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Abstract. Intuitionistic real numbers are constructed as sheaves

on the state space of the Schr�odinger representation of a CCR-

algebra with a �nite number of degrees of freedom. These num-

bers are used as the values of position and momentum variables

that obey Newton's equations of motion. Heisenberg's operator

equations of motion are shown to give rise to numerical equations

that, on a family of open subsets of state space, are local approxi-

mations to Newton's equations of motion for the intuitionistically

valued variables.

Introduction

Do sub-atomic particles have positions and momenta at all times?
Can the numerical value of the position of such a particle always be
given a triplet of real numbers? What real numbers should be used?

In this paper we argue that there is a class of real numbers that can
be used to label the positions and momenta of sub-atomic particles at
all instances of time. Furthermore if these numbers, as values of po-
sitions and momenta, are assumed to satisfy the equations of motion
of classical mechanics, then these classical equations are approximated

locally by the quantum mechanical operator equations of motion, re-
stricted to act on certain subsets of state space.
The real numbers that we use are real numbers in the topos of sheaves

on the state space of the Schr�odinger representation of a CCR-algebra

with a �nite number of degrees of freedom. In the standard Hilbert
space framework for quantum mechanics[1] the algebra of the canonical
commutation relations (CCR) is generated by the operators Qj = Q�

j ,
Pj = P �

j , j = 1; : : : ; n, and the identity operator I which satisfy the

relations [Pj; Qj] = �iI, [Pj; Qk] = 0 if k is di�erent from j, [Qj; Qk] =
0, [Pj; Pk] = 0 for all j; k. We have put Planck's constant divided by
2� equal to one.

We will further simplify the notation by taking n = 1.
15
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1. The Schr�odinger representation

The Schr�odinger representation of the CCR-algebra M is the rep-
resentation in which the Hilbert space is L2(R). Q is represented
by multiplication by the real variable x and P by (1=i) times the
operator of di�erentiation with respect to x. Let S(R) denote the
Schwartz space of in�nitely di�erentiable functions of rapid decrease

on R. Then the physical quantities are represented by self-adjoint
elements in the closure �M of the CCR-algebra M , where �M is the
smallest closed extension of M . �M =

�
X�

�� X 2 M and X�

is the restriction to S(R) of the Hilbert space closure of X
	
. Follow-

ing the de�nitions of Powers[7], M is essentially self-adjoint because
the adjoint M� of M equals the closure �M of M .

2. The State Space ES

We give only a resume of the results, for more details see Inoue[8]. A
linear functional f on M is strongly positive i� f(X) � 0 for all X � 0

in M .

De�nition 1. The states on M are the strongly positive linear func-

tionals on M that are normalised to take the value 1 on the element I
of M .

Theorem 1 (Inoue[8]). Every strongly positive linear functional onM
is given by a trace functional.

De�nition 2. The state space ES of the Schr�odinger representation of

M is the set of all strongly positive linear functionals on M that are

normalised.

The state space ES is contained in the convex hull of projections P
onto one-dimensional subspaces spanned by unit vectors u 2 S(R3).
Recall that each state � 2 ES is a trace class positive bounded operator
with trace 1, which can be written as � =

P
�nPn, where the sum

over n may go from 1 to 1. For all n, �n � 0,
P

�n = 1 and the Pn
are orthogonal projections. The following result demonstrates that all
states in ES must satisfy the further condition that as n approaches
in�nity the sequence f�ng converges to zero faster than any power of

1=n.

Theorem 2. Given � =
P

�nPn 2 ES, where the projections Pn
project onto one-dimensional subspaces spanned by unit vectors un 2

S(R3). tr �A is �nite for any self-adjoint operator A in the Schr�odinger

representation of the CCR-algebra M if and only if limnk�n = 0, for

all integers k > 0.
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Proof. Let A be a self-adjoint operator inM and � is a state onM which
belongs to ES . Then for any orthonormal basis ofH, fumg,m = 1 to1,

which is composed from elements in S, tr �A =
P
(um ; �Aum) .

