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We prove that the local eigenvalue statistics of real symmetric Wigner-type matrices near the cusp
points of the eigenvalue density are universal. Together with the companion paper by Erdős et al.
(2018, arXiv:1809.03971), which proves the same result for the complex Hermitian symmetry class, this
completes the last remaining case of the Wigner–Dyson–Mehta universality conjecture after bulk and
edge universalities have been established in the last years. We extend the recent Dyson Brownian motion
analysis at the edge by Landon and Yau (2017, arXiv:1712.03881) to the cusp regime using the optimal
local law by Erdős et al. (2018, arXiv:1809.03971) and the accurate local shape analysis of the density by
Ajanki et al. (2015, arXiv:1506.05095) and Alt et al. (2018, arXiv:1804.07752). We also present a novel
PDE-based method to improve the estimate on eigenvalue rigidity via the maximum principle of the heat
flow related to the Dyson Brownian motion.
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1. Introduction

We consider Wigner-type matrices, i.e., N �N Hermitian random matrices H with independent, not
necessarily identically distributed entries above the diagonal; these are a natural generalisation of the
standard Wigner ensembles that have i.i.d. entries. The Wigner–Dyson–Mehta (WDM) conjecture asserts
that the local eigenvalue statistics are universal; i.e., they are independent of the details of the ensemble and
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depend only on the symmetry type, i.e., on whether H is real symmetric or complex Hermitian. Moreover,
different statistics emerge in the bulk of the spectrum and at the spectral edges with a square-root vanishing
behaviour of the eigenvalue density. The WDM conjecture for both symmetry classes has been proven
for Wigner matrices; see [Erdős and Yau 2017] for complete historical references. Recently it has been
extended to more general ensembles including Wigner-type matrices in the bulk and edge regimes; we
refer to the companion paper [Erdős et al. 2018] for up-to-date references.

The key tool for the recent proofs of the WDM conjecture is the Dyson Brownian motion (DBM), a
system of coupled stochastic differential equations. The DBM method has evolved during the last years.
The original version, presented in [Erdős and Yau 2017], was in the spirit of a high-dimensional analysis
of a strongly correlated Gibbs measure and its dynamics. Starting in [Erdős and Yau 2015] with the
analysis of the underlying parabolic equation and its short-range approximation, the PDE component of
the theory became prominent. With the coupling idea, introduced in [Bourgade et al. 2016; Bourgade and
Yau 2017], the essential part of the proofs became fully deterministic, greatly simplifying the technical
aspects. In the current paper we extend this trend and use PDE methods even for the proof of the rigidity
bound, a key technical input, that earlier was obtained with direct random matrix methods.

The historical focus on the bulk and edge universalities has been motivated by the Wigner ensemble
since, apart from the natural bulk regime, its semicircle density vanishes as a square root near the edges,
giving rise to the Tracy–Widom statistics. Beyond the Wigner ensemble, however, the density profile
shows a much richer structure. Already Wigner matrices with nonzero expectation on the diagonal, also
called the deformed Wigner ensemble, may have a density supported on several intervals and a cubic root
cusp singularity in the density arises whenever two such intervals touch each other as some deformation
parameter varies. Since local spectral universality is ultimately determined by the local behaviour of the
density near its vanishing points, the appearance of the cusp gives rise to a new type of universality. This
was first observed in [Brézin and Hikami 1998b] and the local eigenvalue statistics at the cusp can be
explicitly described by the Pearcey process in the complex Hermitian case [Tracy and Widom 2006]. The
corresponding explicit formulas for the real symmetric case have not yet been established.

The key classification theorem [Ajanki et al. 2017a] for the density of Wigner-type matrices showed
that the density may vanish only as a square root (at regular edges) or as a cubic root (at cusps); no other
singularity may occur. This result has recently been extended to a large class of matrices with correlated
entries [Alt et al. 2018a]. In other words, the cusp universality is the third and last universal spectral
statistics for random matrix ensembles arising from natural generalisations of the Wigner matrices. We
note that invariant ˇ-ensembles may exhibit further universality classes; see [Claeys et al. 2018].

In the companion paper [Erdős et al. 2018] we established cusp universality for Wigner-type matrices
in the complex Hermitian symmetry class. In the present work we extend this result to the real symmetric
class and even to certain space-time correlation functions. In fact, we show the appearance of a natural
one-parameter family of universal statistics associated to a family of singularities of the eigenvalue density
that we call physical cusps. In both works we follow the three-step strategy, a general method developed
for proving local spectral universality for random matrices; see [Erdős and Yau 2017] for a pedagogical
introduction. The first step is the local law or rigidity, establishing the location of the eigenvalues with a
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precision slightly above the typical local eigenvalue spacing. The second step is to establish universality
for ensembles with a tiny Gaussian component. The third step is a perturbative argument to remove this
tiny Gaussian component relying on the optimal local law. The first and third steps are insensitive to the
symmetry type; in fact the optimal local law in the cusp regime has been established for both symmetry
classes in [Erdős et al. 2018] and it completes also the third step in both cases.

There are two different strategies for the second step. In the complex Hermitian symmetry class, the
Brézin–Hikami formula [1998a] turns the problem into a saddle-point analysis for a contour integral. This
direct path was followed in [Erdős et al. 2018], relying on the optimal local law. In the real symmetric
case, lacking the Brézin–Hikami formula, only the second strategy via the analysis of Dyson Brownian
motion (DBM) is feasible. This approach exploits the very fast decay to local equilibrium of DBM. It
is the most robust and powerful method up to now to establish local spectral universality. In this paper
we present a version of this method adjusted to the cusp situation. We will work in the real symmetric
case for definiteness. The proof can easily be modified for the complex Hermitian case as well. The
DBM method does not explicitly yield the local correlation kernel. Instead it establishes that the local
statistics are universal and therefore can be identified from a reference ensemble that we will choose as
the simplest Gaussian ensemble exhibiting a cusp singularity.

In this paper we partly follow the recent DBM analysis at the regular edges [Landon and Yau 2017]
and we extend it to the cusp regime, using the optimal local law from the companion paper [Erdős et al.
2018] and the precise control of the density near the cusps [Ajanki et al. 2015; Alt et al. 2018a]. The
main conceptual difference between [Landon and Yau 2017] and the current work is that we obtain the
necessary local law along the time evolution of DBM via novel DBM methods in Section 6. Some other
steps, such as the Sobolev inequality, heat kernel estimates from [Bourgade et al. 2014] and the finite
speed of propagation [Erdős and Yau 2015; Bourgade and Yau 2017; Landon and Yau 2017], require
only moderate adjustments for the cusp regime, but for completeness we include them in the Appendix.
The comparison of the short-range approximation of the DBM with the full evolution, Lemma 7.2 and
Lemma C.1, will be presented in detail in Section 7 and in Appendix C since it is more involved in the
cusp setup, after the necessary estimates on the semicircular flow near the cusp are proven in Section 4.

We now outline the novelties and main difficulties at the cusp compared with the edge analysis in
[Landon and Yau 2017]. The basic idea is to interpolate between the time evolution of two DBMs, with
initial conditions given by the original ensemble and the reference ensemble, respectively, after their local
densities have been matched by shift and scaling. Beyond this common idea there are several differences.

The first difficulty lies in the rigidity analysis of the DBM starting from the interpolated initial
conditions. The optimal rigidity from [Erdős et al. 2018], which holds for very general Wigner-type
matrices, applies for the flows of both the original and the reference matrices, but it does not directly
apply to the interpolating process. The latter starts from a regular initial data but it runs for a very short
time, violating the flatness (i.e., effective mean-field) assumption of [Erdős et al. 2018]. While it is
possible to extend the analysis of [Erdős et al. 2018] to this case, here we chose a technically lighter
and conceptually more interesting route. We use the maximum principle of the DBM to transfer rigidity
information on the reference process to the interpolating one after an appropriate localisation. Similar
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ideas for proving rigidity of the ˇ-DBM flow have been used in the bulk [Huang and Landon 2016] and
at the edge [Adhikari and Huang 2018].

The second difficulty in the cusp regime is that the shape of the density is highly unstable under the
semicircular flow that describes the evolution of the density under the DBM. The regular edge analysed
in [Landon and Yau 2017] remains of square-root type along its dynamics and it can be simply described
by its location and its multiplicative slope parameter — both vary regularly with time. In contrast, the
evolution of the cusp is a relatively complicated process: it starts with a small gap that shrinks to zero
as the cusp forms and then continues developing a small local minimum. Heavily relying on the main
results of [Alt et al. 2018a], the density is described by quite involved shape functions, see (2-3c), (2-3e),
that have a two-scale structure, given in terms of a total of three parameters, each varying on different
time scales. For example, the location of the gap moves linearly with time, the length of gap shrinks
as the 3

2
-th power of the time, while the local minimum after the cusp increases as the 1

2
-th power of

the time. The scaling behaviour of the corresponding quantiles, which approximate the eigenvalues by
rigidity, follows the same complicated pattern of the density. All these require a very precise description
of the semicircular flow near the cusp as well as the optimal rigidity.

The third difficulty is that we need to run the DBM for a relatively long time in order to exploit the local
decay; in fact this time scale, N�

1
2
C� is considerably longer than the characteristic time scale N�

3
4 on

which the physical cusp varies under the semicircular flow. We need to tune the initial condition very pre-
cisely so that after a relatively long time it develops a cusp exactly at the right location with the right slope.

The fourth difficulty is that, unlike for the regular edge regime, the eigenvalues or quantiles on both
sides of the (physical) cusp contribute to the short-range approximation of the dynamics, and their effect
cannot be treated as mean-field. Moreover, there are two scaling regimes for quantiles corresponding to
the two-scale structure of the density.

Finally, we note that the analysis of the semicircular flow around the cusp, partly completed already in
the companion paper [Erdős et al. 2018], is relatively short and transparent despite its considerably more
complex pattern compared to the corresponding analysis around the regular edge. This is mostly due
to strong results imported from the general shape analysis [Ajanki et al. 2015]. Not only are the exact
formulas for the density shapes taken over, but we also heavily rely on the 1

3
-Hölder continuity in space

and time of the density and its Stieltjes transform, established in the strongest form in [Alt et al. 2018a].

Notations and conventions. We now introduce some custom notation we use throughout the paper. For
integers n we define Œn� WD f1; : : : ; ng. For positive quantities f; g, we write f . g and f � g if f �Cg
or, respectively, cg � f �Cg for some constants c; C that depend only on the model parameters, i.e., on
the constants appearing in the basic Assumptions (A)–(C) listed in Section 2 below. Similarly, we write
f � g if f � cg for some tiny constant c > 0 depending on the model parameters. We denote vectors by
bold-faced lower case Roman letters x;y 2CN, and matrices by upper case Roman letters A;B 2CN�N.
We write hAi WD N�1 TrA and hxi WD N�1

P
a2ŒN � xa for the averaged trace and the average of a

vector. We often identify a diagonal matrix with the vector of its diagonal elements. Accordingly, for any
matrix R, we denote by diag.R/ the vector of its diagonal elements, and for any vector r we denote by
diag.r/ the corresponding diagonal matrix.
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We will frequently use the concept of “with very high probability”, meaning that for any fixed D > 0

the probability of the event is bigger than 1�N�D if N �N0.D/.

2. Main results

For definiteness we consider the real symmetric case H 2 RN�N. With small modifications, the proof
presented in this paper works for the complex Hermitian case as well, but this case was already considered
in [Erdős et al. 2018] with a contour integral analysis. Let W DW � 2 RN�N be a symmetric random
matrix and AD diag.a/ be a deterministic diagonal matrix with entries aD .ai /NiD1 2 RN. We say that
W is of Wigner type [Ajanki et al. 2017b] if its entries wij for i � j are centred, Ewij D 0, independent
random variables. We define the variance matrix or self-energy matrix S D .sij /Ni;jD1, sij WD Ew2ij . In
[Ajanki et al. 2017b] it was shown that as N tends to infinity, the resolvent G.z/ WD .H � z/�1 of the
deformed Wigner-type matrix H D ACW entrywise approaches a diagonal matrix M.z/ WD diag.m.z//
for z 2 H WD fz 2 C W =z > 0g. The entries mD .m1; : : : ; mN /WH! HN of M have positive imaginary
parts and solve the Dyson equation

�
1

mi .z/
D z� ai C

NX
jD1

sijmj .z/; z 2 H WD fz 2 C W =z > 0g; i 2 ŒN �: (2-1)

We call M or m the self-consistent Green’s function. The normalised trace hM i of M is the Stieltjes
transform hM.z/i D

R
R
.� � z/�1�.d�/ of a unique probability measure � on R that approximates the

empirical eigenvalue distribution of ACW increasingly well as N !1. We call � the self-consistent
density of states (scDOS). Accordingly, its support supp � is called the self-consistent spectrum. It was
proven in [Ajanki et al. 2015] that under very general conditions, �.d�/ is an absolutely continuous
measure with a 1

3
-Hölder continuous density, �.�/. Furthermore, the self-consistent spectrum consists of

finitely many intervals with square root growth of � at the edges, i.e., at the points in @ supp �.
We call a point c 2 R a cusp of � if c 2 int supp � and �.c/ D 0. Cusps naturally emerge when we

consider a one-parameter family of ensembles and two support intervals of � merge as the parameter value
changes. The cusp universality phenomenon is not restricted to the exact cusp; it also occurs for situations
shortly before and after the merging of two such support intervals, giving rise to a one-parameter family
of universal statistics. More precisely, universality emerges if � has a physical cusp. The terminology
indicates that all these singularities become indistinguishable from the exact cusp if the density is resolved
with a local precision above the typical eigenvalue spacing. We say that � exhibits a physical cusp if it
has a small gap .e�; eC/ � R n supp � with eC; e� 2 supp � in its support of size eC � e� . N�

3
4 or a

local minimum m 2 int supp � of size �.m/ . N� 14 ; see Figure 1. Correspondingly, we call the points
b WD 1

2
.eCC e�/ and b WDm physical cusp points, respectively. One of the simplest models exhibiting a

physical cusp point is the deformed Wigner matrix

H D diag.1; : : : ; 1;�1; : : : ;�1/C
p
1C tW; (2-2)

with equal numbers of˙1, and whereW is a Wigner matrix of variance Ejwij j2DN�1. The ensembleH
from (2-2) exhibits an exact cusp if t D 0 and a physical cusp if jt j.N� 12 , with t > 0 corresponding to a



620 GIORGIO CIPOLLONI, LÁSZLÓ ERDŐS, TORBEN KRÜGER AND DOMINIK SCHRÖDER

N�
3
4 N�

1
4

Figure 1. The cusp universality class can be observed in a one-parameter family of
physical cusps.

small nonzero local minimum and t < 0 corresponding to a small gap in the support of the self-consistent
density. For the proof of universality in the real symmetric symmetry class we will use (2-2) with
W � GOE as a Gaussian reference ensemble.

Our main result is cusp universality under the real symmetric analogues of the assumptions of [Erdős
et al. 2018]. Throughout this paper we make the following three assumptions:

Assumption (A) (bounded moments). The entries of the matrix
p
NW have bounded moments and the

expectation A is bounded; i.e., there are positive Ck such that

jai j � C0; Ejwij j
k
� CkN

� 1
2
k; k 2 N:

Assumption (B) (flatness). We assume that the matrix S is flat in the sense sij D Ew2ij � c=N for some
constant c > 0.

Assumption (C) (bounded self-consistent Green’s function). The scDOS � has a physical cusp point b,
and in a neighbourhood of the physical cusp point b 2 R the self-consistent Green’s function is bounded;
i.e., for positive C; � we have

jmi .z/j � C; z 2 Œb� �; bC ��C iRC:

We call the constants appearing in Assumptions (A)–(C) model parameters. All generic constants in
this paper may implicitly depend on these model parameters. Dependence on further parameters, however,
will be indicated.

Remark 2.1. The boundedness of m in Assumption (C) can be, for example, ensured by assuming some
regularity of the variance matrix S . For more details we refer to [Ajanki et al. 2015, Chapter 6].

According to the extensive analysis in [Ajanki et al. 2015; Alt et al. 2018a] it follows1 that there exists
some small ı� � 1 such that the self-consistent density � around the points where it is small exhibits one
of the following three types of behaviours:

(i) Exact cusp. There is a cusp point c 2 R in the sense that �.c/D 0 and �.c˙ ı/ > 0 for 0¤ ı� 1. In
this case the self-consistent density is locally around c given by

�.cC!/D

p
3

4
3 j!j

1
3

2�
Œ1CO.j!j

1
3 /� (2-3a)

for ! 2 Œ�ı�; ı�� and some  > 0.

1The claimed expansions (2-3a) and (2-3d) follow directly from [Alt et al. 2018a, Theorem 7.2(c),(d)]. The error term
in (2-3b) follows from [Alt et al. 2018a, Theorem 7.1(a)], where we define  according to h therein.
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(2) Small gap. There is a maximal interval Œe�; eC� of size 0 <� WD eC� e�� 1 such that �jŒe�;eC�� 0.
In this case the density around e˙ is, for some  > 0, locally given by

�.e˙˙!/D

p
3.2/

4
3�

1
3

2�
‰edge

�
!

�

��
1CO

�
min

�
!
1
3 ;
!
1
2

�
1
6

���
(2-3b)

for ! 2 Œ0; ı��, where

‰edge.�/ WD

p
�.1C�/

.1C 2�C 2
p
�.1C�//

2
3 C .1C 2�� 2

p
�.1C�//

2
3 C 1

; �� 0: (2-3c)

(3) Nonzero local minimum. There is a local minimum at m 2 R of � such that 0 < �.m/� 1. In this
case there exists some  > 0 such that

�.mC!/

D �.m/C �.m/‰min

�
3
p
34!

