1), 0 < ν < ω.

The integral representation formula (1.2) is purely local, so the question
arises if the mapping f "−→ f̃ defined by formula (1.2) is a bijection without
any uniform boundedness assumptions and if it is a bijection on domains
other than sectors in Rn+1 and their counterparts in Cn. In [3], the recon-
struction of the monogenic function f from the holomorphic function f̃ is
achieved by employing the Fourier theory developed in [9], which is nonlocal
in character.

In this note, the representation formula developed in [16], [17] is used
to construct the inverse map f̃ "−→ f for holomorphic functions f̃ defined
in sectors in Cn onto the vector space of left monogenic functions defined
in sectors in Rn+1. By avoiding the Fourier theory used in [3], we produce
a local representation for holomorphic functions defined in open subsets of
Cn onto the space of left monogenic functions defined in the corresponding
open subset of Rn+1. The correspondence is obtained simply by taking the
restriction f0 of a holomorphic function f̃ defined in an open subset of Cn,
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to its nonempty intersection with Rn and then, the left monogenic extension
f of f0 into Rn+1. In the process, we establish that the Clifford algebra
valued function f is actually the restriction to Rn+1 of a complex left regular
function defined in an open subset of Cn+1.

Besides considering the monogenic spectrum γ(ζ) ⊂ Rn+1 of the complex
vector ζ ∈ Cn, the spectrum σ(iζ) of the element iζ = i(ζ1e1 + · · ·+ ζnen) of
the Clifford algebra C"(Cn) is also relevant to our studies. If |ζ|2C (= 0, then
σ(iζ) = {±|ζ|C} with projections

χ±(ζ) =
1

2

(
e0 ± i

ζ

|ζ|C

)
,

by which the functional calculus

b(iζ) = b(|ζ|C)χ+(ζ) + b(−|ζ|C)χ−(ζ)

is obtained [12, Section 5.2]. The complex sector Sω(Cn) may be viewed in
two complementary ways: as the set of all complex vectors ζ ∈ Cn such that
the spectrum σ(iζ) of iζ is contained in a double sector Sω(C) of angle ω and
following [3], as the set of all complex vectors ζ ∈ Cn such that the monogenic
spectrum γ(ζ) of ζ is contained in a sector Sω(Rn+1) of angle ω in Rn+1. A
table of holomorphic functions b uniformly bounded on a double sector in C,
their holomorphic several variable counterparts ζ "−→ b(iζ) and their Fourier
transforms in Rn+1 is given in [9, pp. 701,702]. As a consequence of Theorem
5.1 below, the restriction x "−→ b(ix), x ∈ Rn \ {0}, of any such function to
Rn \ {0} has a unique left monogenic extension to a corresponding sector in
Rn+1.

2 Clifford Analysis
The real and imaginary parts of z ∈ C are denoted by Re(z) and Im(z)
respectively and for an element ζ = (ζ1, . . . , ζn) of Cn, the vector Re(ζ) =
(Re(ζ1), . . . , Re(ζn)) ∈ Rn denotes the real part of ζ and Im(ζ) = (Im(ζ1), . . . , Im(ζn)) ∈
Rn denotes the imaginary part of ζ.

Let C"(Cn) be the Clifford algebra generated over the field C by the
standard basis vectors e0, e1, . . . , en of Cn+1 with conjugation u "−→ u. Then
e0 is the unit of C"(Cn), ej and ek anticommute for j, k = 1, . . . , n and
j (= k, and e2

j = −1 for j = 1, . . . , n. The conjugation satisfies e0 = e0,
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ej = −ej for j = 1, . . . , n and uv = v u for all u, v ∈ C"(Cn). Any nonzero
element u =

∑n
j=0 ujej of C"(Cn) is invertible and u−1 = u/(uu) because

uu = |u|2e0. In the case that we don’t take the complex conjugate of the
complex coefficients of the standard basis, we use the symbol uC =

∑
S uSeS

for u =
∑

S uSeS with uS ∈ C. Then for the vector u =
∑n

j=0 ujej we have

uuC =
n∑

j=0

u2
j .

If uuC is not a negative real number or zero, then the square root of the
complex number uuC with positive real part is denoted by |u|C and |u|C = 0
if uuC = 0.

The Clifford algebra C"(Cn) is a complex vector space with a basis eS,
S ⊂ {1, . . . , n} given by eS = ej1 · · · ejk

if S = {j1, . . . , jk} and 1 ≤ j1 <
· · · < jk ≤ n is an ordered enumeration of S. If S = Ø, then eØ = e0. In
particular, C"(Cn) has complex dimension 2n. A function f : U −→ C"(Cn)
therefore has a unique representation f =

∑
S fSeS in which fS : U −→ C

are scalar valued functions for each subset S of {1, . . . , n}.
The embedding z "−→ ze0, z ∈ C, identifies C with a closed commutative

subalgebra of C"(Cn) and Cn+1 is identified with the closed linear subspace of
all elements z0e0 + z1e1 + · · ·+ znen of C"(Cn) with zj ∈ C for j = 0, 1, . . . , n.
Then Cn is always identified with the subspace {0} × Cn of Cn+1 and then
with the corresponding subspace of C"(Cn). Similarly, R, Rn and Rn+1 are
identified with the corresponding real linear subspaces of C"(Cn).

The generalised Cauchy-Riemann operator is given by D =
∑n

j=0 ej
∂

∂xj
.

Let U ⊂ Rn+1 be an open set. A function f : U −→ C"(Cn) is called left
monogenic if Df = 0 in U and right monogenic if fD = 0 in U .

The Cauchy kernel is given by

k(x− y) =
1

σn

x− y

|x− y|n+1
, x, y ∈ Rn+1, x (= y, (2.1)

with σn = 2π
n+1

2 /Γ
(

n+1
2

)
the volume of unit n-sphere in Rn+1. The function

k is both left and right monogenic away from the origin. So, given a left
monogenic function f : U −→ C"(Cn) defined in an open subset U of Rn+1

and an open subset Ω of U such that the closure Ω of Ω is contained in U ,
and the boundary ∂Ω of Ω is a smooth oriented n-manifold, then the Cauchy
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integral formula [2, Corollary 9.6]

f(y) =

∫

∂Ω

k(x− y)n(x)f(x) dµ(x), y ∈ Ω (2.2)

is valid. Here n(x) is the outward unit normal at x ∈ ∂Ω and µ is the
volume measure of the oriented manifold ∂Ω. The proof of the Clifford
Cauchy integral formula (2.2) is based on Stokes’ theorem.