Now using � =
P

�nPn the trace becomes a double sum

tr �A =
X�

um ;
X

�nPnAum
�
:

Because the trace is independent of the basis used to calculate it, we
can choose the ortho-normal basis fumg to be in the ranges of the Pn
so that the double sum reduces to

tr �A =
X

�m
�
um ; Aum

�
:

Since A is in the algebra M , it is a polynomial of some �nite degree
k in the self-adjoint operators P , Q. By Lemma 18 in Ja�e[10], A
is majorized by a polynomial of degree k in the self-adjoint operator

H = 1
2

P
(P 2 +Q2),���um; Aum���2 � �

um; pk(H)um
�
:

When the fumg are the eigenfunctions of H, pk(H)um = pk(�m)um,

where �m = 1
2
(2m + 1) are the eigenvalues of H, so that the absolute

value of the mth term of the series
P

�m(um; Aum) satis�es

0 � �m
��(um; Aum)��

� �m
�
um; H(�m)um

�1
2 = �mpk(�m)

1

2 :

Therefore if limnk�n = 0, for all k > 0, then 9 a positive integer N
and a positive constant C such that, for all m > N ,

�mpk(�m)
1

2 <
C

m2

and so the series
P

�m(um; Aum) converges absolutely by the compar-

ison test. On the other hand, if tr �A is �nite for all self-adjoint opera-
tors A then the series

P
�m(um; Aum) must converge. If A is positive

then the convergence is absolute so that when A is a monomial of de-

gree k in the Hamiltonian operator H,then lim�m(�m)
1

2
(k) = 0 for all

positive k which shows the converse is true.
The same results hold even when the fumg are not the eigenfunctions

of H. The minimax principle for eigenvalues of symmetric operators,

see for example, Kato[6] section I.6.10, implies that�
um; pk(H)um

�
� pk(�m)

because it states that the maximum of
�
v; pk(H)v

�
, when v is a unit

vector and (v; ei) = 0, i = 1; � � � ; n � 1, for any orthonormal set of

vectors feig, is the eigenvalue pk(�m) obtained when the feig are the
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�rst n� 1 eigenvalues of H. This result is applicable here to the set of
vectors fuig, i = 1; � � � ; m, with v = um.

We have shown that tr �A is �nite for any self-adjoint operator A in
this representation of the CCR-algebra M if and only if limnk�n = 0,
for all integers k > 0.

The topology on ES is chosen to make the functions Â, where Â(�) =

tr �A, continuous when A is an essentially self-adjoint continuous op-
erator on S(R).

3. The topos Shv(ES)

A sheaf Y on a topological space X can be described[3] by a rule

which assigns to each point x of X a set Y (x) consisting of the germs
of a prescribed class of functions, where the germs of the functions
are de�ned in neighborhoods of the point x. The collection of sets
Y (x) which are labelled by points x in X can be glued together to
form a space Y in such a way that the projection from Y onto X is a

local homeomorphism; that is, for each x in X and each y on the �ber
above x (i.e. for each such y the projection of y onto X is x) there
is a neighborhood N of y such that the projection of N onto X is a
neighborhood of x.

A section of the sheaf Y over the open subset U of X is a function
s from U to Y that belongs to the prescribed class of functions and
satis�es the condition that, for all x in U , the projection of s(x) onto
X is x. The sheaf construction allows a section f de�ned on the open

set U to be restricted to sections f
��
V
on open subsets V contained in

the open set U and, conversely, the section f on U can be recovered by
patching together the sections f

��
V 0

where V 0 belongs to an open cover

of U .
A spatial topos is a category of sheaves on a topological space. The

objects of this category are sheaves over the topological space and the
arrows are sheaf morphisms, that is, an arrow is a continuous function

that maps a sheaf Y to a sheaf Y 0 in such a way that it sends �bers in
Y to �bers in Y 0, equivalently, sections of Y over U to sections of Y 0

over U , where U is an open subset of X.
The topos Shv(ES) of sheaves on the topological space ES is con-

structed in this way.
In 1970, Lawvere[2] showed that toposes can be viewed as a \vari-

able" set theory whose internal logic is intuitionistic. The propositional
calculus of the logic of the spatial topos of sheaves over X is the Heyt-