2.��.m//3

��
1CO

�
min

�
�.m/

1
2 ;
�.m/4

j!j

�
Cmin

�
!2

�.m/5
; j!j

1
3

���
(2-3d)

for ! 2 Œ�ı�; ı��, where

‰min.�/ WD

p
1C�2

.
p
1C�2C�/

2
3 C .
p
1C�2��/

2
3 � 1

� 1; � 2 R: (2-3e)

We note that the choices for the slope parameter  in (2-3b)–(2-3d) are consistent with (2-3a) in the sense
that in the regimes �� !� 1 and �.m/3� j!j � 1 the respective formulae asymptotically agree. The
precise form of the prefactors in (2-3) is also chosen such that in the universality statement  is a linear
rescaling parameter.

It is natural to express universality in terms of a rescaled k-point function p.N/
k

which we define
implicitly by

E

�N
k

��1 X
fi1;:::;ikg�ŒN �

f .�i1 ; : : : ; �ik /D

Z
Rk
f .x/p

.N/

k
.x/ dx (2-4)

for test functions f , where the summation is over all subsets of k distinct integers from ŒN �.

Theorem 2.2. Let H be a real symmetric or complex Hermitian deformed Wigner-type matrix whose
scDOS � has a physical cusp point b such that Assumptions (A)–(C) are satisfied. Let  > 0 be the slope
parameter at b, i.e., such that � is locally around b given by (2-3). Then the local k-point correlation
function at b is universal; i.e., for any k 2 N there exists a k-point correlation function pGOE=GUE

k;˛
such

that for any test function F 2 C 1c .�/, with �� Rk some bounded open set, it holds thatZ
Rk
F.x/

�
N
1
4
k

k
p
.N/

k

�
bC

x

N
3
4

�
�p

GOE=GUE
k;˛

.x/

�
dx DOk;�.N�c.k/kF kC1/;

where the parameter ˛ and the physical cusp b are given by

˛ WD

8̂<̂
:
0 in case (i);

3
�
1
4
�
� 2
3N

1
2 in case (ii);

�.��.m/=/2N
1
2 in case (iii);

b WD

8<:
c in case (i);
1
2
.e�C eC/ in case (ii);

m in case (iii);
(2-5)
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and c.k/ > 0 is a small constant only depending on k. The implicit constant in the error term depends on
k and the diameter of the set �.

Remark 2.3. (i) In the complex Hermitian symmetry class the k-point function is given by

pGUE
k;˛ .x/D det.K˛;˛.xi ; xj //ki;jD1:

Here the extended Pearcey kernel K˛;ˇ is given by

K˛;ˇ .x; y/D
1

.2� i/2

Z
„

dz
Z
ˆ

dw
exp

�
�
1
4
w4C 1

2
ˇw2�ywC 1

4
z4� 1

2
˛z2C xz

�
w� z

�
1ˇ>˛p
2�.ˇ�˛/

exp
�
�
.y � x/2

2.ˇ�˛/

�
; (2-6)

where „ is a contour consisting of rays from ˙1e
1
4

i� to 0 and rays from 0 to ˙1e�
1
4

i�, and ˆ is the
ray from �i1 to i1. For more details we refer to [Tracy and Widom 2006; Adler et al. 2010; Brézin
and Hikami 1998b].

(ii) The real symmetric k-point function (possibly only a distribution) pGOE
k;˛

is not known explicitly. In
fact, it is not even known whether pGOE

k;˛
is Pfaffian. We will nevertheless establish the existence of pGOE

k;˛

as a distribution in the dual of the C 1 functions in Section 3 as the limit of the correlation functions of a
one-parameter family of Gaussian comparison models.

Theorem 2.2 is a universality result about the spatial correlations of eigenvalues. Our method also allows
us to prove the corresponding statement on space-time universality when we consider the time evolution
of eigenvalues .�ti /i2ŒN � according to the Dyson Brownian motion dH .t/ D dBt with initial condition
H .0/ DH , where, depending on the symmetry class, Bt is a complex Hermitian or real symmetric
matrix-valued Brownian motion. For any ordered k-tuple �D .�1; : : : ; �k/ with 0� �1 � � � � � �k .N�

1
2

we then define the time-dependent k-point function as follows. Denote the unique values in the tuple � by
�1 < � � �< �l such that f�1; : : : ; �kg D f�1; : : : ; �lg and denote the multiplicity of �j in � by kj and note
that

P
kj D k. We then define p.N/

k;�
implicitly via

E

lY
jD1

��N
kj

��1 X
fi
j
1 ;:::;i

j

kj
g�ŒN �

�
f .�

�1

i11
; : : : ; �

�1

i1
k1

; : : : ; �
�l

i l1
; : : : ; �

�l

i l
kl

/D

Z
Rk
f .x/p

.N/

k;�
.x/ dx (2-7)

for test functions f and note that (2-7) reduces to (2-4) in the case �1 D � � � D �k D 0. We note that
in (2-7) coinciding indices are allowed only for eigenvalues at different times. If the scDOS � of H has a
physical cusp in b, then for � .N� 12 the scDOS �� of H .�/ also has a physical cusp b� close to b and
we can prove space-time universality in the sense of the following theorem, whose proof we defer to
Appendix A.

Theorem 2.4. Let H be a real symmetric or complex Hermitian deformed Wigner-type matrix whose
scDOS � has a physical cusp point b such that Assumptions (A)–(C) are satisfied. Let  > 0 be the slope
parameter at b, i.e., such that � is locally around b given by (2-3). Then there exists a k-point correlation
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function pGOE=GUE
k;˛

such that for any 0� �1 � � � � � �k .N�
1
2 and for any test function F 2C 1c .�/, with

�� Rk some bounded open set, it holds thatZ
Rk
F.x/

�
N

1
4
k

k
p
.N/

k;�=2

�
b�=2 C

x

N
3
4

�
�p

GOE=GUE
k;˛

.x/

�
dx DOk;�.N�c.k/kF kC1/;

where � D .�1; : : : ; �k/, b� D .b�1 ; : : : ; b�k /, ˛D ˛��N
1
2 with ˛ from (2-5), and c.k/ > 0 is a small

constant only depending on k. In the case of the complex Hermitian symmetry class the k-point correlation
function is known to be determinantal of the form

pGUE
˛1;:::;˛k

.x/D det.K˛i ; j̨ .xi ; xj //
k
i;jD1;

with K˛;ˇ as in (2-6).

The analogous version of Theorem 2.4 for fixed energy bulk multitime universality has been proven in
[Landon et al. 2019, Section 2.3.1].

Remark 2.5. The extended Pearcey kernel K˛;ˇ in Theorem 2.4 has already been observed for the
double-scaling limit of nonintersecting Brownian bridges [Adler et al. 2010; Tracy and Widom 2006].
However, in the random matrix setting our methods also allow us to prove that the space-time universality
of Theorem 2.4 extends beyond the Gaussian DBM flow. If the times 0 � �1 � � � � � �k . N�

1
2 are

ordered, then the k-point correlation function of the DBM flow asymptotically agrees with the k-point
correlation function of eigenvalues of the matrices

H C
p
�1W1; H C

p
�1W1C

p
�2� �1W2; : : : ; H C

p
�1W1C � � �C

p
�k � �k�1Wk

for independent standard Wigner matrices W1; : : : ; Wk .

3. Ornstein–Uhlenbeck flow

Starting from this section we consider a more general framework that allows for random matrix ensembles
with certain correlation among the entries. In this way we stress that our proofs regarding the semicircular
flow and the Dyson Brownian motion are largely model-independent, assuming the optimal local law
holds. The independence assumption on the entries of W is made only because we rely on the local law
from [Erdős et al. 2018] that was proven for deformed Wigner-type matrices. We therefore present the
flow directly in the more general framework of the matrix Dyson equation (MDE)

1C .z�ACSŒM.z/�/M.z/D 0; A WD EH; SŒR� WD EWRW; (3-1)

with spectral parameter in the complex upper half-plane, =z > 0, and positive definite imaginary part,
1
2i.M.z/ �M.z/

�/ > 0, of the solution M. The MDE generalises (2-1). Note that in the deformed
Wigner-type case the self-energy operator SWCN�N ! CN�N is related to the variance matrix S by
SŒdiag r�D diag.Sr/.

As in [Erdős et al. 2018] we consider the Ornstein–Uhlenbeck flow

d zHs D�12. zHs �A/ dsC†
1
2 ŒdBs�; †ŒR� WD 1

2
ˇ EW TrWR; zH0 WDH; (3-2)
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which preserves expectation and the self-energy operator S. Since we consider real symmetric H, the
parameter ˇ indicating the symmetry class is ˇD 1. In (3-2) by Bs 2RN�N we denote a real symmetric
matrix-valued standard (GOE) Brownian motion; i.e., .Bs/ij for i < j and .Bs/i i=

p
2 are independent

standard Brownian motions and .Bs/j i D .Bs/ij . If H were complex Hermitian, we would have ˇ D 2
and dBs would be an infinitesimal GUE matrix. This was the setting in [Erdős et al. 2018]. The OU
flow effectively adds a small Gaussian component of size

p
s to zHs . More precisely, we can construct a

Wigner-type matrix Hs , satisfying Assumptions (A)–(C), such that, for any fixed s,

zHs DHsC
p
csU; Ss D S � csSGOE; EHs D A; U � GOE; (3-3)

where U is independent of Hs . Here c > 0 is a small universal constant which depends on the constant in
Assumption (B), Ss is the self-energy operator corresponding to Hs and SGOEŒR� WD hRiCRt=N, where
h � i WD N�1 Tr. � / and Rt denotes the transpose of R. Since S is flat in the sense SŒR� & hRi and s is
small, it follows that also Ss is flat.

As a consequence of the well-established Green function comparison technique the k-point function of
H D zH0 is comparable with the one of zHs as long as s �N�

1
4
�� for some � > 0. Indeed, from [Erdős

et al. 2018, equation (116)] for any F 2 C 1c .�/, a compactly supported C 1 test function on a bounded
open set �� Rk, we findZ

Rk
F.x/N

1
4
k

�
p
.N/

k

�
bC

x

N
3
4

�
� Qp

.N/

k;s

�
bC

x

N
3
4

��
dx DOk;�.N�ckF kC1/; (3-4)

where Qp.N/
k;s

is the k-point correlation function of zHs and c D c.k/ > 0 is some constant.
It follows from the flatness assumption that the matrix Hs satisfies the assumptions of the local law

from [Erdős et al. 2018, Theorem 2.5] uniformly in s� 1. Therefore [Erdős et al. 2018, Corollary 2.6]
implies that the eigenvalues of Hs are rigid down to the optimal scale. It remains to prove that for long
enough times s the local eigenvalue statistics of HsC

p
csU on a scale of 1=N

3
4 around b agree with

the local eigenvalue statistics of the Gaussian reference ensemble around 0 at a scale of 1=N
3
4 . By a

simple rescaling, Theorem 2.2 then follows from (3-4) together with the following proposition.

Proposition 3.1. Let t1 WD N�
1
2
C!1 with some small !1 > 0 and let t� be such that jt� � t1j . N�

1
2 .

Assume that H .�/ and H .�/ are Wigner-type matrices2 satisfying Assumptions (A)–(C) such that the
scDOSs ��;t� ; ��;t� ofH .�/C

p
t�U

.�/ andH .�/C
p
t�U

.�/ with independent U .�/; U .�/�GOE have
cusps in some points c�, c� such that locally around cr , r D �;�, the densities �r;t� are given by (2-3a)
with  D 1. Then the local k-point correlation functions p.N;r/

k;t1
of H .r/C

p
t1U

.r/ around the respective
physical cusps br;t1 of �r;t1 , j D 1; 2, asymptotically agree in the senseZ

Rk
F.x/

�
N
1
4
kp

.N;�/

k;t1

�
b�;t1 C

x

N
3
4

�
�N

1
4
kp

.N;�/

k;t1

�
b�;t1 C

x

N
3
4

��
dx DOk;�.N�c.k/kF kC1/

for any F 2 C 1c .�/, with �� Rk a bounded open set.

2We use the notation H .�/ and H .�/ since we denote the eigenvalues of H .�/ and H .�/ by �i and �i respectively, with
1� i �N.
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Proof of Theorem 2.2. Set s WD t1=c�2 and H .�/ WD �Hs , where c is the constant from (3-3) and � � 1
is yet to be chosen. Note that H .�/C

p
tU D �.HsC

p
t=�2U/, and in particular H .�/C

p
t1U D zHs .

Moreover, it follows from the semicircular flow analysis in Section 4 that for some t� with jt��t1j.N�
1
2 ,

the scDOS ���;t�.� � / ofHsC
p
t�=�2U and thereby also ��;t� , the one ofH .�/C

p
t�U, have exact cusps

in c�=� and c�, respectively. It follows from the 1
3

-Hölder continuity of the slope parameter, see [Alt et al.
2018a, Lemma 10.5, equation (7.5a)], that locally around c�=� the scDOS of HsC

p
t�=�2U is given by

���;t�.c�C �!/D ���;t�

�
�

�
c�
�
C!

��
D

p
3

4
3 j!j

1
3

2�
Œ1CO.j!j

1
3 Cjt�� t1j

1
3 /�:

Hence we can choose � D Œ1CO.jt1� t�j
1
3 /� appropriately such that

��;t�.c�C!/D

p
3j!j

1
3

2�
Œ1CO.j!j

1
3 /�

and it follows that H .�/ satisfies the assumptions of Proposition 3.1; in particular the slope parameter
of H .�/C

p
t�U is normalised to 1. Furthermore, the almost cusp b�;t1 of H .�/C

p
t1U is given by

b�;t1 D �b with b as in Theorem 2.2.
We now choose our Gaussian comparison model. For ˛ 2 R we consider the reference ensemble

U˛ D U
.N/
˛ WD diag.1; : : : ; 1;�1; : : : ;�1/C

q
1�˛N�

1
2U 2 RN�N ; U � GOE; (3-5)

with
�
1
2
N
˘

and
˙
1
2
N
�

times ˙1 in the deterministic diagonal. An elementary computation shows that
for even N and ˛ D 0, the self-consistent density of U˛ has an exact cusp of slope  D 1 in cD 0; i.e.,
it is given by (2-3a). For odd N the exact cusp is at distance .N�1 away from 0, which is well below
the natural scale of order N�

3
4 of the eigenvalue fluctuation and therefore has no influence on the k-point

correlation function. The reference ensemble U˛ has for 0¤ j˛j � 1 a small gap of size N�
3
4 or small

local minimum of size N�
1
4 at the physical cusp point jbj . 1=N , depending on the sign of ˛. Using

the definition in (3-5), let H .�/ WD UN 1=2t� , from which it follows that H .�/C
p
t�U � U0 has an exact

cusp in 0 whose slope is 1 by an easy explicit computation in the case of even N. For odd N the cusp
emerges at a distance of .N�1 away from 0, which is well below the investigated scale. Thus also H .2/

satisfies the assumptions of Proposition 3.1. The almost cusp b�;t1 is given by b�;t1 D 0 by symmetry
of the density ��;t1 in the case of even N and at a distance of jb�;t1 j.N�1 in the case of odd N. This
fact follows, for example, from explicitly solving a quadratic equation in two variables. The perturbation
of size 1=N is not visible on the scale of the k-point correlation functions.

Now Proposition 3.1 together with (3-4) and s �N�
1
2
C!1 impliesZ

Rk
F.x/

�
N
1
4
k

�k
p
.N/

k

�
bC

x

�N
3
4

�
�N

1
4
kp

.N/

k;˛;GOE

�
x

N
3
4

��
dx DOk;�.N�c.k/kF kC1.�//; (3-6)

with ˛ DN
1
2 .t�� t1/, where p.N/

k;˛;GOE denotes the k-point function of the comparison model U˛. This
completes the proof of Theorem 2.2 modulo the comparison of p.N/

k;˛;GOE with its limit by relating t�� t1
to the size of the gap and the local minimum of � via [Erdős et al. 2018, Lemma 5.1] (or (4-6a)–(4-6c))
and recalling that � D Œ1CO.jt1� t�j

1
3 /�.
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To complete the proof we claim that for any fixed k and ˛ there exists a distribution pGOE
k;˛

on Rk,
locally in the dual of C 1c .�/ for every open bounded �� Rk, such thatZ

Rk
F.x/

�
N
1
4
kp

.N/

k;˛;GOE

�
x

N
3
4

�
�pGOE

k;˛ .x/

�
dx DOk;�.N�c.k/kF kC1/ (3-7)

holds for any F 2 C 1c .�/. We now show that (3-7) is a straightforward consequence of (3-6).
First notice that, for notational simplicity, we gave the proof of (3-6) only for the case when H and

U˛ are of the same dimension, but it works without any modification when their dimensions are only
comparable; see Remark 5.2. Hence, applying this result to a sequence of GOE ensembles U .Nn/˛ with
Nn WD

�
4
3

�n, for any compactly supported F 2 C 1c .�/ we haveZ
Rk
F.x/

"
N

1
4
k

n p
.Nn/

k;˛;GOE

 
x

N
3
4
n

!
�N

1
4
k

nC1p
.NnC1/

k;˛;GOE

 
x

N
3
4

nC1

!#
dx DOk;�

��
3
4

�nc.k/
kF kC1

�
: (3-8)

Fix a bounded open set��Rk and define the sequence of functionals fJngn2N in the dual spaceC 1c .�/
� as

Jn.F / WD
Z

Rk
F.x/N

1
4
k

n p
.Nn/

k;˛;GOE

�
x

N
3
4
n

�
dx

for any F 2 C 1c .�/. Then, by (3-8) it easily follows that fJngn2N is a Cauchy sequence on C 1c .�/
�.