An element x = (x0, x1, . . . , xn) of Rn+1 will often be written as x =
x0e0 + x with x =

∑n
j=1 xjej. The expression k(x − y) will also be written

as Gx(y)—a more convenient notation when y is replaced by an n-tuple of
operators.

3 The monogenic spectrum of a complex vector
Here we revisit the calculations of [3] in order to set the stage. The Cauchy
kernel for ζ ∈ Cn is defined in [3] as the maximal holomorphic extension
ζ "−→ Gx(ζ) of formula (2.1) for ζ ∈ Cn:

Gx(ζ) =
1

σn

x + ζ

|x− ζ|n+1
C

, x ∈ Rn+1,






|x− ζ|2C /∈ (−∞, 0], n even

|x− ζ|2C (= 0, n odd.
(3.1)

Here

|x− ζ|2C = (x− ζ)(x− ζ
C
) = x2

0 +
n∑

j=1

(xj − ζj)
2

for x = (x0, x1, . . . , xn) ∈ Rn+1 and the complex number |x−ζ|C is the square
root of |x − ζ|2C with positive real part, coinciding with the holomorphic
extension of the modulus function ξ "−→ |x − ξ|, ξ ∈ Rn \ {x} in the case
x ∈ Rn. For ζ ∈ Cn fixed, the set γ(ζ) of singularities of the Cauchy kernel
x "−→ Gx(ζ), x ∈ Rn+1, is called the monogenic spectrum of the complex
vector ζ.

There is a discontinuity in the function (x, ζ) "−→ |x− ζ|C on the set

{(x, ζ) ∈ Rn+1 × Cn : |x− ζ|2C ∈ (−∞, 0] }.

The analogous reasoning for multiplication by x ∈ Rn+1 in the algebra
C"(Cn) just gives us the Cauchy kernel (2.1), so that γ(x) = {x}, as ex-
pected.
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Given ζ ∈ Cn, if n is even and singularities of (3.1) occur at x ∈ Rn+1,
then |x − ζ|2C ∈ (−∞, 0], otherwise we can simply take the positive square
root of |x− ζ|2C in formula (3.1) to obtain a monogenic function of x. If n is
odd, then the denominator of (3.1) is a power of |x− ζ|2C, so x "−→ Gx(ζ) is
monogenic provided |x− ζ|2C is nonzero.

To determine the set of x ∈ Rn+1 where singularities occur, write ζ =
ξ + iη for ξ, η ∈ Rn and x = x0e0 + x for x0 ∈ R and x ∈ Rn. Then

|x− ζ|2C = x2
0 +

n∑

j=1

(xj − ζj)
2

= x2
0 +

n∑

j=1

(xj − ξj − iηj)
2

= x2
0 + |x− ξ|2 − |η|2 − 2i〈x− ξ, η〉. (3.2)

Thus, |x − ζ|2C belongs to (−∞, 0] if and only if x lies in the intersection
hyperplane 〈x− ξ, η〉 = 0 passing through ξ and with normal η, and the ball
x2

0 + |x− ξ|2 ≤ |η|2 centred at ξ with radius |η|. If n is even, then

γ(ζ) = {x = x0e0 + x ∈ Rn+1 : 〈x− ξ, η〉 = 0, x2
0 + |x− ξ|2 ≤ |η|2 } (3.3)

and if n is odd, then

γ(ζ) = {x = x0e0 + x ∈ Rn+1 : 〈x− ξ, η〉 = 0, x2
0 + |x− ξ|2 = |η|2 }. (3.4)

In particular, if Im(ζ) = 0, then γ(ζ) = {ζ} ⊂ Rn.
Off γ(ζ), a calculation shows that the function x "−→ Gx(ζ) is two-sided

monogenic, so the Cauchy integral formula gives

f̃(ζ) =

∫

∂Ω

Gx(ζ)n(x)f(x) dµ(x) (3.5)

for a bounded open neighbourhood Ω of γ(ζ) with smooth oriented boundary
∂Ω, outward unit normal n(x) at x ∈ ∂Ω and surface measure µ. The
function f is assumed to be left monogenic in a neighbourhood of Ω, but
ζ "−→ f̃(ζ) is a holomorphic C"(Cn)-valued function as the closed set γ(ζ)
varies inside Ω. Moreover, f̃ equals f on Ω∩Rn by the usual Cauchy integral
formula of Clifford analysis, so if f is, say, the monogenic extension of a
polynomial p : Cn −→ C restricted to Rn, then f̃(ζ) = p(ζ), as expected. In
this way, for each left monogenic function f defined in a neighbourhood of
γ(ζ), in a natural way we associate an holomorphic function f̃ defined in a
neighbourhood of ζ.
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4 Complex Clifford analysis
The complex generalised Cauchy-Riemann operator is given by DC =

∑n
j=0 ej

∂
∂zj

.

Let U ⊂ Cn+1 be an open set. A function f : U −→ C"(Cn) is said to be
complex left monogenic if DCf = 0 in U and right monogenic if fDC = 0 in
U .

The complex Cauchy kernel is given by

Gz(ζ) =
1

σn

z − ζ
C

|z − ζ|n+1
C

, (4.1)

with z, ζ ∈ Cn+1 and
∑n

j=0(zj − ζj)2 (= 0 if n is odd and
∑n

j=0(zj − ζj)2 (∈
(−∞, 0] if n is even. If n = 2k + 1 is odd, then |z − ζ|n+1

C = (
∑n

j=0(zj −
ζj)2)k+1, while for n even, we take |z−ζ|C to be the square root of

∑n
j=0(zj−

ζj)2 with positive real part.
For each ζ ∈ Cn+1, let N(ζ) denote the set of complex vectors z ∈ Cn+1

at which the complex Cauchy kernel z "−→ Gz(ζ) has a singularity.
Identifying Cn with {0} ×Cn ⊂ Cn+1, we obtain γ(ζ) = N(ζ)∩Rn+1 for

each ζ ∈ Cn. For each vector ζ ∈ Cn+1, we set γC(ζ) = N(ζ) ∩Rn+1. The
subscript is used to distinguish the set γC(ζ) from the monogenic spectrum
γ(ζ ′) of a vector ζ ′ ∈ Cn.