ing Algebra[3] of the open subsets of X. This means that as well as
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being true or false, propositions in this logic can be true to intermedi-
ate extents which are given by open subsets of X. True corresponds

to the whole set X. False corresponds to the empty set. There exist
Boolean algebras in which propositions can be true to varying extents
but, in addition, the Heyting algebra of open sets does not satisfy all
the laws of classical logic. Two of the most striking di�erences between

classical and intuitionistic logics are that the law of the excluded mid-
dle and the Axiom of Choice do not hold for intuitionistic logic. We
have argued elsewhere[5] that aspects of quantum mechanics, such as
the two slit experiment,that are di�cult to understand with Boolean

logic are better described using intuitionistic logic.
There is an analogy between the language of toposes and that of sets

which makes it easier to work in toposes. Sheaves in a topos correspond
to sets, subsheaves of a sheaf to subsets and local sections to elements
of a set. Then as long as a proof in set theory does not use the law of

excluded middle or the Axiom of Choice then it can be translated into
a proof in topos theory.

4. Real Numbers in Spatial Toposes

Dedekind numbers are de�ned to be the completion of the rational

numbers obtained by using cuts, and Cauchy numbers are de�ned as
the completion of the rationals obtained by using Cauchy sequences.
These di�erent constructions can only be shown to be equivalent by
using either the Axiom of Choice or the law of the excluded middle.[3]

Therefore, when intuitionistic logic is assumed, we expect that these
two types of real numbers are not equivalent.
It has been shown[4] that in a spatial topos the sheaf of rational

numbers Q is the sheaf whose sections over an open set U are given by
locally constant functions from U with values in the standard rationals

while the sheaf of Cauchy reals RC is the sheaf whose sections over an
open set U are given by locally constant functions from U with values
in the standard reals. A function is locally constant if it is constant on
each connected open subset of its domain.

On the other hand the sheaf of Dedekind reals RD is the sheaf whose
sections over U are given by continuous functions from U to the stan-
dard reals.
The Cauchy reals form a proper sub-sheaf of the Dedekind reals

unless the underlying topological space X is the one point space.
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5. The Quantum Reals

By the construction of the topology on ES for any self-adjoint opera-
tor A in the Schr�odinger representation of the CCR, the function tr �A
is a globally de�ned continuous function and therefore in RD . We inter-
pret the functions A(�) = tr �A, with domains given by open subsets
of state space, to be the numerical values of the physical quantity that

is represented by the self-adjoint operator A. Not every Dedekind real
number is of this form. Real numbers of this form are a proper sub-
sheaf of the Dedekind real numbers in the spatial topos of sheaves on
the state space ES. We will call them the quantum reals, they belong

to the sheaf of locally linear functions.[5]

De�nition 3. If U is an open subset of ES then the function f from

U to the standard reals is locally linear at � in U and there is an open

neighborhood U 0 of �, with U 0 inside U , and a bounded self-adjoint

operator A such that f
��
U 0

= Â
��
U 0
.

De�nition 4. The sheaf of locally linear functions, A , is de�ned by

its sections over any open subset U of ES as the set of all locally linear

functions on U with the requirement that if the open set V is contained

in U then the sheaf of locally linear functions over V is obtained by

restricting the locally linear functions over U .

The global elements of the locally linear functions are given by the

functions Â, where A is a self-adjoint operator, that are continuous
on S. It su�ces to de�ne algebraic relations between elements of A
globally, because ES is locally connected and so we can treat functions

which are de�ned on disjoint connected components as if they were
globally de�ned.
When U is an open neighbourhood of the state � then the quantum

real numbers belonging to the sections of A over U can be thought of
as real numbers tangent to those Dedekind reals that have a tangent

space at �.

6. The Dedekind Reals RD

Stout[4] has shown that the usual order on the rational numbers Q
can be extended to the following order on RD .

De�nition 5. The order relation < on the Dedekind reals, RD , is given
by the de�nition:

x < y if and only if 9 q 2 Q
�
(q 2 x+) ^ (q 2 y�)

�
where x+ is the upper cut of x and y� is the lower cut of y. The relation

< is the subobject of RD 
 RD consisting of such pairs (x; y).
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Trichotomy does not hold universally for the order < on RD .
The order � on RD has the property that x � y is not the same as

(x < y) _ (x = y).