Indeed, for any M >L we have by a telescopic sum

j.JM �JL/.F /j D

ˇ̌̌̌
ˇ
M�1X
nDL

Z
Rk
F.x/

"
N
1
4
k

nC1p
.NnC1/

k;˛;GOE

 
x

N
3
4

nC1

!
�N

1
4
k

n p
.Nn/

k;˛;GOE

 
x

N
3
4
n

!#
dx

ˇ̌̌̌
ˇ

� Ck;�
�
3
4

�Lc.k/
kF kC1 : (3-9)

Thus, we conclude that there exists a unique J1 2 C 1c .�/� such that Jn ! J1 as n!1 in norm.
Then, (3-9) clearly concludes the proof of (3-7), identifying J1 D J .�/1 with pGOE

k;˛
restricted to �. Since

this holds for any open bounded set �� Rk, the distribution pGOE
k;˛

can be identified with the inductive
limit of the consistent family of functionals fJ .�m/1 gm�1, where, say, �m is the ball of radius m. This
completes the proof of Theorem 2.2. �

4. Semicircular flow analysis

In this section we analyse various properties of the semicircular flow in order to prepare the Dyson
Brownian motion argument in Sections 6 and 7. If � is a probability density on R with Stieltjes transformm,
then the free semicircular evolution �fc

t D ��
p
t�sc of � is defined as the unique probability measure

whose Stieltjes transform mfc
t solves the implicit equation

mfc
t .�/Dm.�C tm

fc
t .�//; � 2 H; t � 0: (4-1)

Here
p
t�sc is the semicircular distribution of variance t .

We now prepare the Dyson Brownian motion argument in Section 7 by providing a detailed analysis of
the scDOS along the semicircular flow. As in Proposition 3.1 we consider the setting of two densities ��; ��
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whose semicircular evolutions reach a cusp of the same slope at the same time. Within the whole section
we shall assume the following setup: Let ��; �� be densities associated with solutions M�;M� to some
Dyson equations satisfying Assumptions (A)–(C) (or their matrix counterparts). We consider the free
convolutions ��;t WD ���

p
t�sc and ��;t WD ���

p
t�sc of ��; �� with semicircular distributions of

variance t and assume that after a time t� �N�
1
2
C!1 both densities ��;t� , ��;t� have cusps in points c�; c�

around which they can be approximated by (2-3a) with the same  D �.t�/D �.t�/. It follows from
the semicircular flow analysis in [Erdős et al. 2018, Lemma 5.1] that for 0� t � t� both densities have
small gaps Œe�r;t ; e

C
r;t �, r D �;� in their supports, while for t� � t � 2t� they have nonzero local minima in

some points mr;t , r D �;�. Instead of comparing the eigenvalue flows corresponding to ��; �� directly,
we rather consider a continuous interpolation �˛ for ˛ 2 Œ0; 1� of �� and ��. For technical reasons we
define this interpolated density �˛;t as an interpolation of ��;t and ��;t separately for each time t , rather
than considering the evolution �˛;0�

p
t�sc of the initial interpolation �˛;0. We warn the reader that

semicircular evolution and interpolation do not commute; i.e., �˛;t ¤ �˛;0�
p
t�sc. We now define the

concept of interpolating densities following [Landon and Yau 2017, Section 3.1.1].

Definition 4.1. For ˛ 2 Œ0; 1� define the ˛-interpolating density �˛;t as follows. For any 0�E � ı� and
r D �;� let

nr;t .E/ WD

Z eCr;tCE

eCr;t

�r;t .!/ d!; 0� t � t�; nr;t .E/ WD

Z mr;tCE

mr;t

�r;t .!/ d!; t� � t � 2t�;

be the counting functions and '�;t , '�;t their inverses; i.e., nr;t .'r;t .s//D s. Define now

'˛;t .s/ WD ˛'�;t .s/C .1�˛/'�;t .s/ (4-2)

for s 2 Œ0; ı���, where ı�� � 1 depends on ı� and is chosen in such a way that '˛;t is invertible.3 We
thus define n˛;t .E/ to be the inverse of '˛;t .s/ near zero. Furthermore, for 0� t � t� set

e˙˛;t WD ˛e
˙
�;t C .1�˛/e

˙
�;t ; (4-3)

�˛;t .e
C
˛;t CE/ WD

d
dE

n˛;t .E/; E 2 Œ0; ı��; (4-4)

and for t � t� set

m˛;t WD ˛m�;t C .1�˛/m�;t ;

�˛;t .m˛;t CE/ WD ˛��;t .m�;t /C .1�˛/��;t .m�;t /C
d

dE
n˛;t .E/; E 2 Œ�ı�; ı��:

(4-5)

We define �˛;t .E/ for 0� t � t� and E 2 Œe�˛;t � ı�; e
�
˛;t � analogously.

The motivation for the interpolation mode in Definition 4.1 is that (4-2) ensures that the quantiles of
�˛;t are the convex combination of the quantiles of ��;t and ��;t ; see (4-13c). The following two lemmas
collect various properties of the interpolating density. Recall that ��;t and ��;t are asymptotically close
near the cusp regime, up to a trivial shift, since they develop a cusp with the same slope at the same time.

3Invertibility in a small neighbourhood follows from the form of the explicit shape functions in (2-3b) and (2-3d)
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In Lemma 4.2 we show that �˛;t shares this property. Lemma 4.3 shows that �˛;t inherits the regularity
properties of ��;t and ��;t from [Alt et al. 2018a].

Lemma 4.2 (size of gaps and minima along the flow). For t � t� and r D ˛; �; � the supports of �r;t
have small gaps Œe�r;t ; e

C
r;t � near c� of size

�r;t WD eCr;t � e�r;t D .2/
2
� t�� t

3

� 3
2 �
1CO..t�� t /

1
3 /
�
; �r;t D��;t Œ1CO..t�� t /

1
3 /�; (4-6a)

and the densities are close in the sense

�r;t .e
˙
r;t ˙!/D ��;t .e

˙
�;t ˙!/

�
1CO

�
.t�� t /

1
3 Cmin

�
!
1
3 ;

!
1
2

.t�� t /
1
4

���
(4-6b)

for 0� ! � ı�. For t� < t � 2t� the densities �r;t have small local minima mr;t of size

�r;t .mr;t /D
2
p
t � t�

�
Œ1CO..t � t�/

1
2 /�; �r;t .mr;t /D ��;t .m�;t /Œ1CO..t � t�/

1
2 /�; (4-6c)

and the densities are close in the sense

�r;t .mr;t C!/

��;t .m�;t C!/
D 1CO

�
.t � t�/

1
2 Cmin

�
.t � t�/

1
4 ;
.t � t�/

2

j!j

�
Cmin

�
!2

.t � t�/
5
2

; j!j
1
3

��
(4-6d)

for ! 2 Œ�ı�; ı��. Here ı�; ı�� � 1 are small constants depending on the model parameters in Assump-
tions (A)–(C).

Lemma 4.3. The density �˛;t from Definition 4.1 is well-defined and is a 1
3

-Hölder continuous density.
More precisely, in the precusp regime, i.e., for t � t�, we have

j�0˛;t .e
˙
˛;t ˙ x/j.

1

�˛;t .e
˙
˛;t ˙ x/.�˛;t .e

˙
˛;t ˙ x/C�

1
3

˛;t /

(4-7a)

for 0� x � ı�. Moreover, the Stieltjes transform m˛;t satisfies the bounds

jm˛;t .e
˙
˛;t ˙ x/j. 1;

jm˛;t .e
˙
˛;t ˙ .xCy//�m˛;t .e

˙
˛;t ˙ x/j.

jyjjlogjyjj

�˛;t .e
˙
˛;t ˙ x/.�˛;t .e

˙
˛;t ˙ x/C�

1
3

˛;t /

(4-7b)

for jxj � 1
2
ı�, jyj � x. In the small minimum case, i.e., for t � t�, we similarly have

j�0˛;t .m˛;t C x/j.
1

�2˛;t .m˛;t C x/
(4-8a)

for jxj � ı� and

jm˛;t .m˛;t C x/j. 1; jm˛;t .m˛;t C .xCy//�m˛;t .m˛;t C x/j.
jyjjlogjyjj

�2˛;t .m˛;t C x/
(4-8b)

for jxj � ı� and jyj � jxj.
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Proof of Lemma 4.2. We first consider the two densities r D�;� only. The first claims in (4-6a) and (4-6c)
follow directly from [Erdős et al. 2018, Lemma 5.1], while the second claims follow immediately from
the first ones. For the proof of (4-6b) and (4-6d) we first note that by elementary calculus

‰edge..1C �/�/D‰edge.�/Œ1CO.�/�; ‰min..1C �/�/D‰min.�/Œ1CO.�/�

so that

�
1
3

�;t
‰edge

�
!

��;t

�
D�

1
3

�;t‰edge

�
!

��;t

�
Œ1CO..t�� t /

1
3 /�

and the claimed approximations follow together with (2-3b) and (2-3d). Here the exact cusp case t D t�
is also covered by interpreting 0

1
3‰edge.!=0/D !

1
3 =2

4
3 .

In order to prove the corresponding statements for the interpolating densities �˛;t , we first have to
establish a quantitative understanding of the counting function nr;t and its inverse. We claim that for
r D ˛; �; � they satisfy, for 0�E � ı�, 0� s � ı��,

nr;t .E/�min

(
E
3
2

�
1
6

r;t

; E
4
3

)
; 'r;t .s/�maxfs

3
4 ; s

2
3�

1
9

r;tg;
'r;t .s/

'�;t .s/
�min

(
'
1
3

�;t
.s/;

'
1
2

�;t
.s/

�
1
6

�;t

)
(4-9a)

for t � t� and

nr;t .E/�maxfE
4
3 ; E�r;t .mr;t /g; 'r;t .s/�min

�
s
3
4 ;

s

�r;t .mr;t /

�
;

'r;t .s/

'�;t .s/
�min

(
'
1
3

�;t
.s/;

'�;t .s/

�2r;t .mr;t /
;
'2
�;t
.s/

�
11
2

r;t .mr;t /

) (4-9b)

for t � t�.

Proof of (4-9). We begin with the proof of (4-9a) for r D �;�. Recall that the shape function ‰edge

satisfies the scaling �
1
3‰edge.!=�/�minf!

1
3 ; !

1
2 =�

1
6 g. We first find by elementary integration thatZ q

0

min
�
!
1
3 ;
!
1
2

�
1
6

�
d! D

9q
4
3 minfq;�g

1
6 �minfq;�g

3
2

12�
1
6

�min
�
q
3
2

�
1
6

; q
4
3

�
;

from which we conclude the first relation in (4-9a), and by inversion also the second relation. Together
with the estimate for the error integral for ��;t .e

C

�;t
C!/� ��;t .e

C
�;t C!/.minf!

2
3 ; !=�

1
3

�;t
g,Z q

0

min
�
!
2
3 ;

!

�
1
3

�
d! D

6q
5
3 minfq;�g

1
3 �minfq;�g2

10�
1
3

�min
�
q2

�
1
3

; q
5
3

�
;

we can thus conclude also the third relation in (4-9a).
We now turn to the case t > t� where both densities ��;t ; ��;t exhibit a small local minimum. We first

record the elementary integralZ q

0

�
�Cmin

�
!
1
3 ;
!2

�5

��
d! D

q
4
3 minf�3; qg

5
3 C 12q�6� 5minfq; �3g3

12�5
�maxfq

4
3 ; q�g
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for q; � � 0 and easily conclude the first two relations in (4-9b). For the error integral we obtainZ q

0

min
�
!
1
3 ;
!2

�5

��
min

�
�
1
2 ;
�4

!

�
Cmin

�
!
1
3 ;
!2

�5

��
d! �min

�
q
5
3 ;
q2

�
;
q3

�
9
2

�
;

from which the third relation in (4-9b) follows. Finally, the claims (4-9a) and (4-9b) for r D ˛ follow
immediately from Definition 4.1 and the corresponding statements for r D �;�. This completes the proof
of (4-9). �

We now turn to the density �˛;t for which the claims (4-6a) and (4-6c) follow immediately from
Definition 4.1 and the corresponding statements for ��;t and ��;t . For t � t� we now continue by
differentiating E D 'r;t .nr;t .E// to obtain

�˛;t .e
C
˛;t C'˛;t .s//D

1

'0˛;t .s/
D

1

˛'0
�;t
.s/C .1�˛/'0�;t .s/

D

�
˛

��;t .e
C

�;t
C'�;t .s//

C
1�˛

��;t .e
C
�;t C'�;t .s//

��1

D ��;t .e
C

�;t
C'�;t .s//

�
˛C .1�˛/

��;t .e
C

�;t
C'�;t .s//

��;t .e
C
�;t C'�;t .s//

��1
;

from which we can easily conclude (4-6b) for r D ˛ together with (4-6b) for r D � and (4-9a). The proof
of (4-6d) for r D ˛ follows by the same argument and replacing eCr;t by mr;t . This finishes the proof of
Lemma 4.2 �

Proof of Lemma 4.3. By differentiating we find

�0˛;t .e
C
˛;tC'˛;t .s//

�˛;t .e
C
˛;tC'˛;t .s//

D�
˛'00
�;t
.s/C.1�˛/'00�;t .s/

.˛'0
�;t
.s/C.1�˛/'0�;t .s//

2

D

�̨
�0
�;t
.eC
�;t
C'�;t .s//

�3
�;t
.eC
�;t
C'�;t .s//

C.1�˛/
�0�;t .e

C
�;tC'�;t .s//

�3�;t .e
C
�;tC'�;t .s//

�

�

�
˛

��;t .e
C

�;t
C'�;t .s//

C
1�˛

��;t .e
C
�;tC'�;t .s//

��2
;

from which we conclude the claimed bound (4-7a) together with the fact that the densities �� and ��
fulfil the same bound according to [Alt et al. 2018a, Remark 10.7], and the estimates from Lemma 4.2.
Similarly, the bound in (4-8a) follows by the same argument by replacing e˙˛;t by m˛;t . The bound
j�0j � ��2 on the derivative implies 1

3
-Hölder continuity.

We now turn to the claimed bound on the Stieltjes transform and compute

m˛;t .e
C
˛;t C x/D

Z ı�

0

�˛;t .e
C
˛;t C!/

! � x
d!C

Z 0

�ı�

�˛;t .e
�
˛;t C!/

! ��˛;t � x
d!;
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out of which for x > 0 the first term can be bounded byZ ı�

0

�˛;t .e
C
˛;t C!/

! � x
d! .

Z ı�

0

j! � xj
1
3

! � x
d!C

Z ı�

2x

�˛;t .e
C
˛;t C x/

! � x
d! . jxj

1
3 jlog xjC jı�� xj

1
3 ;

while the second term can be bounded byˇ̌̌̌Z 0

�ı�

�˛;t .e
�
˛;t C!/

! ��˛;t � x
d!
ˇ̌̌̌
. jı���˛;t � xj

1
3 Cj�˛;t C xj

1
3 jlog.�˛;t C x/j;

both using the 1
3

-Hölder continuity of �˛;t . The corresponding bounds for x < 0 are similar, completing
the proof of the first bound in (4-7b).

The proof of the first bound in (4-8b) is very similar and follows from

jm˛;t .m˛;t C x/j.
ˇ̌̌̌Z ı�

�ı�

j! � xj
1
3

! � x
d!
ˇ̌̌̌
C

ˇ̌̌̌Z
Œ�ı�;ı��nŒx� 12 ı�;xC

1
2
ı��

�˛;t .m˛;t C x/

! � x
d!
ˇ̌̌̌
. 1:

We now turn to the second bound in (4-7b), which is only nontrivial in the case x > 0. To simplify
the following integrals we temporarily use the short-hand notations m D m˛;t , eC D eC˛;t , � D �˛;t ,
�D�˛;t and compute

m.eCC xCy/�m.eCC x/D

Z ı�

���ı�

�.eCC!/

! � x�y
d! �

Z ı�

���ı�

�.eCC!/

! � x
d!;

where we now focus on the integration regime ! � 0 as this is the regime containing the two critical
singularities. We first observe thatZ ı��y

�y

�.eCC!Cy/

! � x
d! �

Z ı�

0

�.eCC!/

! � x
d!

D

Z ı�

0

�.eCC!Cy/� �.eCC!/

! � x
d!C

Z 0

�y

�.eCC!Cy/

! � x
d!CO.y/;

where the second integral is easily bounded byZ 0

�y

�.eC!Cy/

! � x
d! .

1

x
minfy

4
3 ; y

3
2��

1
6 g.

y

�.eCC x/.�.eCC x/C�
1
3 /
:

We split the remaining integral into three regimes
�
0; 1
2
x
�
,
�
1
2
x; 3
2

�
and

�
3
2
x; ı�

�
. In the first one we use

(4-7a) as well as the scaling relation �.eCC!/�minf!
1
3 ; !

1
2��

1
6 g to obtainZ 1

2
x

0

�.eCC!Cy/� �.eCC!/

! � x
d! .

y

x

Z 1
2
x

0

1

�.eCC!/.�.eCC!/C�
1
3 /

d!

.
y

x
min

�
x
1
2

�
1
6

; x
1
3

�
�

y

maxfx
2
3 ; x

1
2�

1
6 g

.
y

�.eCC x/.�.eCC x/C�
1
3 /
:
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The integral in the regime
�
3
2
x; ı�

�
is completely analogous and contributes the same bound. Finally, we

are left with the regime
�
1
2
x; 3
2
x
�

which we again subdivide into Œx�y; xCy� and
�
1
2
x; 3
2
x
�
nŒx�y; xCy�.

In the first of those we haveZ xCy

x�y

�.eCC!Cy/��.eCC!/

!�x
d!D

Z xCy

x�y

�.eCC!Cy/��.eCCxCy/��.eCC!/C�.eCCx/

!�x
d!