If ζ ∈ Cn+1 and ζ = ξ + iη for ξ, η ∈ Rn+1 and n is even, then

N(ζ) =

{
z = z0e0 + z ∈ Cn+1 :

n∑

j=0

(zj − ζj)
2 ∈ (−∞, 0]

}
. (4.2)

γC(ζ) = N(ζ) ∩Rn+1

= {x ∈ Rn+1 : 〈x− ξ, η〉 = 0, |x− ξ|2 ≤ |η|2 }. (4.3)

and if n is odd, then

N(ζ) =

{
z = z0e0 + z ∈ Cn+1 :

n∑

j=0

(zj − ζj)
2 = 0

}
. (4.4)

γC(ζ) = N(ζ) ∩Rn+1

= {x ∈ Rn+1 : 〈x− ξ, η〉 = 0, |x− ξ|2 = |η|2 }. (4.5)

Let Ω be a bounded open subset of Rn+1 with smooth oriented boundary
∂Ω and suppose that Ω intersects Rn and f is left monogenic in a neighbour-
hood of Ω. Then the function f̃ defined by the Cauchy integral formula (3.5)
is holomorphic in the set {ζ ∈ Cn : γ(ζ) ⊂ Ω} and equals f on Ω ∩Rn.
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In order to determine the range of the mapping f "−→ f̃ , as in [16, 17],
we note that f̃ has a complex left monogenic extension f̃C in Cn+1 defined
in the component κ(Ω) ⊂ Cn+1 of Cn+1 \ N(∂Ω) containing Ω by virtue of
the formula

f̃C(ζ) =

∫

∂Ω

Gx(ζ)n(x)f(x) dµ(x), ζ ∈ κ(Ω). (4.6)

The domain κ(Ω) is an example of a cell of harmonicity discussed in this
context in [16, 17].

Let U be a nonempty open subset of Rn+1. Because a vector ζ ∈ Cn+1

belongs to N(∂U) if and only if γC(ζ) = N(ζ) ∩ Rn+1 intersects ∂U , the
equality

Cn+1 \ N(∂U) = {ζ ∈ Cn+1 : γC(ζ) ⊂ Rn+1 \ ∂U}
holds. The disjoint open sets U and Rn+1\U cannot disconnect the set γC(ζ),
so either γC(ζ) ⊂ U or γC(ζ) ⊂ Rn+1 \U. For any nonempty connected open
subset U of Rn+1, the component of the open set {ζ ∈ Cn+1 : γC(ζ) ⊂ U}
containing U is denoted by κ(U). The following observation is an immediate
consequence of the Cauchy integral formula (4.6).

Proposition 4.1. Let U be a nonempty connected open subset of Rn+1. Then
κ(U) ∩ Rn+1 = U and every left monogenic function f defined in U has a
unique complex left monogenic extension f̃C to κ(U). The mapping f "−→
f̃C is a bijection. The inverse map is the restriction map of complex left
monogenic functions defined in κ(U) to κ(U) ∩Rn+1 = U.

The question remains as to when a holomorphic function defined on
κ(U) ∩ ({0} × Cn) has a complex left monogenic extension to κ(U). In the
course of the proof of Theorem 5.1 below, we shall show that a holomorphic
function defined on

κ(S◦
ω(Rn+1)) ∩ ({0} × Cn) = {0} × S◦ω(Cn)

has a complex left monogenic extension to κ(S◦
ω(Rn+1)). However, the sim-

plest example is when U is the open unit ball centred at zero in Rn+1, where
the set κ(U) is computed below.

Example 4.1. Let n = 1, 2, . . . and B1(0) = {x ∈ Rn+1 : |x| < 1}. Then
κ(B1(0)) = Ln+1 where

Ln+1 = {ζ ∈ Cn+1 : |ζ|2 +
√

|ζ|4 − ||ζ|2C|2 < 1 } (4.7)
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is the Lie ball in Cn+1. Let ζ ∈ Cn+1 and suppose that ζ = ξ + iη with
ξ, η ∈ Rn+1. If η = 0, then γC(ζ) = {ξ} so that B1(0) ⊂ κ(B1(0)). Moreover,

Ln+1 ∩ ({0} × Cn) = {0} × Ln, n = 1, 2, . . . .

To establish the identity κ(B1(0)) = Ln+1, suppose that η (= 0. According
to equations (4.3) and (4.5), the set γC(ζ) is an (n − 1)-dimensional ball or
sphere with radius |η| in Rn+1, lying in the hyperplane with normal η and
passing through ξ ∈ Rn+1. Let 0 ≤ ∠(ξ, η) ≤ π be the angle between ξ
and η in Rn+1, that is 〈ξ, η〉 = |ξ|.|η| cos(∠(ξ, η)). The projection of ξ onto
{η}⊥ has length |ξ| sin(∠(ξ, η)) and the projection of ξ onto η has length
|ξ| cos(∠(ξ, η)). The projection of γC(ζ) onto {η}⊥ is a ball or sphere whose
maximum distance from the origin is |ξ| sin(∠(ξ, η)) + |η| in the direction of
the projection of ξ onto {η}⊥. Because {η}⊥ is distant |ξ|| cos(∠(ξ, η))| from
the hyperplane in Rn+1 in which γC(ζ) lies, the maximum distance from the
origin of points belonging to γC(ζ) is

√
|ξ|2 cos2(∠(ξ, η)) + (|ξ| sin(∠(ξ, η)) + |η|)2,

so

{ζ ∈ Cn+1 : γC(ζ) ⊂ B1(0)}
= {ζ ∈ Cn+1 : ζ = ξ + iη, η (= 0, |ξ|2 + |η|2 + 2|ξ||η| sin(∠(ξ, η)) < 1} ∪B1(0)

= {ζ ∈ Cn+1 : ζ = ξ + iη, |ξ|2 + |η|2 + 2(|ξ|2|η|2 − 〈ξ, η〉2) 1
2 < 1}

= {ζ ∈ Cn+1 : |ζ|2 +
√

|ζ|4 − ||ζ|2C|2 < 1 }

is a connected open set and the equality (4.7) follows. Consequently, any
left monogenic function f : B1(0) −→ C"(Cn) has a unique complex left
monogenic extension f̃C : Ln+1 −→ C"(Cn) to the Lie ball Ln+1 in Cn+1 [16,
Proposition 7].