De�nition 6. The order relation x � y is the subobject of RD 
 RD
consisting of the pair (x; y) with x+ � y+ and y� � x�, where x

+ is

the upper cut of x and x� is the lower cut of x, and similarly for y.

Stout[4] also showed that the statement (x � y) is equivalent to the
statement :(y < x).

De�nition 7. The open interval (x; y) for x < y is the subobject of

RD consisting of those z in RD that satisfy x < z < y.

The closed interval [x; y] for x < y is the subobject of RD consisting

of those z in RD that satisfy x � z � y.

The open intervals can be used to construct an interval topology T on
RD analogously to the interval topology on the standard real numbers
that is generated from the open intervals by �nite intersection and

arbitrary union.
The topology T on RD is such that Q is dense in RD with respect to

T .
If the max function is de�ned using the order � by the conditions:

(i) x � max(x; y) and y � max(x; y), and (ii) if z � x and z � y

then z � max(x; y) and the norm function: j j : RD ! RD is de�ned
by jxj = max(x;�x), then the norm j j satis�es the usual conditions
of non-negativity, that only 0 has norm zero and that the triangle
inequality holds.

(RD ; T ) is a metric space with the metric d(x; y) =


x � y



. It is

both complete and separable[4].
RD is a �eld in the sense that for all a in RD ,if a does not belong to

the sheaf of germs of invertible functions, Unit(RD),then a = 0.

7. Properties of the Quantum Reals

Theorem 3. A is a proper sub-sheaf of the sheaf of Dedekind numbers

RD and is dense in RD in the metric topology T .

The sheaf A inherits the orders � and < from RD . On the other
hand A can be ordered as a consequence of the orders on the self-

adjoint operators:

1. A is strictly positive, A > 0, if (Au; u) > 0 for u 6= 0, u 2 D(A).
2. A is non-negative, A � 0, if (Au; u) � 0 for all u 2 D(A).

Lemma 8. The orders � and < on A inherited from RD are equivalent

to those obtained from those on continuous self-adjoint operators.
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Proof. A is a non-negative self-adjoint operator i� tr �A � 0 for all � in

ES, i.e. Â � 0 globally. When, as a Dedekind real number, a = Â � 0
then 0+ � a+ and a� � 0�. Globally, 0+ = fq 2 Q j q > 0g and

0� = fq 2 Q j q > 0g so that, if a = Â � 0 then A is a non-negative

operator and if A is a non-negative operator then a = Â � 0.
The positivity order for a continuous self-adjoint operator A is equiv-

alent to A being bounded away from zero, i.e. there exists a rational
number q > 0 such that (u;Au) > q for all u 6= 0. This gives the

equivalence of the operator > with the > for Dedekind reals restricted
to A , because for the latter a > 0 means globally that 9q 2 Q with
q 2 0+ and q 2 a�.

If a = Â and b = B̂ then the RD distance between a and b is given

by the metric ja� bj on RD . There is another metric on the quantum

numbers A , it is given by the number \jA� Bj, where jCj is the operator

jCj = (C2)
1

2 , when C is self-adjoint.

Proposition 9. The two metrics coincide on A , that is, \jA� Bj =

ja� bj, for all pairs of quantum numbers a = Â and b = B̂.

Proof. It is su�cient to let B = 0. We will only consider the global
sections.
It is well-known, see for example section VI.2.7 of Kato[6], that��(u;Au)�� � (u; jAju) for all u in the domain D(A) = D(jAj), whence��tr �A�� � tr �jAj for all � in ES, i.e. jÂj �

cjAj.
As on elements of RD , jÂj = max(Â;�Â) and

��cjAj�� = cjAj. The

lower cut of jÂj is the union of the lower cuts of Â and of �Â, that is

jÂj� = (Â)� [ (�Â)�, which means that jÂj� �
�cjAj�

�
. The upper

cut of jÂj is the intersection of the upper cuts of Â and of �Â, that is

q 2 Q belongs to jÂj+ if q is greater than or equal to both Â and of

�Â. Thus if q 2
�cjAj�+ then q 2 jÂj+, therefore jÂj+ �

�cjAj�+.
This shows that cjAj � ��Â�� and therefore cjAj = ��Â��.
The metric is used to de�ne Cauchy sequences in RD , this result

means that we can de�ne Cauchy Sequences in A in the same way. In
order to ensure uniqueness of the limits of a Cauchy sequence we need
a concept of apartness, ><, that is stronger than that of not equal to,

6=.