.
y

�.eCCx/.�.eCCx/C�
1
3 /
;

while in the second one we obtainZ
Œ 1
2
x; 3
2
x�nŒx�y;xCy�

�.eCC!Cy/� �.eCC xCy/� �.eCC!/C �.eCC x/

! � x
d!

.
y

�.eCC x/.�.eCC x/C�
1
3 /

Z
Œ 1
2
x; 3
2
x�nŒx�y;xCy�

j! � xj�1 d!

.
yjlogyj

�.eCC x/.�.eCC x/C�
1
3 /
:

Collecting the various estimates completes the proof of (4-7b).
The second bound in (4-8b) follows by a similar argument and we focus on the most critical termZ 1
2
ı�

� 1
2
ı�

�.mC!Cy/� �.mC!/

! � x
d! D

�Z x�y

� 1
2
ı�

C

Z xCy

x�y

C

Z 1
2
ı�

xCy

�
�.mC!Cy/� �.mC!/

! � x
d!:

Here we can bound the middle integral byˇ̌̌̌Z xCy

x�y

�.mC!Cy/��.mC!/

!�x
d!
ˇ̌̌̌
D

ˇ̌̌̌Z xCy

x�y

�.mC!Cy/��.mCxCy/��.mC!/C�.mCx/

!�x
d!
ˇ̌̌̌

.
jyj

�2.mCx/
;

while for the first integral we haveˇ̌̌̌Z x�y

� 1
2
ı�

�.mC!Cy/� �.mC xCy/� �.mC!/C �.mC x/

! � x
d!
ˇ̌̌̌
.

jyj

�2.mC x/

Z x�y

� 1
2
ı�

1

j! � xj
d!

.
jyjjlogjyjj
�2.mC x/

:

The third integral is completely analogous, completing the proof of (4-8b). �

4A. Quantiles. Finally we consider the locations of quantiles of �r;t for r D ˛; �; � and their fluctuation
scales. For 0� t � t� we define the shifted quantiles Or;i .t/, and for t� � t � 2t� the shifted quantiles4

4We use a separate variable name L because in Section 8 the name O is used for the quantiles with respect to the base point Qm
instead of m.
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Lr;i .t/ in such a way thatZ Or;i .t/
0

�r;t .e
C
r;t C!/ d! D

i

N
;

Z Lr;i .t/
0

�r;t .mr;t C!/ d! D
i

N
; ji j �N: (4-10)

Notice that for i D 0 we always have Or;0.t/D Lr;0.t/D 0. We will also need to define the semiquantiles,
distinguished from the quantiles by a star:Z O�

r;i
.t/

0

�r;t .e
C
r;t C!/ d! D

i � 1
2

N
;

Z L�
r;i
.t/

0

�r;t .mr;t C!/ d! D
i � 1

2

N
; 1� i �N; (4-11)Z O�

r;i
.t/

0

�r;t .e
C
r;t C!/ d! D

i C 1
2

N
;

Z L�
r;i
.t/

0

�r;t .mr;t C!/ d! D
i C 1

2

N
; �N � i � �1: (4-12)

Note that the definition is slightly different for positive and negative i ’s; in particular O�i 2 Œ Oi�1; Oi � for
i � 1 and O�i 2 Œ Oi ; OiC1� for i < 0. The semiquantiles are not defined for i D 0.

Lemma 4.4. For 1� ji j �N, r D ˛; �; � and 0� t � t� we have

Or;i .t/� sgn.i/max
��
ji j

N

�3
4

;

�
ji j

N

�2
3

.t�� t /
1
6

�
�

�
0; i > 0;

�r;t ; i < 0;

Or;i .t/D O�;i .t/

�
1CO

�
.t�� t /

1
3 Cmin

�
O�;i .t/

1
2

.t�� t /
1
4

; O�;i .t/
1
3

���
;

(4-13a)

while for t� � t � 2t� we have

Lr;i .t/� sgn.i/min
��
ji j

N

�3
4

;
ji j

N
.t�� t /

� 1
2

�
;

Lr;i .t/D L�;i .t/

�
1CO

�
.t�� t /

1
2 Cmin

�
L�;i .t/

2

.t�� t /
11
4

;
L�;i .t/

t�� t
; L�;i .t/

1
3

���
:

(4-13b)

Moreover, the quantiles of �˛;t are the convex combination

O˛;i .t/D ˛ O�;i .t/C .1�˛/ O�;i .t/; L˛;i .t/D ˛ L�;i .t/C .1�˛/ L�;i .t/: (4-13c)

Proof. The proof follows directly from the estimates in (4-9a) and (4-9b). The relation (4-13c) follows
directly from (4-2) in the definition of the ˛-interpolating density. �

4B. Movement of edges, quantiles and minima. For the analysis of the Dyson Brownian motion it is
necessary to have a precise understanding of the movement of the reference points e˙r;t and mr;t , r D �;�.
For technical reasons it is slightly easier to work with an auxiliary quantity Qmr;t which is very close
to mr;t . According to [Erdős et al. 2018, Lemma 5.1] the minimum mr;t can approximately be found by
solving the implicit equation

Qmr;t D cr � .t � t�/<mr;t . Qmr;t /; Qmr;t 2 R; r D �;�: (4-14a)

The explicit relation (4-14a) is the main reason why it is more convenient to study the movement of Qmt
rather than the one of mt . We claim that Qmr;t is indeed a very good approximation for mr;t in the sense that
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jmr;t � Qmr;t j. .t � t�/
3
2
C 1
4 ; =mr;t . Qmr;t /D 

2.t � t�/
1
2 CO.t � t�/; r D �;�: (4-14b)

Proof of (4-14b). The first claim in (4-14b) is a direct consequence of [Erdős et al. 2018, Lemma 5.1].
For the second claim we refer to [Erdős et al. 2018, equation (89a)], which implies

=mr;t . Qmr;t /D .t � t�/
1
2 2Œ1CO..t � t�/

1
3 Œ=mr;t . Qmr;t /�

1
3 /�D 2.t � t�/

1
2 CO.t � t�/: �

For the t-derivative of (semi-)quantiles r;t , i.e., points such that
R r;t
�1

�r;t .x/ dx is constant in t , as
well as for the minima Qmr;t , we have the explicit relations

d
dt
r;t D�<mr;t .r;t /; (4-14c)

d
dt
Qmr;t D�<mr;t . Qmr;t /CO.t � t�/; t� � t � 2t�: (4-14d)

In particular, for the spectral edges it follows from (4-14c) that

d
dt

eCr;t D�mr;t .e
C
r;t /; 0� t � t�: (4-14e)

Proof of (4-14c)–(4-14e). For the proof of (4-14c) we first recall that from the defining equation (4-1) of
the semicircular flow it follows that the Stieltjes transform mDmt .�/ of �t satisfies the Burgers equation

PmDmm0 D 1
2
.m2/0; (4-15)

where prime denotes the d
d� derivative and dot denotes the d

dt derivative. Thus

Pr;t D�
1

�r;t .r;t /
=

Z r;t

�1

Pmr;t .E/ dE D�
1

2�r;t .r;t /
=

Z r;t

�1

.m2r;t /
0.E/ dE

D�
=m2r;t .r;t /

2=mr;t .r;t /
D�<mr;t .r;t /

follows directly from differentiating
R r;t
�1

�r;t .x/ dx � const.
For (4-14d) we begin by computing the integral

m0r;t�.cr C i�/D
Z

R

�t�.cr C x/

.x� i�/2
dx D

Z
R

p
3

4
3 jxj

1
3 CO.jxj

2
3 /

2�.x� i�/2
dx D


4
3

3�
2
3

CO.��
1
3 /; (4-16)

so that by the definition mr;t .z/Dmr;t�.zC .t � t�/mr;t .z// of the free semicircular flow,

d
dt
mr;t . Qmr;t /Dm

0
r;t�
. Qmr;t C .t � t�/mr;t . Qmr;t //

�
d
dt
Qmr;t Cmr;t . Qmr;t /C .t � t�/

d
dt
mr;t . Qmz;t /

�
D

�
1

3.t � t�/
CO..t � t�/�

1
2 /

��
d
dt
Qmr;t Cmr;t . Qmr;t /C .t � t�/

d
dt
mr;t . Qmr;t /

�
D i
�

1

3.t � t�/
CO..t � t�/�

1
2 /

��
=mr;t . Qmr;t /C .t � t�/

d
dt
=mr;t . Qmr;t /

�
D

�
i

2

3.t � t�/
1
2

C
i
3

d
dt
=mr;t . Qmr;t /

�
Œ1CO..t � t�/

1
2 /�:
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Here we used (4-14a), (4-14b) together with (4-16) in the second step. The third step follows from taking
the t-derivative of (4-14a). The ultimate inequality is again a consequence of (4-14b). By considering
real and imaginary parts separately it thus follows that

d
dt
=mr;t . Qmr;t /D

2

2.t � t�/
1
2

Œ1CO..t � t�/
1
2 /�;

d
dt
<mr;t . Qmr;t /DO.1/;

and therefore (4-14d) follows by differentiating (4-14a). �

4C. Rigidity scales. In this section we compute, up to leading order, the fluctuations of the eigenvalues
around their classical locations, i.e., the quantiles defined in Section 4A. Indeed, the computation of the
fluctuation scale for the particles xi .t/, yi .t/, defined in (5-5), (5-7), will be one of the fundamental inputs
to prove rigidity for the interpolated process in Section 6. The fluctuation scale ��f .�/ of any density
function �.!/ around � is defined via Z �C�

�
f .�/

���
�
f .�/

�.!/ d! D
1

N

for � 2 supp � and by the value �f.�/ WD �f.�
0/, where � 0 2 supp � is the edge closest to � for � 62 supp �.

If this edge is not unique, an arbitrary choice can be made between the two possibilities. From (4-13a)
we immediately obtain for 0� t � t� and 1� i �N that

�
�r;t
f .eCr;t C Or;˙i .t//�max

�
�
1
9

r;t

N
2
3 i

1
3

;
1

N
3
4 i

1
4

�
�max

�
.t�� t /

1
6

N
2
3 i

1
3

;
1

N
3
4 i

1
4

�
; r D ˛; �; �; (4-17a)

while for t� � t � 2t�, 1� ji j �N we obtain from (4-13b) that

�
�r;t
f .mr;tCLr;i .t//�min

�
1

N�r;t .mr;t /
;

1

N
3
4 ji j

1
4

�
�min

�
1

N.t�t�/
1
2

;
1

N
3
4 ji j

1
4

�
; rD˛;�;�: (4-17b)

In the second relations we used (4-6a) and (4-6c). For reference purposes we also list for 0 < i; j �N

the bounds

j Or;i .t/� Or;j .t/j �max
�
�
1
9

r;t ji � j j

N
2
3 .i C j /

1
3

;
ji � j j

N
3
4 .i C j /

1
4

�
(4-18)

in the case t � t� and

j Lr;i .t/� Lr;j .t/j �min
�
ji � j j

�r;t .mr;t /N
;
ji � j j

N
3
4 .i C j /

1
4

�
(4-19)

in the case t > t�. Furthermore we have

�r;t .e
C
r;t C Or;i .t//�min

�
i
1
3

N
1
3 .t�� t /

1
6

;
i
1
4

N
1
4

�
; (4-20)

�r;t .mr;t C Lr;i .t//�max
�
�r;t .mr;t /;

i
1
4

N
1
4

�
: (4-21)
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4D. Stieltjes transform bounds. It follows from (4-6b) and (4-6d) that also the real parts of the Stieltjes
transformsm˛;t ,m�;t ,m�;t are close. We claim that for rD�; ˛ and � 2 Œ�ı�; ı�� and 0� t � t� we haveˇ̌
<Œ.mr;t .e

C
r;t C �/�mr;t .e

C
r;t //� .m�;t .e

C
�;t C �/�m�;t .e

C
�;t //�

ˇ̌
. j�j

1
3 Œj�j

1
3 C .t�� t /

1
3 �jlogj�jjC .t�� t /

11
18 1
�
� � �1

2
��;t

�
; (4-22a)

while for t� � t � 2t� we haveˇ̌
<Œ.mr;t .mr;t C �/�mr;t .mr;t //� .m�;t .m�;t C �/�m�;t .m�;t //�

ˇ̌
. Œj�j

1
3 .t � t�/

1
4 C .t�� t /

3
4 Cj�j

2
3 �jlogj�jj: (4-22b)

Proof of (4-22). We first recall from Lemma 4.3 that also the density �˛;t is 1
3

-Hölder continuous, which
we will use repeatedly in the following proof. We begin with the proof of (4-22a) and compute for
r D ˛; �; �

<Œmr;t .e
C
r;t C �/�mr;t .e

C
r;t /�D

Z 1
0

��r;t .e
C
r;t C!/

.! � �/!
d!C

Z 1
0

��r;t .e
�
r;t �!/

.!C�r;t C �/.!C�r;t /
d!: (4-23)

For � > 0 the first of the two terms is the more critical one. Our goal is to obtain a bound onZ 1
0

�

.! � �/!
Œ��;t .e

C

�;t
C!/� ��;t .e

C
�;t C!/� d!

by using (4-6b). Let 0 < � < 1
2
� be a small parameter for which we separately consider the two critical

regimes 0� ! � � and j� �!j � �. We use

�r;t .e
C
r;t C!/. !

1
3 and �r;t .e

C
r;t C!/D �r;t .e

C
r;t C �/CO.j! � �j

1
3 /; r D �;�; (4-24)

from the 1
3

-Hölder continuity of �r;t and the fact that the integral over 1=.! � �/ from � � � to �C �
vanishes by symmetry to estimate, for r D �;�,ˇ̌̌̌Z �

0

�

.! � �/!
�r;t .e

C
r;t C!/ d!

ˇ̌̌̌
.
Z �

0

j!j�
2
3 d! . �

1
3 ;

ˇ̌̌̌Z �C�

���

�
�r;t .e

C
r;t C!/

! � �
�
�r;t .e

C
r;t C!/

!

�
d!
ˇ̌̌̌
.
Z �C�

���

j! � �j�
2
3 d!C ���

2
3 . �

1
3 C ���

2
3 :

Next, we consider the remaining integration regimes where we use (4-6b) and (4-24) to estimateˇ̌̌̌Z ���

�

�

.! � �/!
Œ�r;t .e

C
r;t C!/� ��;t .e

C
�;t C!/� d!

ˇ̌̌̌
.
Z 1

2
�

�

!
1
3 .t�� t /

1
3 C!

2
3

!
d!C

Z ���

1
2
�

�
�
1
3 .t�� t /

1
3

! � �
C

�
2
3

! � �

�
d!

. �
1
3 ..t�� t /

1
3 C �

1
3 /jlog �j
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and similarlyˇ̌̌̌Z 1
�C�

�

.! � �/!
Œ�r;t .e

C
r;t C!/� ��;t .e

C
�;t C!/� d!

ˇ̌̌̌
. �

1
3 ..t�� t /

1
3 C �

1
3 /jlog �j:

We now consider the difference of the first terms in (4-23) for r D �;� and for � < 0, where the bound is
simpler because the integration regime close to � does not have to be singled out. Using (4-6b) we findˇ̌̌̌Z 1

0

�

.! � �/!
Œ�r;t .e

C
r;t C!/� ��;t .e

C
�;t C!/� d!

ˇ̌̌̌
. j�j

2
3 C .t�� t /

1
3 j�j

1
3 :

Finally, it remains to consider the difference of the second terms in (4-23). We first treat the regime
where � � �3

4
�r;t and split the difference into the sum of two termsˇ̌̌̌Z 1

0

�
��r;t .e

�
r;t �!/

.!C�r;t C �/.!C�r;t /
�

��r;t .e
�
r;t �!/

.!C��;t C �/.!C��;t /

�
d!
ˇ̌̌̌

� j�jj�r;t ���;t j

Z 1
0

�r;t .e
�
r;t �!/Œ2�r;t C 2!Cj�j�

.!C�r;t C �/2.!C�r;t /2
d!

.
j�r;t ���;t j

�
2
3

r;t

�
j�r;t ���;t j

.�r;t Cj�j/
2
3

. .t�� t /
1
3 j�j

1
3

and ˇ̌̌̌Z 1
0

�
��r;t .e

�
r;t �!/

.!C��;t C �/.!C��;t /
�

���;t .e
�
�;t �!/

.!C��;t C �/.!C��;t /

�
d!
ˇ̌̌̌
. j�j

2
3 C .t�� t /

1
3 j�j

1
3 :

Here we used �r;t .e�r;t � !/ . !
1
3 , as well as (4-6a) for the first and (4-6a), (4-6b) for the second

computation. By collecting the various error terms and choosing � D �2 we conclude (4-22a).
We define � WD �� ��r;t . Then we are left with the regime � < �3

4
�r;t or equivalently � > �1

4
�r;t

and use
mr;t .e

C
r;t C �/�mr;t .e

C
r;t /D .mr;t .e

�
r;t � �/�mr;t .e

�
r;t //C .mr;t .e

�
r;t /�mr;t .e

C
r;t // ;

as well as

m�;t .e
C
�;t C �/�m�;t .e

C
�;t /D

�
m�;t .e

�
�;t � �C��;t ��r;t /�m�;t .e

�
�;t � �/

�
C
�
m�;t .e

�
�;t � �/�m�;t .e

�
�;t /

�
C
�
m�;t .e

�
�;t /�m�;t .e

C
�;t /

�
(4-25)

in the left-hand side of (4-22a). Thus we have to estimate the three expressionsˇ̌
<Œ.mr;t .e

�
r;t � �/�mr;t .e

�
r;t //� .m�;t .e

�
�;t � �/�m�;t .e

�
�;t //�

ˇ̌
; (4-26a)ˇ̌

<Œ.mr;t .e
�
r;t /�mr;t .e

C
r;t //� .m�;t .e

�
�;t /�m�;t .e

C
�;t //�

ˇ̌
; (4-26b)ˇ̌

<Œm�;t .e
�
�;t � �C��;t ��r;t /�m�;t .e

�
�;t � �/�

ˇ̌
: (4-26c)

In order to bound the first term we use that estimating (4-26a) for � ��3
4
�r;t is equivalent to estimating

the left-hand side of (4-22a) for � � �3
4
�r;t , i.e., the regime we already considered above. This

equivalence follows by using the reflection A ! �A of the expectation (see (3-1)) that turns every
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left edge eCz;t into a right edge e�z;t . In particular, by the analysis that we already performed (4-26a) is
bounded by j�j

1
3 Œj�j

1
3 C .t�� t /

1
3 �jlogj�jj. Since j�j � j�j, this is the desired bound.