The complex left monogenic function f̃C : κ(Ω) → C"(Cn) defined by
formula (4.6) has another representation which is best described by first
interpreting formula (4.6) in terms of differential forms.

The boundary ∂Ω of Ω is assumed to be an orientable smooth n-manifold
in Rn+1. The Rn+1-valued n-form ω(dx) is defined by

ω(dx) =
n∑

j=0

(−1)jejdx0 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn. (4.8)

Here the symbol d̂xj means that the factor dxj is simply omitted from the
wedge product. Given an n-dimensional orientable submanifold M of Rn+1,
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the pullback of ω(dx) onto M by the embedding of M into Rn+1 is denoted
by the same symbol. In terms of this differential form, equation (4.6) may
be rewritten as

f̃C(ζ) =

∫

∂Ω

Gx(ζ)ω(dx)f(x), ζ ∈ κ(Ω). (4.9)

Now suppose that M is a real n-dimensional orientable submanifold of
Cn+1. The Cn+1-valued n-form ω(dζ) is defined by

ω(dζ) =
n∑

j=0

(−1)jejdζ0 ∧ · · · ∧ d̂ζj ∧ · · · ∧ dζn. (4.10)

The pullback of ω(dζ) onto M by the embedding of M into Cn+1 is denoted
by the same symbol. Let ζ ∈ κ(Ω). If M ⊂ κ(Ω) and ∂Ω are homologous in
κ(Ω) \ N(ζ), then by Stokes’ Theorem we obtain

f̃C(ζ) =

∫

M

Gz(ζ)ω(dz)f̃C(z) (4.11)

from equation (4.9), because DCf̃C = 0, so that Gz(ζ)ω(dz)f̃C(z) is a closed
C"(Cn)-valued differential form in κ(Ω) \ N(ζ).

The sum A + B of two subsets A, B of a vector space is the set

A + B = {a + b : a ∈ A, b ∈ B }.

For each r > 0, let
Sn(r) = {x ∈ Rn+1 : |x| = r }

be the n-dimensional hypersphere of radius r in Rn+1. The hypersphere Sn(r)
is identified with a subset of Cn+1 via the embedding of Rn+1 in Cn+1. It
has the orientation induced from the standard orientation of Rn+1 and the
outward unit normal. An application of Stokes’ theorem as ε → 0+ gives the
following representation.

Proposition 4.2. Let ζ ∈ Cn+1. If f : U → C"(Cn) is a complex left
monogenic function defined in a neighbourhood U of ζ in Cn+1, then there
exists ε > 0 such that ζ + Sn(ε) ⊂ U \ N(ζ) and

f(ζ) =

∫

ζ+Sn(ε)

Gz(ζ)ω(dz)f(z). (4.12)
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If Ω is any nonempty open connected subset of Rn+1 and f : κ(Ω) −→
C"(Cn) is a complex left monogenic function, then for each ζ ∈ κ(Ω) \ Ω,
following [16] we determine a simple real n-cycle M(ζ) ⊂ κ(Ω) \ N(ζ) close
to γC(ζ) ⊂ Rn+1 in an n-dimensional complex affine subspace of Cn+1 and
homologous to the n-sphere ζ +Sn(ε) in the image of κ(Ω)\N(ζ) in complex
projective space CPn. An application of Stokes’ theorem ensures that the
representation

f(ζ) =

∫

M(ζ)

Gz(ζ)ω(dz)f(z) (4.13)

is valid. The point of difference with the representation (4.12) is that ζ+Sn(ε)
lies in the (n + 1)-dimensional affine subspace ζ + Rn+1 of Cn+1. We look at
the cases of n odd and even separately.

4.1 n odd
Let ζ ∈ Cn+1 \ Rn+1. By equation (4.5), the monogenic spectrum γC(ζ) =
N(ζ)∩Rn+1 of ζ is an (n− 1)-dimensional sphere in Rn+1 in the hyperplane
orthogonal to η = Im ζ (= 0 and passing through ξ = Re ζ. For each x ∈
γC(ζ), let Cx(ζ) denote the complex line

{z ∈ Cn+1 : z = ξ + λ(x− ξ), λ ∈ C } (4.14)

passing through x and its antipodal point in γC(ζ). For each 0 < ε < |η|, let

Σ(n+1)
ε (ζ) =

⋃

x∈γC(ζ)

{z ∈ Cx(ζ) : |z − x| < ε } (4.15)

∂Σ(n+1)
ε (ζ) =

⋃

x∈γC(ζ)

{z ∈ Cx(ζ) : |z − x| = ε }. (4.16)

Then ∂Σ(n+1)
ε (ζ) is a real n-dimensional submanifold of Cn+1—an S1-fibration

of γC(ζ) ⊂ Rn+1 mentioned in [16, p. 416]. The set ∂Σ(n+1)
ε (ζ) is the

boundary of the open set Σ(n+1)
ε (ζ) containing γC(ζ) and contained in an

ε′-neighbourhood of γC(ζ) in Cn+1 for all ε′ > ε. It is oriented from the stan-
dard orientations of Rn+1 and the unit circles in Cx(ζ) for each x ∈ γC(ζ), so
that ∂Σ(n+1)

ε (ζ) has the orientation induced by the (n+1)-form dζ0∧· · ·∧dζn.

Proposition 4.3. Suppose that n ∈ N is odd and Ω is an open subset of
Rn+1. Let ζ ∈ κ(Ω) \Ω and suppose that the convex hull of γC(ζ) in Rn+1 is

53



contained in Ω. If f : κ(Ω) → C"(Cn) is a complex left monogenic function,
then there exists ε > 0 such that ∂Σ(n+1)

ε (ζ) ⊂ κ(Ω) \ N(ζ) and

f(ζ) =

∫

∂Σ
(n+1)
ε (ζ)

Gz(ζ)ω(dz)f(z). (4.17)

Proof. First, we show that the half-open line segment [w, ζ) = {λw+(1−λ)ζ :

0 < λ ≤ 1 } joining w ∈ ∂Σ(n+1)
ε (ζ) and ζ lies in the complement of the null

cone N(ζ) of ζ. Let ζ = ξ + iη with ξ, η ∈ Rn+1. Representing w as
w = ξ + u(1 + z/|u|) for u ∈ {η}⊥ in Rn+1 with |u| = |η| and z ∈ C with
|z| = ε, we have

|λw + (1− λ)ζ − ζ|2C = λ2|w − ζ|2C
= λ2| − iη + u(1 + z/|u|)|2C
= λ2(−|η|2 + |u|2(1 + z/|u|)2)

= λ2(2|η| + z)z, 0 < λ ≤ 1.