De�nition 10. The pair (a; b) of Dedekind reals are apart, a >< b, i�
(a > b) _ (a < b).

Proposition 11. a >< b i� ja� bj > 0.
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8. Calculus of Functions

The concept of limit is available for functions: RD ! RD and di�er-
ential calculus for such functions can be developed. The de�nition of
the limit of a function G 2 RD is modeled on the standard de�nition;
the limit of G as x tends to b is L i� 8n > 0; 9 m > 0; 8x 2 RD ;
0 < jx� bj < 1=m =)

��G(x)� L
�� < 1=n .

In this de�nition both m and n are in Q . The uniqueness of the limit
L holds in the sense that if L and M are two limits of G as x tends to
b then L and M are apart,

��L�M
�� = 0.

For the requirements of this paper it is enough to consider only

polynomial functions. For any b 2 RD all powers bn of b are in RD
for n a natural number because products of continuous functions are
continuous. Let both b and c 2 RD , then bc = cb 2 RD for the same
reason. The product, however, is de�ned only on the intersection of

the domains of the continuous functions so that care has to be taken
with the extent to which the product exists. Sums of numbers b + c
exist to the extents given by the intersection of the extents of b and c.
Hence we can construct polynomials

F (b) =
X

amb
m

where the sum is over �nitely many terms and the coe�cients am 2

RD . We can construct power series by de�ning the convergence of the
sequence of partial sums in the metric on RD .
The derivative of bm = mbm�1 which implies that the derivative of a

monomial is de�ned to the same extent as the monomial. This allows
us to obtain the derivatives of polynomials and power series.
We de�ne continuity of a function F : RD ! RD at b in its domain

by the requirement that

(1) 8n > 0; 9m > 0; 8x 2 RD ;

0 < jx� bj <
1

m
=)

��F (x)� F (b)
�� < 1

n
:

In this de�nition we have taken m and n to be in Q .
A function is continuous on an interval I in RD i� it is continuous

at each number in I.
Interesting phenomena occur in this calculus and they deserve more

study. However we have enough structure now to return to the dynam-

ics of quantum mechanics.
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9. Comparing the Dynamics

Consider the example of a non-relativistic quantum particle of pos-
itive mass � that moves in a central force �eld which is derived from

a potential function V . We assume that the quantum values X̂ of the
position of the particle satisfy Newton's equations of motion globally,
that is,

DQ̂ =
1

�
P̂(2)

and

DP̂ = F (Q̂)(3)

or

�D2(Q̂) = F (Q̂)(4)

where P̂ represents the momentum of the particle and D denotes di�er-
entiation with respect to time. F represents the force, it is the negative
gradient of the potential function V as a function: RD ! RD .
We will now prove that standard quantum mechanics is a local ap-

proximation to a global classical mechanics. More precisely, the the-
orem states that if the quantum values of the components of position
and momentum of a particle are assumed to satisfy Newton's equa-
tions of motion globally then the self-adjoint operators corresponding

to these values locally satisfy equations that well approximate Heisen-
berg's equations of motion.
The theorem relates a set of operator equations (Heisenberg's equa-

tions) to a set of numerical equations (Newton's equations). The
straightforward way to get a numerical equation from an operator equa-

tion is to multiply each side of the operator equation by a suitable
trace class operator (a state) and then take the trace of each side. The
original operator equation has become a family of numerical equations
which is labelled by the states.

Recall that Heisenberg's equations for an operator A are

DA = �i[A;H](5)

where H is the Hamiltonian operator of the system and the square
bracket denotes the operator commutator.