For the second term (4-26b) we see from (4-23) that we have to estimate the difference between the
expressions Z 1

0

�r;t�r;t .e
C
r;t C!/

!.!C�r;t /
d!C

Z 1
0

�r;t�r;t .e
�
r;t �!/

!.!C�r;t /
d! (4-27)

for r D ˛; �; �. The summands in (4-27) are treated analogously, so we focus on the first summand. We
split the integrand of the difference between the first summands and estimate

.�r;t ���;t /�r;t .e
C
r;t C!/

.!C�r;t /.!C��;t /
C

��;t

!.!C��;t /
.�r;t .e

C
r;t C!/� ��;t .e

C
�;t C!//.

�.!
1
3 C .t�� t /

1
3 /

!
2
3 .!C�/

;

where � WD�r;t ���;t and we used (4-6a), (4-6b) and the first inequality of (4-24). Thusˇ̌̌̌Z 1
0

�r;t�r;t .e
C
r;t C!/

!.!C�r;t /
d! �

Z 1
0

��;t��;t .e
C
�;t C!/

!.!C��;t /
d!
ˇ̌̌̌
.�

2
3 C�

1
3 .t�� t /

1
3 :

Since j�j&�, this finishes the estimate on (4-26b).
For (4-26c) we use the 1

3
-Hölder regularity of m�;t and (4-6a) to get an upper bound

�
1
3 .t�� t /

1
9 . .t�� t /

11
18 :

This finishes the proof of (4-22a).
We now turn to the case of a small local minimum in (4-22b) and compute for r D ˛; �; � and � ¤ 0

<Œmr;t .mr;t C �/�mr;t .mr;t /�D

Z
R

��r;t .mr;t C!/

.! � �/!
d!:

Without loss of generality, we consider the case � > 0, as � < 0 is completely analogous. As before,
we first pick a threshold 1

2
� � � and single out the integration over Œ��; �� and Œ� � �; �C ��. From the

1
3

-Hölder continuity of �r;t we have, for r D �;�,

�r;t .mr;t C!/D �r;t .mr;t C �/CO.j� �!j
1
3 /

and thereforeˇ̌̌̌Z �

��

�r;t .mr;t C!/

! � �
d!
ˇ̌̌̌
.
�

�
;

ˇ̌̌̌Z �

��

�r;t .mr;t C!/

!
d!
ˇ̌̌̌
.
Z �

��

j!j�
2
3 d! . �

1
3

and ˇ̌̌̌Z �C�

���

�r;t .mr;t C!/

! � �
d!
ˇ̌̌̌
.
Z �C�

���

j! � �j�
2
3 d! . �

1
3 ;

ˇ̌̌̌Z �C�

���

�r;t .mr;t C!/

!
d!
ˇ̌̌̌
.
�

�
:

We now consider the difference between �r;t and ��;t for which we have

j�r;t .mr;t C!/� ��;t .m�;t C!/j. .t � t�/j!j
1
3 .t � t�/

1
4 C .t � t�/

3
4 Cj!j

2
3
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from (4-6d), (4-6c) and the 1
3

-Hölder continuity of �r;t . Thus we can estimateˇ̌̌̌�Z ��
�1

C

Z ���

�

C

Z 1
�C�

�
�
�
��;t .mr;t C!/� �r;t .mr;t C!/

�
.! � �/!

d!
ˇ̌̌̌

.
�Z ��
�1

C

Z ���

�

C

Z 1
�C�

�
�
�
j!j

1
3 .t � t�/

1
4 C .t � t�/

3
4 Cj!j

2
3

�
j! � �j!

d!

. jlog �jŒ�
1
3 .t � t�/

1
4 C .t � t�/

3
4 C �

2
3 �:

We again choose � D �2 and by collecting the various error estimates can conclude (4-22b). �

5. Index matching for two DBM

For two real symmetric matrix-valued standard (GOE) Brownian motions B.�/
t ;B

.�/
t 2 RN�N we define

the matrix flows

H
.�/
t WDH

.�/
CB

.�/
t ; H

.�/
t WDH .�/

CB
.�/
t : (5-1)

In particular, by (5-1) it follows that

H
.�/
t

d
DH .�/

C
p
tU .�/; H

.�/
t

d
DH .�/

C
p
tU .�/ (5-2)

for any fixed 0� t � t1, where U .�/ and U .�/ are GOE matrices. In (5-2) with X d
D Y we denote that

the two random variables X and Y are equal in distribution.
We will prove Proposition 3.1 by comparing the two Dyson Brownian motions for the eigenvalues of

the matrices H .�/
t and H .�/

t for 0� t � t1; see (5-3)–(5-4) below. To do this, we will use the coupling
idea of [Bourgade and Yau 2017; Bourgade et al. 2016], where the DBMs for the eigenvalues of H .�/

t and
H
.�/
t are coupled in such a way that the difference of the two DBMs obeys a discrete parabolic equation

with good decay properties. In order to analyse this equation we consider a short-range approximation
for the DBM, first introduced in [Erdős and Yau 2015]. Coupling only the short-range approximation of
the DBMs leads to a parabolic equation whose heat kernel has a rapid off-diagonal decay by finite speed
of propagation estimates. In this way the kernels of both DBMs are locally determined and thus can
be directly compared by optimal rigidity since locally the two densities, hence their quantiles, are close.
Technically it is much easier to work with a one-parameter interpolation between the two DBMs and
consider its derivative with respect to the parameter, as introduced in [Bourgade and Yau 2017]; the proof
of the finite-speed propagation for this dynamics does not require us to establish level repulsion, unlike in
several previous works [Erdős and Schnelli 2017; Erdős and Yau 2015; Landon and Yau 2017]. However,
it requires us to establish (almost) optimal rigidity for the interpolating dynamics as well. Note that optimal
rigidity is known forH .�/

t andH .�/
t from [Erdős et al. 2018], see Lemma 6.1, but not for the interpolation.

For a complete picture, we mention that in the works [Erdős and Schnelli 2017; Erdős and Yau 2015;
Landon and Yau 2017] on bulk gap universality, beyond heat kernel and Sobolev estimates, a version of
the De Giorgi–Nash–Moser parabolic regularity estimate, which used level repulsion in a more substantial
way than finite speed of propagation, was also necessary. Fixed energy universality in the bulk can be



640 GIORGIO CIPOLLONI, LÁSZLÓ ERDŐS, TORBEN KRÜGER AND DOMINIK SCHRÖDER

proven via homogenisation without De Giorgi–Nash–Moser estimates; hence level repulsion can also be
avoided [Landon et al. 2019]. In a certain sense, the situation at the edge/cusp is easier than the bulk regime
since relatively simple heat kernel bounds are sufficient for local relaxation to equilibrium. In another
sense, due to singularities in the density, the edge regime and especially the cusp regime are more difficult.

In Section 6 we will establish rigidity for the interpolating process by DBM methods. Armed with
this rigidity, in Section 7 we prove Proposition 3.1 for the small gap and the exact cusp case, i.e., t1 � t�.
Some estimates are slightly different for the small minimum case, i.e., t� � t1 � 2t�; the modifications
are given in Section 8. We recall that t� is the time at which both H .�/

t�
and H .�/

t�
have an exact cusp.

Some technical details on the corresponding Sobolev inequality and heat kernel estimates, as well as
finite speed of propagation and short-range approximation, are deferred to the Appendix; these are similar
to the corresponding estimates for the edge case (see [Bourgade et al. 2014] and [Landon and Yau 2017],
respectively).

In the rest of this section we prepare the proof of Proposition 3.1 by setting up the appropriate framework.
While we are interested only in the eigenvalues near the physical cusp, the DBM is highly nonlocal, so we
need to define the dynamics for all eigenvalues. In the setup of Proposition 3.1 we could easily assume
that the cusps for the two matrix flows are formed at the same time and their slope parameters coincide —
these could be achieved by a rescaling and a trivial time shift. However, the number of eigenvalues
to the left of the cusp may macroscopically differ for the two ensembles, which would mean that the
labels of the ordered eigenvalues near the cusp would not be constant along the interpolation. To resolve
this discrepancy, we will pad the system with N fictitious particles in addition to the original flow of
N eigenvalues, much as in [Landon et al. 2019], giving sufficient freedom to match the labels of the
eigenvalues near the cusp. These artificial particles will be placed very far from the cusp regime and from
each other so that their effect on the dynamics of the relevant particles is negligible.

With the notation of Section 4, we let ��;t , ��;t denote the (self-consistent) densities at time 0� t � t1
of H .�/

t and H .�/
t , respectively. In particular, ��;0 D �� and ��;0 D ��, where ��, �� are the self-

consistent densities ofH .�/ andH .�/ and ��;t , ��;t are their semicircular evolutions. For each 0� t � t�
both densities ��;t , ��;t have a small gap, denoted by Œe�

�;t
; eC
�;t
� and Œe��;t ; e

C
�;t �, and we let

��;t WD eC
�;t
� e��;t ; ��;t WD eC�;t � e��;t

denote the lengths of these gaps. In the case of t�� t � 2t�, the densities ��;t , ��;t have a small minimum
denoted by m�;t and m�;t respectively. Since we always assume 0� t � t1� 1, both H .�/

t and H .�/
t

will always have exactly one physical cusp near c� and c�, respectively, using that the Stieltjes transform
of the density is a Hölder continuous function of t ; see [Alt et al. 2018a, Proposition 10.1].

Let i� and i� be the indices defined byZ e�
�;0

�1

�� D
i�� 1

N
;

Z e��;0

�1

�� D
i�� 1

N
:

By band rigidity (see Remark 2.6 in [Alt et al. 2018b]) i� and i� are integers. Note that by the explicit
expression of the density in (2-3a)–(2-3b) it follows that cN � i�; i� � .1� c/N with some small c > 0,
because the density on both sides of a physical cusp is macroscopic.
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We let �i .t/ and �i .t/ denote the eigenvalues of H .�/
t and H .�/

t respectively. Let fBigi2Œ�N;N�nf0g
be a family of independent standard (scalar) Brownian motions. It is well known [Dyson 1962] that the
eigenvalues of H .�/

t satisfy the equation for Dyson Brownian motion, i.e., the system of coupled SDEs

d�i D

r
2

N
dBi�i�C1C

1

N

X
j¤i

1

�i ��j
dt (5-3)

with initial conditions �i .0/D �i .H .�//. Similarly, for the eigenvalues of H .�/
t we have

d�i D

r
2

N
dBi�i�C1C

1

N

X
j¤i

1

�i ��j
dt (5-4)

with initial conditions �i .0/D�i .H .�//. Note that we chose the Brownian motions for �i and �iCi��i�
to be identical. This is the key ingredient for the coupling argument, since in this way the stochastic
differentials will cancel when we take the difference of the two DBMs or we differentiate it with respect
to an additional parameter.

For convenience of notation, we will shift the indices so that the same index labels the last quantile
before the gap in �� and ��. This shift was already prepared by choosing the Brownian motions for �i�
and �i� to be identical. We achieve this shift by adding N “ghost” particles very far away and relabelling,
as in [Landon et al. 2019]. We thus embed �i and �i into the enlarged processes fxigi2Œ�N;N�nf0g and
fyigi2Œ�N;N�nf0g. Note that the index 0 is always omitted.

More precisely, the processes xi are defined by the SDE (extended Dyson Brownian motion)

dxi D

r
2

N
dBi C

1

N

X
j¤i

1

xi � xj
dt; 1� ji j �N; (5-5)

with initial data

xi .0/D

8̂̂̂<̂
ˆ̂:
�N 200C iN if �N � i � �i�;
�iCi�.0/ if 1� i� � i � �1;

�iCi��1.0/ if 1� i �N C 1� i�;

N 200C iN if N C 2� i� � i �N;

(5-6)

and the yi are defined by

dyi D

r
2

N
dBi C

1

N

X
j¤i

1

yi �yj
dt; 1� ji j �N; (5-7)

with initial data

yi .0/D

8̂̂̂<̂
ˆ̂:
�N 200C iN if �N � i � �i�;
�iCi�.0/ if 1� i� � i � �1;

�iCi��1.0/ if 1� i �N C 1� i�;

N 200C iN if N C 2� i� � i �N:

(5-8)

The summations in (5-5) and (5-7) extend to all j with 1� jj j �N except j D i .
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The following lemma shows that the additional particles at distance N 200 have negligible effect on
the dynamics of the re-indexed eigenvalues; thus we can study the processes xi and yi instead of the
eigenvalues �i , �i . The proof of this lemma follows by Appendix C of [Landon et al. 2019].

Lemma 5.1. With very high probability the following estimates hold:

sup
0�t�1

sup
1�i�NC1�i�

jxi .t/��iCi��1.t/j �N
�100;

sup
0�t�1

sup
1�i��i�NC1�i�

jxi .t/��iCi�.t/j �N
�100;

sup
0�t�1

sup
1�i�NC1�i�

jyi .t/��iCi��1.t/j �N
�100;

sup
0�t�1

sup
1�i��i�NC1�i�

jyi .t/��iCi�.t/j �N
�100;

sup
0�t�1

x�i�.t/. �N
200; sup

0�t�1

xNC2�i�.t/&N
200;

sup
0�t�1

y�i�.t/. �N 200; sup
0�t�1

yNC2�i�.t/&N
200:

Remark 5.2. For notational simplicity we assumed that H .�/ and H .�/ have the same dimensions,
but our proof works as long as the corresponding dimensions N� and N� are merely comparable, say
2
3
N� � N� �

3
2
N�. The only modification is that the times in (5-1) need to be scaled differently in

order to keep the strength of the stochastic differential terms in (5-3)–(5-4) identical. In particular, we
rescale the time in the process (5-3) as t 0 D .N�=N�/t , in such a way the N -scaling in front of the
stochastic differential and in front of the potential term are exactly the same in both the processes (5-3)
and (5-4); namely we may replace N with N� in both (5-3) and (5-4). Furthermore, the number of
additional “ghost” particles in the extended Dyson Brownian motion (see (5-5) and (5-7)) will be different
to ensure that we have the same total number of particles; i.e., the total number of x- and y-particles will
be 2N WD 2maxfN�; N�g, after the extension. Hence, assuming that N� �N�, there will be N DN�
particles added to the DBM of the eigenvalues of H .�/ and 2N� �N� particles added to the DBM
of H .�/. In particular, under the assumption N� �N�, we may replace (5-6) and (5-8) by

xi .0/D

8̂̂̂<̂
ˆ̂:
�N 200

� CiN� if �N�� i ��i�;
�iCi�.0/ if 1�i�� i ��1;

�iCi��1.0/ if 1� i �N�C1�i�;

N 200
� CiN� if N�C2�i�� i �N�;

yi .0/D

8̂̂̂<̂
ˆ̂:
�N 200

� CiN� if �N�� i ��i�;
�iCi�.0/ if 1�i�� i ��1;

�iCi��1.0/ if 1� i �N�C1�i�;

N 200
� CiN� if N�C2�i�� i �N�:

Then, all the proofs of Sections 5 and 6 are exactly the same as in the case N WDN� DN�, since all the
analysis of the latter sections is done in a small, order-1 neighbourhood of the physical cusp. In particular,
only the particles xi .t/, yi .t/ with 1�ji j� �minfN�; N�g, for some small fixed � >0, will matter for our
analysis. The far-away particles in the case will be treated exactly as in (5-9)–(5-13) replacing N by N�.
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We now construct the analogues of the self-consistent densities ��;t , ��;t for the x.t/ and y.t/
processes, as well as for their ˛-interpolations. We start with �x;t . Recall ��;t from Section 4, and set

�x;t .E/ WD ��;t .E/C
1

N

�i�X
iD�N

 .E � xi .t//C
1

N

NX
iDNC2�i�

 .E � xi .t//; E 2 R; (5-9)

where  is a nonnegative symmetric approximate delta-function on scale N�1, i.e., it is supported in
an N�1 neighbourhood of zero,

R
 D 1, k k1 . N and k 0k1 . N 2. Note that the total mass isR

R
�x;t D 2. For the Stieltjes transform mx;t of �x;t , we have supz2CC jmx;t .z/j � C since the same

bound holds for ��;t by the shape analysis. Note that ��;t is the semicircular flow with initial condition
��;tD0D �� by definition, but �x;t is not exactly the semicircular evolution of �x;0. We will not need this
information, but in fact, the effect of the far-away padding particles on the density near the cusp is very tiny.