Because |2|η| + z| ≥ 2|η| − ε > |η| > 0, it follows that [w, ζ) ⊂ Cn+1 \ N(ζ).
Next we see that [w, ζ) ⊂ κ(Ω). Let û = u/|u|. For each 0 < λ ≤ 1, the

set
γC(λw + (1− λ)ζ) = γC(ζ + λ(−iη + u(1 + z/|u|)))

is the (n− 1)-dimensional sphere centred at ξ + λ(u + Re(z)û), with radius
|(1− λ)η + λ Im(z)û| and contained in the hyperplane

{x ∈ Rn+1 : 〈x− (ξ + λ(u + Re(z)û)), (1− λ)η + λ Im(z)û〉 = 0 }.

Some open neighbourhood of the convex hull of γC(ζ) is contained in Ω, so
for ε sufficiently small, γC(λw+(1−λ)ζ) is contained in Ω for each 0 ≤ λ ≤ 1,
proving that that [w, ζ] ⊂ κ(Ω) for every w ∈ ∂Σ(n+1)

ε (ζ). Consequently, we
can translate ∂Σ(n+1)

ε (ζ) along the line segments [w, ζ) ⊂ κ(Ω) \ N(ζ) for
w ∈ ∂Σ(n+1)

ε (ζ).
Now suppose that ε′ > 0 is so small that ζ+Bε′(0) ⊂ κ(Ω), where Bε′(0) is

the closed ball of radius ε′ > 0 centred at zero in Cn+1. Choose δ > 0 so that
δ(2|η|+ε) < ε′. For each w ∈ ∂Σ(n+1)

ε (ζ) there exists u ∈ Rn+1 as above such
that w− ζ = −iη + u(1 + z/|u|). Then δ|w− ζ| ≤ δ(|η|+ |u(1 + z/|u|)|) < ε′

and ∂Σ(n+1)
ε (ζ) is homologous to the cycle

{ζ + δ(w − ζ) : w ∈ ∂Σ(n+1)
ε (ζ) } ⊂ Bε′(0)
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in κ(Ω) \ N(ζ).
For each u ∈ {η}⊥ with |u| = |η|, let û = u/|u| and η̂ = η/|η| be unit

vectors in the u and η directions and let V denote the real three dimensional
subspace spanned by the vectors û, iû and iη̂. According to formula (4.4),
we have

V ∩N(0) = {ζ ∈ V : |ζ|2C = 0 }
= {zû + aiη̂ : z ∈ C, a ∈ R, z2 − a2 = 0 }
= {a(û ± iη̂) : a ∈ R }

The cycle defined by −iη ± u + zû, z ∈ C with |z| = ε and the positive
orientation can be deformed in V \ N(0) into the circle of radius |η| + ε

centred at −iη and then into zû, z ∈ C with |z| = ε′, so that ∂Σ(n+1)
ε (ζ) is

homologous to the cycle

ζ + {zû : u ∈ Rn+1, u ∈ {η}⊥ \ {0}, z ∈ C, |z| = ε′ } (4.18)

in κ(Ω) \ N(ζ). Moreover, the n-form
zC

|z|n+1
C

ω(dz) is homogeneous on Cn+1

and so defines a closed n-form on complex projective space CPn. Because the
images of the cycle (4.18) and ζ+Sn(ε) in CPn are homologous and ∂Σ(n+1)

ε (ζ)
and (4.18) are homologous, the equality (4.17) is now a consequence of Stokes’
theorem and Proposition 4.2.

4.2 n even
Let ζ ∈ Cn+1 \ Rn+1. By equation (4.3), the monogenic spectrum γC(ζ) =
N(ζ)∩Rn+1 of ζ is an n-dimensional ball in Rn+1 in the hyperplane orthog-
onal to η = Im ζ (= 0 and passing through ξ = Re ζ. In particular, γC(ζ) is a
convex subset of Rn+1.

For each x ∈ Rn+1 \ {ξ}, let Cx(ζ) denote the complex line (4.14). In
polar coordinates, we have

Cx(ζ) =

{
z ∈ Cn+1 : z = ξ + reiθ x− ξ

|x− ξ| , r ≥ 0, 0 ≤ θ < 2π

}
.
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For each ε > 0, let

Σ(n+1)
ε (ζ) =

⋃

x∈∂γC(ζ)

{
z ∈ Cx(ζ) :

1

r2
>

sin2 θ

ε2
+

cos2 θ

(1 + ε2)|η|2 , 0 ≤ θ < 2π

}
(4.19)

∂Σ(n+1)
ε (ζ) =

⋃

x∈∂γC(ζ)

{
z ∈ Cx(ζ) :

1

r2
=

sin2 θ

ε2
+

cos2 θ

(1 + ε2)|η|2 , 0 ≤ θ < 2π

}
(4.20)

The ellipsoid ∂Σ(n+1)
ε (ζ) is an n-cycle in Cn+1. The set ∂Σ(n+1)

ε (ζ) is the
boundary of the open set Σ(n+1)

ε (ζ) containing γC(ζ) and contained in an
ε′-neighbourhood of γC(ζ) in Cn+1 for ε′ > ε; ∂Σ(n+1)

ε (ζ) has the orientation
induced by the (n+1)-form dζ0∧· · ·∧dζn. If n is odd and the convex hull of
γC(ζ) in Rn+1 is contained in Ω, then the cycles ∂Σ(n+1)

ε (ζ) defined by (4.16)
and (4.20) are homologous in κC(Ω) \ N(ζ). A proof similar to the case for
n odd gives the following result.