Therefore, we get Heisenberg's equations of motion, when Q and P
represent operators and the Hamiltonian operator is H = (1=2�)P 2 +
V (Q), to be

DQ =
1

�
P(6)
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and

DP = i[P;H] = F (Q) :(7)

If we multiply each side of equations (6) and (7) by the operator �
and then take the trace of each side we get Heisenberg's numerical
equations:

D(tr �Q) =
1

�
tr �P(8)

and

D(tr�P ) = tr �(DP ) = tr �
�
i[P;H]

�
= tr �

�
F (Q)

�
:(9)

Equation (8) is just Newton's equation (2) at the state �. Equation
(9) is similar to Newton's equation (3) at the state �. The di�erence
between equations (3) and (9) is the same as that which restricts the
validity of the result known as Ehrenfest's Theorem, namely, that, in

general,

tr �F (Q) 6= F (tr �Q):(10)

To simplify the discussion we remove the explicit dependence of the
equations (2), (3), (8), and (9) on the operators P and use equations
of motion in the form of the second order di�erential equations:
Newton's equations to the extent W are

�D2
�
Q̂
��
W

�
= F

�
Q̂
��
W

�
:(11)

Heisenberg's numerical equations to the extent W are

�D2
�
Q̂
��
W

�
= [F (Q)

��
W
:(12)

It is possible, however, that the di�erence between the two sides of

(10) is small at some state �a and remains small for all states in an
open neighborhood of �a . In this case the equations (11) and (12) are
approximately the same in that open set. We deduce that Heisenberg's
equations approximate Newton's equation in that open set because if

(11) holds in an open set W then it holds at each � in W .
We claim that for a suitable class of functions F , Heisenberg's equa-

tions approximate Newton's equations locally. The localness of the
assertion is twofold, we mean that for every standard real number r we

can �nd an open set,W , on which both the number Q̂
��
W

is arbitrarily

close to r, and [F (Q)
��
W

is arbitrarily close to F
�
Q̂
��
W

�
. The physical

interpretation is that if an observer's measurement apparatus is located
in a neighbourhood of the position r (in this world with one spatial di-
mension) then the di�erence between the accelerations of the particle

due to the two forces cannot be distinguished with this apparatus.
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The class of suitable functions is de�ned through the concept of S-
continuity.

De�nition 12. We call functions G, S-continuous, if they are real-

valued continuous functions on R such that,for the position operator

Q, G(Q) : S ! S, is continuous in the standard countably normed

topology on the Schwartz space S.

Theorem 4. If the force F is S-continuous, then given " > 0, Heisen-
berg's equations of motion approximate Newton's equations of motion

to within " on each member of a collection of open sets fW (r; ")g of

state space ES, indexed by the standard real numbers r and " > 0. That
is, on each fW (r; ")g,���[F (Q)��

W
� F

�
Q̂
��
W

���� < " :(13)

Proof. The idea behind the proof is to �nd states �r on which F (tr �rQ)

closely approximates tr �rF (Q), then F (Q̂) will be close to [F (Q) when

F (Q̂) is close to F
�
Q̂(�r)

�
1̂1 and[F (Q) is close to tr �rF (Q)1̂1 as Dedekind

numbers.
The following pair of lemmas complete the proof.

Lemma 13. If Q is a self-adjoint operator which has only absolutely

continuous spectrum, then for any real number r in its spectrum we

can construct a sequence of pure states f�ng such that for the given

S-continuous function F ,

lim tr �nF (Q) = F (r) :

Proof. Weyl's criterion for the spectrum of self-adjoint operators[9] im-
plies that, for any number r in the spectrum of Q, there exists a se-
quence of unit vectors fung, in the domain of Q, such that

lim


(Q� r)un



 = 0 :

Take �n to be the projection onto the one dimensional subspace

spanned by un. It is easy to check that

limtr �nQ = r :

The vectors fung can be chosen to be in S. For example, for any
positive integer n, let

un(x) = n
1
2��

1
4 exp

�
�1

2
n2(x� r)2

�
The sequence fung satis�es the requirements of Weyl's lemma for the

operator Q and the number r.
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Furthermore we can �nd a sequence of vectors fung in S so that for
n large enough the support of fung lies in a narrow interval centred on

r. Then, by the spectral theorem for Q, the corresponding pure states
�n form a sequence so that both

limtr �nF (Q) = F (r)

and

limtr �nQ = r :