Since �x;t coincides with ��;t in a big finite interval, their edges and local minima near the cusp regime
coincide; i.e., we can identify

e˙x;t D e˙�;t ; mx;t Dm�;t :

The shifted quantiles and semiquantiles Ox;i .t/; Lx;i .t/ and O�x;i .t/; L
�
x;i .t/ of �x;t are defined by the

obvious analogues of the formulas (4-10)–(4-12) except that the r subscript is replaced with x and the
indices run over the entire range 1 � ji j � N. As before, x;0.t/ D eCx;t . The unshifted quantiles are
defined by

x;i .t/D Ox;i .t/C eCx;t ; 0� t � t�; x;i .t/D Lx;i .t/Cmx;t ; t� � t � 2t�;

and similarly for the semiquantiles.
So far we explained how to construct �x;t and its quantiles from ��;t ; in exactly the same way we

obtain �y;t from ��;t with straightforward notation.
Now for any ˛ 2 Œ0; 1� we construct the ˛-interpolation of �x;t and �y;t , which we will denote by N�t .

The bar will indicate quantities related to ˛-interpolation that implicitly depend on ˛; a dependence that we
often omit from the notation. The interpolating measure will be constructed via its quantiles; i.e., we define

Ni .t/ WD˛ Ox;i .t/C.1�˛/ Oy;i .t/; N�i .t/ WD˛ O
�
x;i .t/C.1�˛/ O

�
y;i .t/; 1�ji j�N; 0� t � t�; (5-10)

and similarly for t� � t � 2t� involving L ’s. We also set the interpolating edges

Ne˙t D ˛e
˙
x;t C .1�˛/e

˙
y;t : (5-11)

Recall the parameter ı� describing the size of a neighbourhood around the physical cusp where the
shape analysis for �� and �� in Section 2 holds. Choose i.ı�/ � N such that j Nx;�i.ı�/.t/j � ı� and
j Nx;i.ı�/.t/j � ı� hold for all 0� t � 2t�. Then define, for any E 2 R, the function

N�t .E/ WD �˛;t .E/ �1
�
N�i.ı�/.t/CNe

C
t �E � Ni.ı�/.t/CNe

C
t

�
C
1

N

X
i.ı�/<ji j�N

 .E�NeCt � N
�
i .t//; (5-12)

where �˛;t is the ˛-interpolation, constructed in Definition 4.1, between ��;t .E/D�x;t .E/ and ��;t .E/D
�y;t .E/ for jEj � ı�. By this construction (using also the symmetry of  ) we know that all shifted
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semiquantiles of N�t are exactly N�i .t/. The same holds for all shifted quantiles Ni .t/ at least in the interval
Œ�ı�; ı�� since here N�t � �˛;t and the latter was constructed exactly by the requirement of linearity of
the quantiles (5-10); see (4-13c).

We also record
R
N�t D 2 and that for the Stieltjes transform Nmt .z/ of N�t we have

max
j<z�NeCt j�

1
2
ı�

j Nmt .z/j � C (5-13)

for all 0� t � 2t�. The first bound follows easily from the same boundedness of the Stieltjes transform
of �˛;t . Moreover, Nmt .z/ is 1

3
-Hölder continuous in the regime j<z � NeCt j �

1
2
ı� since in this regime

N�t D �˛;t and �˛;t is 1
3

-Hölder continuous by Lemma 4.3.

6. Rigidity for the short-range approximation

In this section we consider Dyson Brownian Motion (DBM), i.e., a system of 2N coupled stochastic
differential equations for z.t/D fzi .t/gŒ�N;N�nf0g of the form

dzi D

r
2

N
dBi C

1

N

X
j

1

zi � zj
dt; 1� ji j �N; (6-1)

with some initial condition zi .t D 0/D zi .0/, where B.s/D .B�N .s/; : : : ; B�1.s/; B1.s/; : : : ; BN .s//
is the vector of 2N independent standard Brownian motions. We use the indexing convention that all
indices i; j , etc., run from �N to N but the zero index is excluded.

We will assume that zi .0/ is an ˛-linear interpolation of xi .0/; yi .0/ for some ˛ 2 Œ0; 1�:

zi .0/D zi .0; ˛/ WD ˛xi .0/C .1�˛/yi .0/: (6-2)

Throughout this section we will refer to the process defined by (6-1) using z.t; ˛/ in order to underline
the ˛-dependence of the process. Clearly for ˛ D 0; 1 we recover the original y.t/ and x.t/ processes,
z.t; ˛D0/Dy.t/, z.t; ˛D1/D x.t/. For these processes we have the following optimal rigidity estimate,
which is an immediate consequence of [Erdős et al. 2018, Corollary 2.6] and Lemma 5.1:

Lemma 6.1. Let ri .t/ D xi .t/ or ri .t/ D yi .t/ and r D x; y. Then, there exists a fixed small � > 0,
depending only on the model parameters, such that for each 1� ji j � �N, we have

sup
0�t�2t�

jri .t/� r;i .t/j �N
��
�r;t
f .r;i .t// (6-3)

for any � > 0 with very high probability, where we recall that the behaviour of ��r;tf .r;i .t//, with r D x; y,
is given by (4-17a).

Note that, by (4-6a), (4-6c) and (4-17), for all 1� ji j � �N and for all 0� t � t� we have

�
�r;t
f .r;i .t//.

N
1
6
!1

ji j
1
4N

3
4

; (6-4)

with r D x; y.
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In particular, we know that z.0; ˛/ lie close to the quantiles (5-10) of an ˛-interpolating density
�z D N�0; see the definition in (5-12). This means that �z has a small gap Œe�z ; e

C
z � of size �z � t

3
2
�

(i.e.,
it will develop a physical cusp in a time of order t�) and it is an ˛-interpolation between �x;0 and �y;0.
Here interpolation refers to the process introduced in Section 5 that guarantees that the corresponding
quantiles are convex linear combinations of the two initial densities with weights ˛ and 1�˛, i.e.,

z;i D ˛x;i C .1�˛/y;i :

In this section we will prove rigidity results for z.t; ˛/ and for its appropriate short-range approximation.

Remark 6.2. Before we go into the details, we point out that we will prove rigidity dynamically, i.e.,
using the DBM. The route chosen here is very different from the one in [Landon and Yau 2017, Section 6],
where the authors prove a local law for short times in order to get rigidity for the short-range approximation
of the interpolated process. While it would be possible to follow the latter strategy in the cusp regime
as well, the technical difficulties are overwhelming; in fact already in the much simpler edge regime a
large part of [Landon and Yau 2017] was devoted to this task. The current proof of the optimal law at
the cusp regime [Erdős et al. 2018] heavily uses an effective mean-field condition (called flatness) that
corresponds to large time in the DBM. Relaxing this condition would require adjusting not only [Erdős
et al. 2018] but also the necessary deterministic analysis from [Alt et al. 2018a] to the short-time case.
Similar complications would have arisen if we had followed the strategy of [Adhikari and Huang 2018;
Huang and Landon 2016] where rigidity is proven by analysing the characteristics of the McKean–Vlasov
equation. The route chosen here is shorter and more interesting.

Since the group velocity of the entire cusp regime is different for �x;t and �y;t , the interpolated
process will have an intermediate group velocity. Since we have to follow the process for time scales
t �N�

1
2
C!1, much bigger than the relevant rigidity scale N�

3
4, we have to determine the group velocity

quite precisely. Technically, we will encode this information by defining an appropriately shifted process
Qz.t; ˛/ D z.t; ˛/� Shift.t; ˛/. It is essential that the shift function is independent of the indices i to
preserve the local statistics of the process. In the next section we explain how to choose the shift.

6A. Choice of the shifted process Qz. The remainder of Section 6 is formulated for the small gap regime,
i.e., for 0� t � t�. We will comment on the modifications in the small minimum regime in Section 8. To
match the location of the gap, the natural guess would be to study the shifted process zi .t; ˛/�eCz;t , where
Œe�z;t ; e

C
z;t � is the gap of the semicircular evolution �z;t of �z near the physical cusp, and approximate

zi .t; ˛/� eCz;t by the shifted semiquantiles O�z;i .t/ of �z;t . However, the evolution of the semicircular
flow t ! �z;t near the cusp is not sufficiently well understood. We circumvent this technical problem by
considering the quantiles of another approximating density N�t defined by the requirement that its quantiles
are exactly the ˛-linear combinations of the quantiles of �x;t and �y;t as described in Section 5. The
necessary regularity properties of N�t follow directly from its construction. The precise description below
assumes that 0� t � 2t�; i.e., we are in the small gap situation. For t� � t � t� an identical construction
works but the reference point eCr;t is replaced with the approximate minimum Qmr;t for r D x; y. For
simplicity we present all formulas for 0� t � t� and we will comment on the other case in Section 8.
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More concretely, for any fixed ˛ 2 Œ0; 1� recall the (semi-)quantiles from (5-10). These are the
(semi-)quantiles of the interpolating density N�D N�t defined in (5-12), and let its Stieltjes transform be
denoted by NmD Nmt . The use of a bar will indicate quantities related to this interpolation; implicitly all
quantities marked by a bar depend on the interpolation parameter ˛, and this dependence will be omitted
from the notation. Notice that N�t has a gap ŒNe�t ; Ne

C
t � near the cusp satisfying (5-11). Initially at t D 0

we have N�tD0 D �z; in particular Ni .t D 0/D Oz;i .t D 0/ and Ne˙0 D e˙z . We will choose the shift in the
definition of the Qzi .t; ˛/ process so that we can use N�i .t/ to trail it.

The semicircular flow and the ˛-interpolation do not commute, and hence Ni .t/ are not the same
as the quantiles Oz;i .t/ of the semicircular evolution �z;t of the initial density �z . We will, however,
show that they are sufficiently close near the cusp and up to times relevant for us, modulo an irrelevant
time-dependent shift. Notice that the evolution of Oz;i .t/ is hard to control since analysing

d
dt
Oz;i .t/D�<mz;t .z;i .t//C<mz;t .e

C
z;t /

would involve knowing the evolved density �z;t quite precisely in the critical cusp regime. While this
necessary information is in principle accessible from the explicit expression for the semicircular flow and
the precise shape analysis of �z obtained from that of �x and �y , here we chose a different, technically
lighter path by using Ni .t/. Note that unlike Oz;i .t/, the derivative of Ni .t/ involves only the Stieltjes
transform of the densities �x;t and �y;t , for which shape analysis is available.

However, the global group velocities of N.t/ and Oz.t/ are not the same near the cusp. We thus need
to define Qz.t; ˛/ not as z.t; ˛/� NeCt but with a modified time-dependent shift to make up for this velocity
difference so that N.t/ indeed correctly follows Qz.t; ˛/. To determine this shift, we first define the function

h�.t; ˛/ WD <Œ� Nmt .Ne
C
t /C .1�˛/my;t .e

C
y;t /C˛mx;t .e

C
x;t /�; (6-5)

where recall that Nmt is the Stieltjes transform of the measure N�t . Note that h�.t/DO.1/ following from
the boundedness of the Stieltjes transforms mx;t , my;t and Nmt .NeCt /. The boundedness of mx;t and my;t
follows by (4-1) and j Nmt . NeCt /j � C by (5-13).

We note that
h�.t; ˛ D 0/Dmy;t .e

C
y;t /� Nmt .Ne

C
t /Dmy;t .e

C
y;t /� Nmt .e

C
y;t /

since for ˛ D 0 we have eCy;t D Ne
C
t by construction. At ˛ D 0 the measure N�t is given exactly by the

density �y;t in an O.1/ neighbourhood of the cusp. Away from the cusp, depending on the precise
construction in the analogue of (5-12), the continuous �y;t is replaced by locally smoothed out Dirac
measures at the quantiles. A similar statement holds at ˛D 1, i.e., for the density �x;t . It is easy to see that
the difference of the corresponding Stieltjes transforms evaluated at the cusp regime is of order N�1, i.e.,

jh�.t; ˛D0/jC jh�.t; ˛D1/j DO.N�1/: (6-6)

Since later in (6-110) we will need to give a very crude estimate on the ˛-derivative of h�.t; ˛/, but
it actually blows up since Nm0t is singular at the edge, we introduce a tiny regularisation of h�; i.e., we
define the function

h��.t; ˛/ WD <Œ� Nmt .Ne
C
t C iN�100/C .1�˛/my;t .eCy;t /C˛mx;t .e

C
x;t /�: (6-7)



CUSP UNIVERSALITY FOR RANDOM MATRICES, II 647

Note that by the 1
3

-Hölder continuity of Nmt in the cusp regime, i.e., for z 2H such that j<z� NeCt j �
1
2
ı�,

it follows that
h��.t; ˛/D h�.t; ˛/CO.N�30/: (6-8)

Then, we define

h.t/D h.t; ˛/ WD h��.t; ˛/�˛h��.t; 1/� .1�˛/h��.t; 0/DO.1/ (6-9)

to ensure that
h.t; ˛D0/D h.t; ˛D1/D 0: (6-10)

In particular, we have

h.t; ˛/D<Œ� Nmt .Ne
C
t /C .1�˛/my;t .e

C
y;t /C˛mx;t .e

C
x;t /�CO.N

�1/: (6-11)

Define its antiderivative

H.t; ˛/ WD

Z t

0

h.s; ˛/ ds; H.0; ˛/D 0; max
0�t�t�

jH.t; ˛/j.N�
1
2
C!1 : (6-12)

Now we are ready to define the correctly shifted process

Qzi .t/D Qzi .t; ˛/ WD zi .t/� Œ˛e
C
x;t C .1�˛/e

C
y;t ��H.t; ˛/; (6-13)

which will be trailed by Ni .t/. It satisfies the shifted DBM

d Qzi D

r
2

N
dBi C

�
1

N

X
j¤i

1

Qzi � Qzj
Cˆ˛.t/

�
dt; (6-14)

with
ˆ.t/ WDˆ˛.t/D ˛<mx;t .e

C
x;t /C .1�˛/<my;t .e

C
y;t /� h.t; ˛/; (6-15)

and with initial conditions Qz.0/ WD z.0/� eCz by (5-11) and H.0; ˛/D 0. The shift function satisfies

ˆ˛.t/D<Œ Nmt .Ne
C
t /�CO.N�1/: (6-16)

Notice that for ˛ D 0; 1 this definition gives back the naturally shifted x.t/ and y.t/ processes since
we clearly have

Qz.t; ˛D1/D Qx.t/ WD x.t/� eCx;t ; Qz.t; ˛D0/D Qy.t/ WD y.t/� eCy;t ; (6-17)

which are trailed by the shifted semiquantiles

N�i .t; ˛D1/D O
�
x;i .t/ WD 

�
x;i .t/� eCx;t ; N�i .t; ˛D0/D O

�
y;i .t/ WD 

�
y;i .t/� eCy;t : (6-18)

As we explained, the time-dependent shift H.t; ˛/ in (6-13) makes up for the difference between the
true edge velocity of the semicircular flow (which we do not compute directly) and the naive guess which
is d

dt Œ˛e
C
x;t C .1� ˛/e

C
y;t � hinted at by the linear combination procedure. The precise expression (6-5)

will come out of the proof. The key point is that this adjustment is time-dependent but global; i.e., it is
independent of i since this expresses a group velocity of the entire cusp regime.
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6B. Plan of the proof. In the following three subsections we prove an almost-optimal rigidity not directly
for Qzi .t/ but for its appropriate short-range approximation Ozi .t/. This will be sufficient for the proof
of the universality. The proof of the rigidity will be divided into three phases, which we first explain
informally, as follows.

Phase 1 (Section 6C): The main result is a rigidity for Qzi .t/� Ni .t/ for 1� ji j.
p
N on scale N�

3
4
CC!1

without i-dependence in the error term. First we prove a crude rigidity on scale N�
1
2
CC!1 for all

indices i . Using this rigidity, we can define a short-range approximation Vz of the original dynamics Qz
and show that Qzi and Vzi are close by N�

3
4
CC!1 for 1 � ji j .

p
N. Then we analyse the short-range

process Vz that has a finite speed of propagation, so we can localise the dynamics. Finally, we can directly
compare Vz with a deterministic particle dynamics because the effect of the stochastic term

p
2=N dBi ,

i.e.,
p
t�=N DN

� 3
4
C 1
2
!1 �N�

3
4
CC!1 , remains below the rigidity scale of interest in this Phase 1.

However, to understand this deterministic particle dynamics we need to compare it with the corre-
sponding continuum evolution; this boils down to estimating the difference of a Stieltjes transform and its
Riemann sum approximation at the semiquantiles. Since the Stieltjes transform is given by a singular
integral, this approximation relies on quite delicate cancellations which require some strong regularity
properties of the density. We can easily guarantee this regularity by considering the density N�t of the
linear interpolation between the quantiles of �x;t and �y;t .

Phase 2 (Section 6D): In this section we improve the rigidity from scaleN�
3
4
CC!1 to scaleN�

3
4
C 1
6
!1, for

a smaller range of indices, but we can achieve this not for Qz directly, but for its short-range approximation Oz.
Unlike Vz in Phase 1, this time we choose a very short-scale approximation Oz on scale N 4!` with
!1� !`� 1. As an input, we need the rigidity of Qzi on scale N�

3
4
CC!1 for 1� ji j.

p
N obtained in

Phase 1. We use heat kernel contraction for a direct comparison with the yi .t/ dynamics for which we
know optimal rigidity by [Erdős et al. 2018], with the precise matching of the indices (band rigidity). In
particular, when the gap is large, this guarantees that band rigidity is transferred to the Oz-process from the
Oy-process.

Phase 3 (Section 6E): Finally, we establish the optimal i -dependence in the rigidity estimate for Ozi from
Phase 2; i.e., we get a precision N�

3
4
C 1
6
!1 ji j�

1
4. The main method we use in Phase 3 is the maximum

principle. We compare Ozi with Oyi�K , a slightly shifted element of the Oy-process, where K DN � with
some tiny �. This method allows us to prove the optimal i-dependent rigidity (with a factor N

1
6
!1) but

only for indices ji j �K because otherwise Ozi and Oyi�K may be on different sides of the gap for small i .
For very small indices, therefore, we need to rely on band rigidity for Oz from Phase 2.