Proposition 4.4. Suppose that n ∈ N is even and Ω is a nonempty con-
nected open subset of Rn+1. Let ζ ∈ κ(Ω) \ Ω. If f : κ(Ω) → C"(Cn)
is a complex left monogenic function, then there exists ε > 0 such that
∂Σ(n+1)

ε (ζ) ⊂ κ(Ω) \ N(ζ) and

f(ζ) =

∫

∂Σ
(n+1)
ε (ζ)

Gz(ζ)ω(dz)f(z). (4.21)

In the case of n odd or even, for ζ = ξ+iη ∈ κ(Ω)\Ω, the set Σ(n+1)
ε (ζ) lies

in a small neighbourhood of γC(ζ) contained in the intersection of κ(Ω)\N(ζ)
with the n-dimensional complex hyperplane ξ +C{η}⊥ in Cn+1. Because the
representations (4.17) and (4.21) depend only on the values of f in an n-
dimensional complex hyperplane in Cn+1, they may be modified to obtain
the complex monogenic extension to Cn+1 of a holomorphic function defined
on an open subset of Cn. We show how this is done for the case of sectors in
the next section.
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5 Holomorphic and Monogenic Functions on
Sectors

Let

Sν(R
n+1) = {x ∈ Rn+1 : x = x0e0 + x, |x0| ≤ tan ν|x| },

S◦
ν(R

n+1) = {x ∈ Rn+1 : x = x0e0 + x, |x0| < tan ν|x| }.

It is clear that if ζ = ξ + iη lies in a sector in Cn, say, |η| ≤ |ξ| tan ν, then
the monogenic spectrum γ(ζ) lies in a corresponding sector in Rn+1. More
precisely, we have

Proposition 5.1 ( [4, Proposition 6.10]). Let ζ ∈ Cn\{0} and 0 < ω < π/2.
Then γ(ζ) ⊂ Sω(Rn+1) if and only if

|ζ|2C (= (−∞, 0] and | Im(ζ)| ≤ Re(|ζ|C) tan ω. (5.1)

Let Sω(Cn) denote the set of complex vectors ζ ∈ Cn satisfying the in-
equality (5.1), that is, the complex sector

Sω(Cn) = {ζ ∈ Cn : γ(ζ) ⊂ Sω(Rn+1)} (5.2)

in Cn. The interior of Sω(Cn) is written as S◦
ω(Cn). For n = 1, we have

Sω(C) = {z ∈ C : | Im z| ≤ tan ω|Re z| },
S◦

ω(C) = {z ∈ C : | Im z| < tan ω|Re z| }.

Theorem 5.1. Let n be a nonnegative integer and 0 < ω < π/2. If f̃ is
a C"(Cn)-valued holomorphic function defined on S◦

ω(Cn), then there exists
a unique left monogenic function f defined on S◦

ω(Rn+1) such that f̃(x) =
f(x1e1 + · · · + xnen) for all x ∈ Rn, x (= 0. The linear map f̃ "−→ f is
continuous for the compact-open topology.

Sketch of the Proof. We describe the case that n is an odd integer. The case
of n even is similar but a little more complicated. A calculation like that
in (4.3) shows that for each ζ ∈ Cn+1, z ∈ Cn and θ ∈ R, the intersection
N(ζ)∩ (z + eiθRn) is either empty, a point or an (n− 2) sphere contained in
a real (n− 1) dimensional hyperplane Hz,ζ,θ in Cn. Suppose that

inf
θ

diam(N(ζ) ∩ (z + eiθRn)) > 2ε > 0,
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so that the radius of the (n− 2) sphere N(ζ)∩ (z + eiθRn) is bounded below
by ε as θ ∈ R varies. For each u ∈ N(ζ) ∩ (z + eiθRn) with u = z + eiθx, let
Cu(z, ζ, θ) denote the 2 dimensional plane in Cn passing through u and the
centre of N(ζ) ∩ (z + eiθRn) and parallel to H⊥

z,ζ,θ in z + eiθRn. Then

Γ(n+1)
ε (ζ, z) =

⋃

θ∈(−π,π]

⋃

u∈N(ζ)∩(z+eiθ.Rn)

{w ∈ Cu(z, ζ, θ) : |w − u| < ε },(5.3)

∂Γ(n+1)
ε (ζ, z) =

⋃

θ∈(−π,π]

⋃

u∈N(ζ)∩(z+eiθ.Rn)

{w ∈ Cu(z, ζ, θ) : |w − u| = ε }.(5.4)

The subset Γ(n+1)
ε (ζ, z) of Cn is a real (n + 1)-dimensional manifold embed-

ded in Cn with an n-dimensional boundary ∂Γ(n+1)
ε (ζ, z). Furthermore, the

formula
f(ζ ′) =

∫

∂Γ
(n+1)
ε (ζ,z)

Gw(ζ ′)ω(dw)f̃(w) (5.5)

defines a complex left monogenic function for every ζ ′ ∈ Cn+1 such that
N(ζ ′) intersects Γ(n+1)

ε (ζ, z) but is disjoint from ∂Γ(n+1)
ε (ζ, z) [16]. Because f̃

has a unique complex left monogenic extension from an open subset U of its
domain in Cn to some neighbourhood of U in Cn+1 [16, p. 422], by Stokes’
theorem the same representation holds for all orientable n-dimensional mani-
folds homologous in Cn \N(ζ ′) to ∂Γ(n+1)

ε (ζ, z). As ζ ∈ Cn+1 and z ∈ S◦
ω(Cn)

vary, we obtain a well-defined complex left monogenic function f [16, p. 418].
Let Uω(Cn+1) denote the set of all ζ ∈ Cn+1 for which there exists z ∈

S◦
ω(Cn) such that

inf
θ

diam(N(ζ) ∩ (z + eiθRn)) > 0 and N(ζ) ∩ (z + eiθRn) ⊂ S◦ω(Cn), ∀θ ∈ R.

(5.6)
By virtue of the formula (5.5), we obtain a unique complex left monogenic
extension of f̃ to Uω(Cn+1) for which the linear map f̃ "−→ f is continuous
for the compact-open topology for holomorphic functions defined on S◦

ω(Cn),
to the space of complex left monogenic functions defined on Uω(Cn+1). To
complete the proof, it suffices to show that S◦

ω(Rn+1) \ Rn ⊂ Uω(Cn+1) ∩
(Rn+1 \ Rn).