From Lemma 13, given a real number r in the spectrum of Q, the S-
continuous function F and a real number " > 0, there exists an integer
N such that, for all j > N , both��tr �jF (Q)� F (r)

�� < 1
6
"

and ��(tr �jQ)� r
�� < �

where � is such that��F (r)� F (x)
�� < 1

6
" when jr � xj < � :(14)

We choose �r = �j, for some j > N , and deduce that��tr �rF (Q)� F (tr �rQ)
�� < 1

3
"(15)

because ��tr �rF (Q)� F (tr �rQ)
��

=
��tr �rF (Q)� F (r) + F (r)� F (tr �rQ)

��
�

��tr �rF (Q)� F (r)
��+ ��F (r)� F (tr �rQ)

�� :
With this choice of �r,the open set W (r; ") can be de�ned as

W (r; ") = N(�r; Q; �) \N(�r; F (Q);
1
3
")

where � satis�es the requirements (14), and for any S-continuous func-
tion F and " > 0 we have that N(�r; F (Q); ") is given by

N
�
�r; F (Q); "

�
=
n
� ;
��tr �F (Q)� tr �rF (Q)

��o < " :

Lemma 14. When �r is chosen so that equation (15) holds, then for

all � in W (r; "), ��tr �F (Q)� F (tr �Q)
�� < " :(16)
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That is, for W =W (r; "),��[F (Q)��
W
� F (Q̂

��
W
)
�� < " :

In the de�nition of the open neighborhood W, � may depend upon �r,
as well as on F and ".

Proof. For any pair of states, � and �r, we have��tr �F (Q)� F (tr �Q)
�� � ��tr �F (Q)� tr �rF (Q)

��
+
��tr �rF (Q)� F (tr �rQ)

�� + ��F (tr �rQ)� F (tr �Q)
�� :

If � is in N(�r; F (Q);
1
3
") the �rst summand is < 1

3
", as is the second

by choice of �r. The �nal summand is also because by assumption the
function F : R ! R is continuous everywhere in the usual topology on
R. Because given " > 0, there exists a �(xa) > 0, such that

��F (x) �
F (xa)

�� < 1
3
", whenever jx � xaj < �. Apply this to x = (tr �Q) and

xa = (tr �rQ).
Therefore, given �r, for any � in N(�r; Q; �) \ N(�r; F (Q);

1
3
"), the

inequality (16) holds.

The question remains whether we can construct su�ciently many of
these open sets. In general, for a given smooth function F , the family
of open sets

�
W (r; ")

	
, does not form an open cover of state space ES.

However for every standard real number r, and hence for every point

in classical coordinate space, all the standard real numbers that lie
within � of r in the standard norm topology on R also lie in

�
W (r; ")

	
as Cauchy real numbers RC . In this sense, the family of open sets�
W (r; ")

	
covers the classical coordinate space of the physical system.

10. Conclusion

It is important to be clear about the meaning of this result. It in-
volves the comparison of two di�erent theories. Assume that Newton's

equations of motion hold for the position and momentum variables of
a non-relativistic massive quantum particle when they are expressed in
terms of the real numbers RD . Assume also that these real numbers
RD are given by sheaves of continuous functions over the state space

ES and include quantum numbers like Q̂ = tr �Q and P̂ = tr �P for

� 2 fopen subsets of ESg, where P and Q are self-adjoint operators on
an underlying Hilbert space. Then we can �nd open subsets of ES such

that on each open subset, the restrictions of the functions P̂ and Q̂ can
be reinterpreted as the average values of the operators P and Q which
almost satisfy the Heisenberg's equations of motion with the analogous

Hamiltonian operator. This result only involves a comparison of the



QUANTUM MECHANICS AS INTUITIONISTIC MECHANICS 29

dynamical equations of motion. Comparison of the trajectories requires
that the initial data be compatible which leads to further constraints

on the allowable trajectories. Nevertheless, there are trajectories that
can be described with these real numbers.
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