The optimal i -dependence allows us to replace the random particles Oz by appropriate quantiles with a
precision so that

j Ozi � Ozj j.N
1
6
!1 j Ni � Nj j �N

� 3
4
C 1
6
!1 jji j

3
4 � jj j

3
4 j:

Such an upper bound on j Ozi � Ozj j, hence a lower bound on the interaction kernel Bij D jOzi � Ozj j�2 of the
differentiated DBM (see (6-106)) with the correct dependence on the indices i; j , is essential since this
gives the heat kernel contraction which eventually drives the precision below the rigidity scale in order to
prove universality. On a time scale t� D N�

1
2
C!1 the `p! `1 contraction of the heat kernel gains a



CUSP UNIVERSALITY FOR RANDOM MATRICES, II 649

factor N�
4
15
!1 with the convenient choice of p D 5. Notice that 4

15
> 1
6

, so the contraction wins over
the imprecision in the rigidity N

1
6
!1 from Phase 3, but not over NC!1 from Phase 1, showing that both

Phase 2 and Phase 3 are indeed necessary.

6C. Phase 1W rigidity for Qz on scale N�
3
4
CC!1 . The main result of this section is the following:

Proposition 6.3. Fix ˛ 2 Œ0; 1�. Let Qz.t; ˛/ solve (6-14) with initial condition Qzi .0; ˛/ satisfying the crude
rigidity bound for all indices

max
1�ji j�N

j Qzi .0; ˛/� N
�
i .0/j.N

� 1
2
C2!1 : (6-19)

We also assume that

kmx;0k1Ckmy;0k1Cj Nmt .Ne
˙
t /j � C: (6-20)

Then we have a weak but uniform rigidity

sup
0�t�t�

max
1�ji j�N

j Qzi .t; ˛/� N
�
i .t/j.N

� 1
2
C2!1 (6-21)

with very high probability. Moreover, for small ji j, i.e., 1� ji j � i�, with i� WDN
1
2
CC�!1 for some large

C� > 100, we have a stronger rigidity:

sup
0�t�t�

max
1�ji j�i�

j Qzi .t; ˛/� N
�
i .t/j. max

1�ji j�2i�
j Qzi .0; ˛/� N

�
i .0/jC

NC!1

N
3
4

(6-22)

with very high probability.

In our application, (6-19) is satisfied and the right-hand side of (6-22) is simply N�
3
4
CC!1 since

Qzi .0; ˛/� N
�
i .0/D ˛.xi .0/� x;i .0//C .1�˛/.yi .0/� y;i .0//DO

�
N �N

1
6
!1

N
3
4 ji j

1
4

�
(6-23)

for any � > 0 with very high probability, by optimal rigidity for xi .0/ and yi .0/ from [Erdős et al. 2018].
Similarly, the assumption (6-20) is trivially satisfied by (5-13). However, we stated Proposition 6.3 under
the slightly weaker conditions (6-19), (6-20) to highlight what is really needed for its proof.

Before starting the proof, we recall the formula

d
dt
O�i;r.t/D�<mr;t .

�
r;i .t//C<mr;t .e

C
r;t /; r D x; y; (6-24)

on the derivative of the (shifted) semiquantiles of a density which evolves by the semicircular flow and
follows directly from (4-14c) and (4-14e).

Proof of Proposition 6.3. We start with the proof of the crude rigidity (6-21), then we introduce a
short-range approximation and finally, with its help, we prove the refined rigidity (6-22). The main
technical input of the last step is a refined estimate on the forcing term. These four steps will be presented
in the next four subsections.



650 GIORGIO CIPOLLONI, LÁSZLÓ ERDŐS, TORBEN KRÜGER AND DOMINIK SCHRÖDER

6C1. Proof of the crude rigidity. For the proof of (6-21), using (6-24) twice in (5-10), we notice that

d
dt
N�i .t/D ˛Œ�<mx;t .

�
x;i .t//C<mx;t .e

C
x;t /�C .1�˛/Œ�<my;t .

�
y;i .t//C<my;t .e

C
y;t /�DO.1/

since mx;t and my;t are bounded, recalling that the semicircular flow preserves (or reduces) the `1 norm
of the Stieltjes transform by (4-1), so kmx;tk1 � kmx;0k1 � C , and similarly for my;t . This gives

j N�i .t/� N
�
i .0/j.N

� 1
2
C!1 : (6-25)

Thus in order to prove (6-21) it is sufficient to prove

kQz.t; ˛/� Qz.0; ˛/k1 �N
� 1
2
C2!1 (6-26)

for any fixed ˛ 2 Œ0; 1�. To do that, we compare the dynamics of (6-14) with the dynamics of the
y-semiquantiles; i.e., set

ui WD ui .t; ˛/D Qzi .t/� O
�
y;i .t/

for all 0� t � t�.
Compute

dui D

r
2

N
dBi C . zBu/i dt C zFi .t/ dt; (6-27)

with

. zBf /i WD
1

N

X
j¤i

fj �fi

. Qzi � Qzj /. O
�
y;i � O

�
y;j /

(6-28)

and
zFi .t/ WD

1

N

X
j¤i

1

O�y;i � O
�
y;j

C<my;t .
�
y;i .t//C˛Œ<mx;t .e

C
x;t /�<my;t .e

C
y;t /�� h.t/:

The operator zB is defined on C2N and we label the vectors f 2 C2N as

f D .f�N ; f�NC1; : : : ; f�1; f1; : : : ; fN /I

i.e., we omit the i D 0 index. Accordingly, in the summations the j D 0 term is always omitted since
Qzj , Ozj and O�y;j are defined for 1� jj j �N. Furthermore in the summation of the interaction terms, the
j D i term is always omitted.

We now show that

k zF .t/k1 . logN; 0� t � t�: (6-29)

By the boundedness of mx;t ; my;t and the 1
3

-Hölder continuity of Nmt in the cusp regime, it remains to
control

1

N

X
j¤i

1

O�y;i .t/� O
�
y;j .t/

.
X

1�jj�i j�N

1

ji � j j
. logN

since j O�y;j � O
�
y;i j � cji � j j=N as the density �y;t is bounded.
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Let zU.s; t/ be the fundamental solution of the heat evolution with kernel zB from (6-28); i.e, for any
0� s � t

@t zU.s; t/D zB.t/ zU.s; t/; zU.s; s/D I: (6-30)

Note that zU is a contraction on every `p space and the same is true for its adjoint zU�.s; t/. In particular,
for any indices a; b and times s; t we have

zUab.s; t/� 1; zU�ab.s; t/� 1: (6-31)

By Duhamel’s principle, the solution to the SDE (6-27) is given by

u.t/D zU.0; t/u.0/C
r
2

N

Z t

0

zU.s; t/ dB.s/C
Z t

0

zU.s; t/ zF .s/ ds; (6-32)

where B.s/ D .B�N .s/; : : : ; B�1.s/; B1.s/; : : : ; BN .s// are the 2N independent Brownian motions
from (6-1).

For the second term in (6-32) we fix an index i and consider the martingale

Mt WD

r
2

N

Z t

0

X
j

zU ij .s; t/ dBj .s/;

with its quadratic variation process

ŒM �t WD
2

N

Z t

0

X
j

. zU ij .s; t//2 ds D
2

N

Z t

0

k zU�.s; t/ıik22 ds �
2t

N
:

By the Burkholder maximal inequality for martingales, for any p > 1 we have

E sup
0�t�T

jMt j
2p
� Cp EŒM �

p
T � Cp

T p

Np
:

By Markov inequality we obtain

sup
0�t�T

jMt j �N
�

r
T

N
(6-33)

with probability more than 1�N�D, for any (large) D > 0 and (small) � > 0.
The last term in (6-32) is estimated, using (6-29), byˇ̌̌̌Z t

0

zU.s; t/ zF .s/ ds
ˇ̌̌̌
� t max

s�t
k zF .s/k1 . t logN: (6-34)

This, together with (6-33) and the contraction property of zB implies from (6-32) that

ku.t/�u.0/k1 .N�
3
4
C!1 C t logN .N�

1
2
C2!1

with very high probability. Recalling the definition of u and (6-25), we get (6-26) since

kQz.t/� Qz.0/k1 � ku.t/�u.0/k1Ck O
�
y .t/� O

�
y .0/k1 .N

� 1
2
C2!1 :

This completes the proof of the crude rigidity bound (6-21).
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6C2. Crude short-range approximation. Now we turn to the proof of (6-22) by introducing a short-
range approximation of the dynamics (6-14). Fix an integer L. Let Vzi D Vzi .t/ solve the L-localised
short-scale DBM

d Vzi D

r
2

N
dBi C

1

N

X
j Wjj�i j�L

1

Vzi � Vzj
dt C

�
1

N

X
j Wjj�i j>L

1

N�i � N
�
j

Cˆ.t/

�
dt (6-35)

for each 1� ji j �N and with initial data Vzi .0/ WD Qzi .0/, where we recall that ˆ was defined in (6-15).
Then, we have the following comparison:

Lemma 6.4. Fix ˛ 2 Œ0; 1�. Assume that

max
1�ji j�N

j Qzi .0; ˛/� N
�
i .0/j.N

� 1
2
C2!1 : (6-36)

Consider the short-scale DBM (6-35) with a range LDN
1
2
CC1!1 with a constant 10 � C1� C�; in

particular L is much smaller than i�. Then we have a weak uniform comparison

sup
0�t�t�

max
1�ji j�N

j Vzi .t; ˛/� Qzi .t; ˛/j.N�
1
2
C2!1 ; (6-37)

and a stronger comparison for small i

sup
0�t�t�

max
1�ji j�i�

j Vzi .t; ˛/� Qzi .t; ˛/j.N�
3
4
CC!1 ; (6-38)

both with very high probability.

Proof. For any fixed ˛ 2 Œ0; 1� and for all 0� t � t�, setw WDw.t; ˛/D Vz.t; ˛/� Qz.t; ˛/ and subtract (6-35)
and (6-14) to get

@tw D VB1wC VF ;

where

. VB1f /i WD
1

N

X
j Wjj�i j�L

fj �fi

. Vzi � Vzj /. Qzi � Qzj /
; VFi WD

1

N

X
j Wjj�i j>L

�
1

N�i � N
�
j

�
1

Qzi � Qzj

�
:

We estimate

j VFi j �
1

N

X
j Wjj�i j>L

j Qzi � N
�
i jC jQzj � N

�
j j

. N�i � N
�
j /. Qzi � Qzj /

.
N�

1
2
C2!1

N

X
j Wjj�i j>L

1

. N�i � N
�
j /. Qzi � Qzj /

;

where we used the crude rigidity (6-21) (applicable by (6-36)), and we chose C1 in LDN
1
2
CC1!1 large

enough so that j N�i � N
�
j j for any ji � j j � L is much bigger than the rigidity scale N�

1
2
C2!1 in (6-21).

This is guaranteed since

j N�i � N
�
j j D ˛j O

�
x;i � O

�
x;j jC .1�˛/j O

�
y;i � O

�
y;j j&

ji � j j

N
&N�

1
2
CC1!
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with very high probability. By this choice of L we have j Qzi � Qzj j � j N�i � N
�
j j and therefore

j VFi j.
N�

1
2
C2!1

N

X
j Wjj�i j>L

1

. N�i � N
�
j /
2
.N

1
2
C2!1

X
j Wjj�i j>L

1

ji � j j2

.N�.
1
2
C1�2/!1 � 1 for all ji j �N: (6-39)

Since B1 is positivity-preserving, its evolution is a contraction, so by a Duhamel formula, similarly
to (6-32), we get

kVz.t/� Qz.t/k1 D kw.t/k1 � kw.0/k1C t max
s�t
k VF .s/k1 .N�

1
2
C!1

with very high probability.
Next, we proceed with the proof of (6-38).
In fact, for 1� ji j � 2i�, with i� much bigger than L, we have a better bound:

j VFi j.
N�

1
2
C2!1

N

X
j Wjj�i j>L

1

. N�i � N
�
j /
2
.

X
j Wjj�i j>L

N 2!1

jji j
3
4 � jj j

3
4 j2

.N�
1
4
�. 1

2
C1�2/!1 �N�

1
4 ; ji j � 2i�; (6-40)

which we can use to get the better bound (6-38). To do so, we define a continuous interpolation v.t; ˇ/
between Qz and Vz. More precisely, for any fixed ˇ 2 Œ0; 1� we set v.t; ˇ/D fv.t; ˇ/igNiD�N as the solution
to the SDE

dvi D

r
2

N
dBi C

1

N

X
j Wjj�i j�L

1

vi � vj
dt Cˆ˛.t/ dt

C
1�ˇ

N

X
j Wjj�i j>L

1

Qzi � Qzj
dt C

ˇ

N

X
j Wjj�i j>L

1

N�i � N
�
j

dt (6-41)

with initial condition v.tD0; ˇ/D .1�ˇ/ Qzi .0/Cˇ Vzi .0/. Clearly v.t; ˇD0/D Qz.t/ and v.t; ˇD1/D Vz.t/.
Differentiating in ˇ, for u WD u.t; ˇ/D @ˇv.t; ˇ/ we obtain the SDE

dui D .Bvu/i dt C VFi dt; with .Bvf /i WD
1

N

X
j Wjj�i j�L

fj �fi

.vi � vj /2
; (6-42)

with initial condition u.tD0; ˇ/D Vz.0/� Qz.0/D 0. By the contraction property of the heat evolution
kernel Uv of Bv, with a simple Duhamel formula, we have for any fixed ˇ

sup
0�t�t�

ku.t; ˇ/k1 � t�k VF k1 �N
� 1
2
C 3
2
!1 (6-43)

with very high probability, where we used (6-39). After integration in ˇ we get

kv.t; ˇ/� N�.t/k1 � kv.t; 0/� N
�.t/k1C

Z ˇ

0

u.t; ˇ0/ dˇ0

1

; 0� t � t�; ˇ 2 Œ0; 1�: (6-44)
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From (6-43) we have

E

Z ˇ

0

u.t; ˇ0/ dˇ0
p
1

�

Z ˇ

0

Eku.t; ˇ0/kp dˇ0 . .N�
1
2
C 3
2
!1/p (6-45)

for any exponent p. Hence, using a high-moment Markov inequality, we have

P

�Z ˇ

0

u.t; ˇ0/ dˇ0

1

�N�
1
2
C 3
2
!1C�

�
�N�D (6-46)

for any (large) D > 0 and (small) � > 0 by choosing p large enough. Since v.t; 0/D Qz.t/, for which we
have rigidity in (6-21), by (6-44) and (6-46) we conclude that

sup
0�t�t�

kv.t; ˇ/� N�.t/k1 .N�
1
2
C2!1 (6-47)

with very high probability for any ˇ 2 Œ0; 1�.
In particular L is much larger than the rigidity scale of v D v.t; ˇ/. This means that

jjvi � vj j � j N
�
i � N

�
j jj.N

� 1
2
C2!1

and

j N�i � N
�
j j&

ji � j j

N
�N�

1
2
CC1!1 �N�

1
2
C2!1

whenever ji � j j � L, so we have

jvi � vj j � j N
�
i � N

�
j j; ji � j j � L: (6-48)

Since i� is much bigger than L and L is much larger than the rigidity scale of vi .t; ˇ/ in the sense
of (6-48), the heat evolution kernel Uv satisfies the following finite speed of propagation estimate (the
proof is given in Appendix B):

Lemma 6.5. With the notation above we have

sup
0�s�t�t�

ŒUvpi CUvip��N
�D; 1� ji j � i�; jpj � 2i�; (6-49)

for any D if N is sufficiently large.

Using a Duhamel formula again, for any fixed ˇ, we have

ui .t/D
X
p

Uvipup.0/C
Z t

0

X
p

Uvip.s; t/ VFp.s/ ds:

We can split the summation and estimate

jui .t/j �

� X
jpj�2i�

C

X
jpj>2i�

�
Uvipjup.0/jC

Z t

0

� X
jpj�2i�

C

X
jpj>2i�

�
Uvip.s; t/j VFp.s/j ds:
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For ji j � i�, the terms with jpj> 2i� are negligible by (6-49) and the trivial bounds (6-39) and (6-43).
For 1� jpj � 2i� we use the improved bound (6-40). This gives

jui .t; ˇ/j � max
1�jj j�2i�

juj .0; ˇ/jCN
� 3
4
C!1 DN�

3
4
C!1 ; ji j � i�;

since u.tD0; ˇ/D 0. Integrating from ˇD 0 to ˇD 1, and recalling that v.ˇD0/D Qz and v.ˇD1/D Vz,
by a high-moment Markov inequality, we conclude

j Qzi .t/� Vzi .t/j.N�
3
4
C!1 ; 1� ji j � i�;

with very high probability. This yields (6-38) and completes the proof of Lemma 6.4.
We remark that it would have been sufficient to require that j Qzj .0/� Vzj .0/j �N�

3
4
C!1 for all 1 �

jj j � 2i� instead of setting Vz.0/ WD Qz.0/ initially. Later in Section 6D we will use a similar finite speed
of propagation mechanism to show that changing the initial condition for large indices has negligible
effect. �

6C3. Refined rigidity for small ji j. Finally, in the last but main step of the proof of (6-22) in Proposition 6.3
we compare Vzi with N�i for small ji j with a much higher precision than the crude bound N�

1
2
CC!1

which directly follows from (6-37) and (6-21). Notice that we use the semiquantiles for comparison since
N�i 2 Œ Ni�1; Ni � and N�i is typically close to the midpoint of this interval. In particular, N�t . N�i .t// is never
zero, in fact we have N�t . N�i .t//� cN

� 1
3 , because by band rigidity quantiles may fall exactly at spectral

edges, but semiquantiles cannot. This lower bound makes the semiquantiles much more convenient
reference points than the quantiles.