Let x = x0e0 + x ∈ S◦
ω(Rn+1) with x0 (= 0. Then x (= 0. Let z =

x(1 + i tan β) for tan−1(|x0|/|x|) < β < ω. The centre of the (n− 2)-sphere
N(x) ∩ (z + eiθRn) is

z − eiθ sin θ Im z

(
1− x2

0

| Im z|2

)
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and it has radius
√

(sin2 θx2
0 + cos2 θ| Im z|2)(1− x2

0/| Im z|2) > 0, so that for
any ε > 0, there exists tan−1(|x0|/|x|) < β < ω such that N(x)∩ (z + eiθRn)
is contained in a ball of radius ε about z in Cn, for every θ ∈ R. Because
|z|C = |x|(1 + i tan β), an application of Proposition 5.1 guarantees that
z ∈ S◦

ω(Cn).
With a sufficiently small choice of β > tan−1(|x0|/|x|), we can ensure

that ⋃

θ∈R

γ(N(x) ∩ (z + eiθRn)) ⊂ S◦ω(Rn+1).

This shows that S◦
ω(Rn+1) \ Rn ⊂ Uω(Cn+1) ∩ (Rn+1 \ Rn).

Corollary 5.1. The linear map f "−→ f̃ defined by formula (1.2) maps the
space of all left monogenic functions defined on S◦

ω(Rn+1) bijectively onto the
space of all C"(Cn)-valued holomorphic functions defined on S◦

ω(Cn). It is
continuous between the compact-open topologies on each space.

A C"(Cn)-valued real analytic function defined on an open subset U of
Rn necessarily has a left monogenic extension to an open subset of Rn+1

containing U by taking an expansion about each point of U in monogenic
polynomials [2, Theorem 14.8]. In particular, the product φ.ψ : V ∩Rn →
C"(Cn) of two left monogenic functions defined in an open subset V of Rn+1

intersecting Rn ≡ {0} ×Rn has a unique left monogenic extension φ ·) ψ to
a neighbourhood of V ∩Rn called the (left) Cauchy-Kowalewski product of
φ and ψ. The following corollary shows that in the case V = S◦

ω(Rn+1), the
product is actually defined on all of V .

Corollary 5.2. Let φ, ψ be left monogenic functions defined on S◦
ω(Rn+1).

Then there exists a unique left monogenic function φ ·)ψ defined on S◦
ω(Rn+1)

such that φ ·) ψ(x) = φ(x).ψ(x) for every x ∈ Rn \ {0}.
Proof. Let φ̃ and ψ̃ be the holomorphic counterparts of the left monogenic
functions φ and ψ defined by formula (1.2). Then the product function φ̃.ψ̃
is certainly a C"(Cn)-valued holomorphic function defined on the open sector
S◦

ω(Cn). According to Corollary 5.1, there exists a unique left monogenic
function defined on S◦

ω(Rn+1), which we denote by φ ·) ψ, such that (φ ·) ψ)̃ =
φ̃.ψ̃ as holomorphic functions defined on S◦

ω(Cn). An appeal to the Cauchy
integral formula (2.2) of Clifford analysis ensures that

φ ·) ψ(x) = (φ ·) ψ)̃ (x) = φ(x).ψ(x)

for every x ∈ Rn \ {0}.
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6 The analytic functional calculus
for systems of operators of type ω

As mentioned in the Introduction, one the difficulties in forming a function
f(A) of the n-tuple A = (A1, . . . , An) of commuting linear operators acting in
a Banach space X for a holomorphic function f of n complex variables, is the
absence of a suitably general integral representation formula for functions of
several complex variables. Now we formulate an analytic functional calculus
f̃ "−→ f̃(A) for holomorphic functions f̃ defined on a sector S◦

ω(Cn) by using
the representation (1.1) with the left monogenic counterpart f : S◦

ω(Rn+1) →
C"(Cn)) of f̃ obtained from Theorem 5.1 above.

Suppose that T : D(T ) −→ H is a single closed densely defined linear
operator acting in the Hilbert space H. The spectrum of T is denoted by
σ(T ). If 0 ≤ ω < π/2, then T is said to be of type ω, if σ(T ) ⊂ Sω(C) and
for each ν > ω, there exists Cν > 0 such that

‖(zI − T )−1‖ ≤ Cν |z|−1, z /∈ Sν(C). (6.1)

Then the bounded linear operator f(T ) is defined by the Riesz-Dunford for-
mula

f(T ) =
1

2πi

∫

C

(λI − T )−1f(λ) dλ. (6.2)

for any function f satisfying the bounds

|f(z)| ≤ Kν
|z|s

1 + |z|2s
, z ∈ S◦

ν(C).

The contour C can be taken to be {z ∈ C : | Im(z)| = tan θ|Re(z)| }, with
ω < θ < ν.

The operator T of type ω is said to have a bounded H∞-functional calculus
if for each ω < ν < π/2, there exists an algebra homomorphism f "−→ f(T )
from H∞(S◦

ν(C)) to L(H) agreeing with (6.2) and a positive number Cν such
that ‖f(T )‖ ≤ Cν‖f‖∞ for all f ∈ H∞(S◦

ν(C)).
The following result is from [10, Theorem 6.2.2]

Theorem 6.1. Suppose that T is a one-to-one operator of type ω in H. Then
T has a bounded H∞-functional calculus if and only if for every ω < ν < π/2,
there exists cν > 0 such that T and its adjoint T ∗ satisfy the square function

60



estimates
∫ ∞

0

‖ψt(T )u‖2dt

t
≤ cν‖u‖2, u ∈ H, (6.3)

∫ ∞

0

‖ψt(T
∗)u‖2dt

t
≤ cν‖u‖2, u ∈ H, (6.4)

for some function (every function) ψ ∈ H∞(S◦
ν(C)), which satisfies

∫ ∞

0

ψ3(t)
dt

t
=

∫ ∞

0

ψ3(−t)
dt

t
= 1, and (6.5)

|ψ(z)| ≤ Cν
|z|s

1 + |z|2s
, z ∈ S◦

ν(C), (6.6)

for some s > 0. Here ψt(z) = ψ(tz) for z ∈ S◦
ν(C).

We now use formula (1.1) to generalise this result to n-tuples of commut-
ing operators acting in a Hilbert space H.

The (n − 1)-sphere in Rn is denoted by Sn−1. The set of s ∈ Sn−1 with
nonzero coordinates sj for every j = 1, . . . , n is denoted by Sn−1

0 . Then Sn−1
0

is a dense open subset of Sn−1 with full surface measure.

Definition 6.1. Let X be a Banach space and let A = (A1, . . . , An) be
an n-tuple of densely defined linear operators Aj : D(Aj) −→ X acting in
X such that ∩n

j=1D(Aj) is dense in X and let 0 ≤ ω < π
2 . Then A is said

to be uniformly of type ω if for all s ∈ Sn−1
0 , the densely defined operator

〈A, s〉 :=
∑n

j=1 Ajsj is closed, σ(〈A, s〉) ⊂ Sω(C) and for each ν > ω, there
exists Cν > 0 such that

‖(zI − 〈A, s〉)−1‖ ≤ Cν |z|−1, z /∈ Sν(C), s ∈ Sn−1
0 . (6.7)

It follows that s "−→ 〈A, s〉 is continuous on Sn−1
0 in the sense of strong

resolvent convergence [7, Theorem VIII.1.5].
If A is uniformly of type ω, it turns out that we can define the Cauchy

kernel Gx(A) for the n-tuple A by the plane wave formula

Gx(A) =
(n− 1)!

2

(
i

2π

)n

sgn(x0)
n−1

∫

Sn−1

(e0+is) (〈x, s〉I − 〈A, s〉 − x0sI)−n ds

(6.8)
for all x = x0e0 + x with x0 a nonzero real number, x ∈ Rn and x /∈
Sω(Rn+1). Here Sn−1 is the unit (n− 1)-sphere in Rn, ds is surface measure
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and the inverse power (〈xI − A, s〉 − x0sI)−n is taken in the Clifford module
L(X)⊗C"(Cn), which is identified with the set L(n)(X(n)) of all left module
homomorphisms of X(n) = X ⊗ C"(Cn), see [4, Equation (6.14)].

Suppose that 0 < ω < ν < π/2 and f is a left monogenic function defined
on S◦

ν(R
n+1) such that for every ω < θ < ν there exists Cθ > 0 and s > 0

such that

|f(x)| ≤ Cθ
|x|s

1 + |x|2s
, x ∈ S◦

θ (R
n+1) \ Sω(Rn+1). (6.9)

Now if ω < θ < ν and

Hθ = {x ∈ Rn+1 : x = x0e0 + x, |x0|/|x| = tan θ} ⊂ S◦ν(R
n+1), (6.10)

then it is easy to check that x "−→ Gx(A)n(x)f(x) is integrable with respect
to n-dimensional surface measure µ on Hθ. Therefore, we define

f(A) =

∫

Hθ

Gx(A)n(x)f(x) dµ(x). (6.11)

The hypersurface Hθ can be varied in the region where x "−→ Gx(A) is
two-sided monogenic in the Clifford module L(X) ⊗ C"(Cn) and f is left
monogenic in S◦

ν(R
n+1).

Theorem 6.2. Let A = (A1, . . . , An) be an n-tuple of densely defined com-
muting linear operators Aj : D(Aj) −→ H acting in a Hilbert space H such
that ∩n

j=1D(Aj) is dense in H. Suppose that 0 ≤ ω < π
2 and A is uniformly

of type ω.
Suppose in addition, that T = i(A1e1+· · ·+Anen) is a one-to-one operator

of type ω acting in H(n) = C"(Cn)⊗H and T has an H∞-functional calculus.
Then the n-tuple A has a bounded H∞-functional calculus on S◦

ν(Cn) for
any ω < ν < π/2, that is, there exists a homomorphism b "−→ b(A), b ∈
H∞(S◦

ν(Cn)), from H∞(S◦
ν(Cn)) into L(n)(H(n)) and there exists Cν > 0

such that ‖b(A)‖ ≤ Cν‖b‖∞ for all b ∈ H∞(S◦
ν(Cn)).

Moreover, if f is the unique two-sided monogenic function defined on
S◦

ν(R
n+1) such that b = f̃ , as in Theorem 5.1, and there exists Cν > 0, s > 0

such that
|b(ζ)| ≤ Cν

|ζ|s

1 + |ζ|2s
, ζ ∈ S◦

ν(Cn),

then f satisfies the bound (6.9) and b(A) = f(A) is given by formula (6.11).
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Proof. By assumption, the operator T has an H∞-functional calculus, so
there exists a function ψ ∈ H∞(S◦

ν(C)) satisfying conditions (6.3) – (6.6).
In [3] a special choice of ψ was made, but we now see that this is not necessary.

Following [10, Theorem 6.4.3], our aim is to define b(A) for b ∈ H∞(S◦
ν(Cn)),

by the formula

(b(A)u, v) =

∫ ∞

0

(
(bφt)(A)ψt(T )u, ψt(T )∗v

)
dt

t
(6.12)

for all u, v ∈ H(n). The function φ : S◦
ν(Cn) −→ C is constructed from ψ by

setting
φ(ζ) = ψ{iζ} = ψ(|ζ|C)χ+(ζ) + ψ(−|ζ|C)χ−(ζ),

for all ζ ∈ S◦
ν(Cn), by the functional calculus for multiplication by iζ. Let

φt(ζ) = φ(tζ) for all t > 0 and ζ ∈ S◦
ν(Cn).

Let b.)φt be the left monogenic function defined on S◦
ν(R

n+1) by Corollary
5.2, that is, the Cauchy-Kowalewski product of the left monogenic counter-
parts of b and φt. Moreover, the proof of Theorem 5.1 shows that b.)φt sat-
isfies the bound (6.9) with Cθ proportional to ‖b‖∞, so (bφt)(A) = b.)φt(A)
is defined by formula (6.11) and we have

∫ ∞

0

∣∣∣∣

(
(bφt)(A)ψt(T )u, ψt(T )∗v

)∣∣∣∣
dt

t

≤ sup
t>0

‖(bφt)(A)‖
{∫ ∞

0

‖ψt(T )u‖2dt

t

}1/2 {∫ ∞

0

‖ψt(T )∗v‖2dt

t

}1/2

≤ C ′‖b‖∞‖u‖ ‖v‖.

Because
∫∞

0 ψ3(t)dt
t = 1, we obtain the desired functional calculus by analogy

with [10, Theorem 6.4.3].

The assumptions of Theorem 6.2 are satisfied if the n-tuple A consists
of differentiation operators on a Lipschitz surface [9]. The commutativity of
the operators is most easily seen from the representation in [9, p. 708].
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