Proposition 6.6. Fix ˛ 2 Œ0; 1�; then with the notation above for the localised DBM Vz.t; ˛/ on the short
scale LDN

1
2
CC1!1 with 10� C1 � 1

10
C�, defined in (6-35), we have

j. Vzi .t; ˛/� N
�
i .t//� . Vzi .0; ˛/� N

�
i .0//j �N

� 3
4
CC!1 ; 1� ji j � i� DN

1
2
CC�!1 ; (6-50)

with very high probability.

Combining (6-50) with (6-38) and noticing that

Vzi .0; ˛/� N
�
i .0/D Qzi .0; ˛/� N

�
i .0/DO

�
N �N

1
6
!1

N
3
4 ji j

1
4

�
for any � > 0 with very high probability by (6-23), we obtain (6-22) and complete the proof of
Proposition 6.3. �

Proof of Proposition 6.6. We recall from (6-24) that

d
dt
N�i .t/D ˛Œ�<mx;t .

�
x;i .t//C<mx;t .e

C
x;t /�C .1�˛/Œ�<my;t .

�
y;i .t//C<my;t .e

C
y;t /�: (6-51)

Next, we define a dynamics that interpolates between Vzi .t; ˛/ and N�i .t/, i.e., between (6-35) and (6-51).
Let ˇ 2 Œ0; 1� and for any fixed ˇ define the process v D v.t; ˇ/D fvi .t; ˇ/gNiD�N as the solution of the
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interpolating DBM

dvi Dˇ

r
2

N
dBiC

1

N

X
j Wjj�i j�L

1

vi�vj
dtCˇ

�
1

N

X
j Wjj�i j>L

1

N�i � N
�
j

dtCˆ.t/
�

dt

C.1�ˇ/

�
d
dt
N�i .t/�

1

N

X
j Wjj�i j�L

1

N�i � N
�
j

�
dt; 1� ji j �N; (6-52)

with initial condition vi .0; ˇ/ WD ˇ Vzi .0/C .1�ˇ/ N�i .0/. Notice that

vi .t; ˇD0/D N
�
i .t/; vi .t; ˇD1/D Vzi .t/: (6-53)

Here we use the same letter v as in (6-41) within the proof of Lemma 6.4, but this is now a new
interpolation. Since both appearances of the letter v are used only within the proofs of separate lemmas,
this should not cause any confusion. The same remark applies to the letter u below.

Let u WD u.t; ˇ/D @ˇv.t; ˇ/; then it satisfies the equation

dui D

r
2

N
dBi C

X
j¤i

Bij .ui �uj / dt CFi dt; 1� ji j �N; (6-54)

with a time-dependent short-range kernel (omitting the time argument and the ˇ-parameter)

Bij .t/D Bij WD �
1

N

1.ji � j j � L/
.vi � vj /2

(6-55)

and external force

Fi D Fi .t/ WD �
1

N

X
j

1

N�j .t/� N
�
i .t/

C˛<mx;t .
�
x;i .t//C .1�˛/<my;t .

�
y;i .t//� h.t; ˛/; 1� ji j �N: (6-56)

Since the density N� is regular, at least near the cusp regime, we can replace the sum over j with an integral
with very high precision for small i ; this integral is < Nm.NeCC N�i /. A simple rearrangement of various
terms yields

Fi D

�
< Nm.NeCC N�i /�

1

N

X
j

1

N�
j¤i
� N�i

�
� .1�˛/Dy;i �˛Dx;i CO.N

�1/; (6-57)

with

Dr;i WD <Œ. Nm.Ne
C
C N�i /� Nm.Ne

C//� .mr.
�
r;i /�mr.e

C
r //�; r D x; y;

where we used the formula for h from (6-11) and the definition of ˆ from (6-15). The choice of the shift h
was governed by the idea to replace the last three terms in (6-56) by < Nm.NeCC N�i /. However, the shift
cannot be i -dependent as it would result in an i -dependent shift in the definition of Qzi , see (6-13), which
would mean that the differences (gaps) of the processes zi and Qzi are not the same. Therefore, we defined
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the shift h.t/ by the similar formula evaluated at the edge, justifying the choice (6-11). The discrepancy
is expressed by Dx;i and Dy;i which are small. Indeed we have, for r D x; y and 1� ji j � 2i�, that

jDr;i j �
ˇ̌
<Œ. Nm.NeCC O�r;i /� Nm.Ne

C//� .mr.e
C
r C O

�
r;i /�mr.e

C
r //�

ˇ̌
Cj Nm.NeCC O�r;i /� Nm.Ne

C
C N�i /j

. j O�r;i j
1
3 Œj O�r;i j

1
3 CN�

1
6
C 1
3
!1 �jlogj O�r;i jjCN

� 11
36
C!1 C

j O�r;i � N
�
i j

N�. N�i /
2

.
��
ji j

N

�1
2

C

�
ji j

N

�1
4

N�
1
6
C 1
3
!1

�
.logN/CN�

11
36
C!1 C

.ji j=N/C .ji j=N/
3
4N�

1
6
C!1

.ji j=N/
1
2

.N�
1
4
CC!1 ; (6-58)

where from the first to the second line we used (4-22a) and the bound on the derivative of Nm; see (4-7b).
In the last inequality we used (4-13a) to estimate j O�r;i j. .ji j=N/

3
4NC!1 and similarly j O�r;i � N

�
i j in the

regime ji j � i� DN
1
2
CC�!1 ; furthermore we used that N�. N�i /� .ji j=N/

1
4 and also j N�i j � c=N, since a

semiquantile is always away from the edge.
Let U.s; t/ be the fundamental solution of the heat evolution with kernel B from (6-55). Similarly

to (6-32), the solution to the SDE (6-54) is given by

u.t/D U.0; t/uC
r
2

N

Z t

0

U.s; t/ dB.s/C
Z t

0

U.s; t/F.s/ ds: (6-59)

The middle martingale term can be estimated as in (6-33). The last term in (6-59) is estimated byˇ̌̌̌Z t

0

U.s; t/F.s/ ds
ˇ̌̌̌
� t max

0�s�t
kF.s/k1: (6-60)

First we use these simple Duhamel bounds to obtain a crude rigidity bound on vi .t; ˇ/ by integrating
the bound on u

jvi .t; ˇ/� vi .t; ˇ D 0/j � ˇ max
ˇ 02Œ0;ˇ�

jui .t; ˇ
0/j

� max
ˇ 02Œ0;1�

ku.0; ˇ0/k1CN
� 1
2
C!1C� ; 1� ji j �N; (6-61)

for any � > 0 with very high probability, using (6-33), (6-59), (6-60) and that U is a contraction. Note that
in the first inequality of (6-61) we used that it holds with very high probability by a Markov inequality as
in (6-45)–(6-46). We also used the trivial bound

max
0�s�t�

kF.s/k1 . logL� logN; (6-62)

which easily follows from (6-56), (6-58) and the fact that j N�j .t/� N
�
i .t/j& ji � j j=N.

Recalling that vi .t; ˇD0/ D N�i .t/ and ui .0; ˇ0/ D Vzi .0/� N�i .0/, together with (6-37) and (6-21),
by (6-61), we obtain the crude rigidity

jvi .t; ˇ/� N
�
i .t/j �N

� 1
2
C2!1 ; 1� ji j �N; (6-63)

with very high probability.
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The main technical result is a considerable improvement of the bound (6-63) at least for i near the
cusp regime. This is the content of the following proposition whose proof is postponed:

Proposition 6.7. The vector F defined in (6-56) satisfies the bound

max
s�t�
jFi .s/j �N

� 1
4
CC!1 ; 1� ji j � 2i�: (6-64)

Since i� is much bigger than L D N
1
2
CC1!1 with a large C1, and we have the rigidity (6-63) on a

scale much smaller than L, similarly to Lemma 6.5, we have the following finite speed of propagation
result. The proof is identical to that of Lemma 6.5.

Proposition 6.8. For the short-range dynamics U D UB defined by the operator (6-55),

sup
0�s�t�t�

ŒUpi .s; t/CUip.s; t/��N�D; 1� ji j � i�; jpj � 2i�; (6-65)

for any D if N is sufficiently large. �

Armed with these two propositions, we can easily complete the proof of Proposition 6.6. For any
1� ji j � i� we have from (6-32), using (6-31), (6-33), (6-65) and that U is a contraction on `1, that

jui .t/j �N
� 3
4
C!1C� C

X
p

Uipjup.0/jC
Z t

0

X
p

Uip.s; t/jFp.s/j ds

�N�
3
4
C!1C� C max

jpj�2i�
jup.0/jC t max

0�s�t�
max
jpj�2i�

jFp.s/jCN
�D max

0�s�t
kF.s/k1: (6-66)

The trivial bound (6-62) together with (6-64) completes the proof of (6-50) by integrating back the
bound (6-66) for uD @ˇv in ˇ, using a high-moment Markov inequality similar to (6-45)–(6-46), and
recalling (6-53). This completes the proof of Proposition 6.6. �

6C4. Estimate of the forcing term.

Proof of Proposition 6.7. Within this proof we will use i WD Ni .t/, �i WD N
�
i .t/, �D N�t , mD Nmt and

eC D NeCt for brevity. For notational simplicity we may assume within this proof that eC D 0 by a simple
shift. The key input is the following bound on the derivative of the density, proven in [Alt et al. 2018a]
for self-consistent densities of Wigner type matrices:

j�0.x/j �
C

�.x/Œ�.x/C�
1
3 �
; jxj � ı�; (6-67)

where � D N�t is the length of the unique gap in the support of � D N�t in a small neighbourhood of
size ı� � 1 around eC D 0. If there is no such gap, then we set �D 0 in (6-67). By the definition of the
interpolated density N�t in (5-12) clearly follows that it satisfies (6-67) by Lemma 4.3. Notice that (6-67)
implies local Hölder continuity; i.e.,

j�.x/� �.y/j �minfjx�yj
1
3 ; jx�yj

1
2��

1
6 g (6-68)

for any x; y in a small neighbourhood of the gap or the local minimum.
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Throughout the entire proof we fix an i with 1� ji j � 2i�. For simplicity, we assume i > 0; the case
i < 0 is analogous. We rewrite Fi from (6-57) as

Fi DG1CG2CG3CG4; (6-69)

with

G1 WD
X

1�jj�i j�L

Z j

j�1

�
1

x� �i
�

1

�j � 
�
i

�
�.x/ dx; G2 WD

Z i

i�1

�.x/ dx
x� �i

;

G3 WD
X
jj�i j>L

Z j

j�1

�
1

x� �i
�

1

�j � 
�
i

�
�.x/ dx; G4 WD �.1�˛/Dy;i �˛Dx;i CO.N

�1/:

The term G4 was already estimated in (6-58). In the following we will show separately that jGaj.N�
1
4,

aD 1; 2; 3.

Estimate of G3. By elementary computations, using the crude rigidity (6-21), it follows that

jG3j.
N�

1
2
C2!1

N

X
j Wjj�i j>L

1

.�i � 
�
j /
2
:

Then, the estimate jG3j.N�
1
4 follows using the same computations as in (6-40).

Estimate of G2. We write

G2 D

Z i

i�1

�.x/ dx
x� �i

D

Z i

i�1

�.x/� �.�i /

x� �i
dxC �.�i /

Z i

i�1

dx
x� �i

(6-70)

and we will show that both summands are bounded by CN�
1
4 . We make the convention that if i�1 is

exactly at the left edge of a gap, then for the purpose of this proof we redefine it to be the right edge of
the same gap and similarly, if i is exactly at the right edge of the gap, then we set it to be the left edge.
This is just to make sure that Œi�1; i � is always included in the support of �.

In the first integral we use (6-68) to getˇ̌̌̌Z i

i�1

�.x/� �.�i /

x� �i
dx
ˇ̌̌̌
.minf.i � i�1/

1
3 ; .i � i�1/

1
2��

1
6 g DO.N�

1
4 /: (6-71)

Here we used that the local eigenvalue spacing (with the convention above) is bounded by

i � i�1 .max
�
�
1
9

N
2
3

;
1

N
3
4

�
: (6-72)

For the second integral in (6-70) is an explicit calculation:

�.�i /

Z i

i�1

dx
x� �i

D �.�i / log
i � 

�
i

�i � i�1
: (6-73)

Using the definition of the quantiles and (6-68), we have

1

2N
D

Z �
i

i�1

�.x/ dx D �.�i /.
�
i � i�1/CO

�
minfj�i � i�1j

4
3 ; j�i � i�1j

3
2��

1
6 g
�
;



660 GIORGIO CIPOLLONI, LÁSZLÓ ERDŐS, TORBEN KRÜGER AND DOMINIK SCHRÖDER

and similarly

1

2N
D

Z i

�
i

�.x/ dx D �.�i /.i � 
�
i /CO

�
minfj�i � i j

4
3 ; j�i � i j

3
2��

1
6 g
�
:

The error terms are comparable and they are O.N�1/ using (6-72); thus, subtracting these two equations,
we have

j.i � 
�
i /� .

�
i � i�1/j.

minfj�i � i j
4
3 ; j�i � i j

3
2��

1
6 g

�.�i /
:

Expanding the logarithm in (6-73), we haveˇ̌̌̌
�.�i /

Z i

i�1

dx
x� �i

ˇ̌̌̌
. �.�i /

j.i � 
�
i /� .

�
i � i�1/j

�i � i�1
.minfj�i � i j

1
3 ; j�i � i j

1
2��

1
6 g.N�

1
4

as in (6-71). This completes the estimate

jG2j.N�
1
4 : (6-74)

Estimate of G1. Fix i > 0 and set nD n.i/ as

n.i/ WDmin
˚
n 2 N W minfji�n�1� �i j; jiCn� 

�
i jg � cN

� 3
4

	
; (6-75)

with some small constant c > 0.
Next, we estimate n.i/. Notice that for i D 1 we have n.i/D 0. If i � 2, then we notice that one can

choose c sufficiently small, depending only on the model parameters, such that

1
2
�
�.x/

�.�i /
� 2 for all x 2 Œi�n.i/�1; iCn.i/�; i � 2: (6-76)

Let

m.i/ WDmax
�
m 2 N W 1

2
�
�.x/

�.�i /
� 2 for all x 2 Œi�m�1; iCm�

�
I

then, in order to verify (6-76), we need to prove that m.i/� n.i/.
Then by a case-by-case calculation it follows that

m.i/� c1ji j; (6-77)
and thus

minfji�m.i/�1� 
�
i j; jiCm.i/� 

�
i jg&max

��
i

N

�2
3

�
1
9 ;

�
i

N

�3
4
�
� c2N

� 3
4 (6-78)

with some c1; c2. Hence (6-76) will hold if c � c2 is chosen in the definition (6-75). Notice that in these
estimates it is important that the semiquantiles are always at a certain distance away from the quantiles.

Now we give an upper bound on n.i/ when �i is near a (possible small) gap as in the proof above.
The local eigenvalue spacing is

i � 
�
i �max

�
�
1
9

N
2
3 .i/

1
3

;
1

N
3
4 .i/

1
4

�
; (6-79)
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which is bigger than cN�
3
4 if i � �

1
3N

1
4 . So in this case n.i/ D 0 and we may now assume that

i ��
1
3N

1
4 and still i � 2.

Consider first the so-called cusp case when i �N�
4
3 ; in this case, as long as n� 1

2
i , we have

iCn� 
�
i �

n

N
3
4 .i C 1/

1
4

:

This is bigger than cN�
3
4 if n� i

1
4 ; thus we have n.i/� i

1
4 in this case.

In the opposite case, the so-called edge case, i � N�
4
3 , which together with the above assumption

i ��
1
3N

1
4 also implies that ��N�

3
4 . In this case, as long as n� 1

2
i , we have

iCn� 
�
i �

n�
1
9

N
2
3 i

1
3

:

This is bigger than cN�
3
4 if n���

1
9N�

1
12 i

1
3 . So we have n.i/���

1
9N�

1
12 i

1
3 � i

1
3 in this case.

We split the sum in the definition of G1, see (6-69), as follows:

G1D
X

1�jj�i j�L

Z j

j�1

x� �j

.�i � 
�
j /.x� 

�
i /
�.x/ dxD

� X
n.i/<jj�i j�L

C

X
1�jj�i j�n.i/

�
DWS1CS2: (6-80)

For the first sum we use jx� �j j � 
�
jC1� 

�
j , j�i � xj � j

�
i � 

�
j j. Moreover, we have

�.�i /.i � i�1/�
1

N
(6-81)

from the definition of the semiquantiles. Thus we restore the integration in the first sum S1 and estimate

jS1j.
1

N

�Z i�n.i/�1

�1

C

Z 1
iCn.i/

�
dx

jx��i j
2
.
1

N

�
1

ji�n.i/�1�
�
i j
C

1

jiCn.i/�
�
i j

�
�CN�

1
4 : (6-82)

In the last step we used the definition of n.i/.
Now we consider S2. Notice that this sum is nonempty only if n.i/¤ 0 In this case to estimate S2 we

have to symmetrise. Fix 1� n� n.i/, assume i > n and consider togetherZ i�n

i�n�1

x� �i�n
.�i � 

�
i�n/.x� 

�
i /
�.x/dxC

Z iCn

iCn�1

x� �iCn

.�i � 
�
iCn/.x� 

�
i /
�.x/dx

D
1

�i � 
�
i�n

Z i�n

i�n�1

x� �i�n
x� �i

�.x/dxC
1

�i � 
�
iCn

Z iCn

iCn�1

x� �iCn

x� �i
�.x/dx

D
1

N

�
1

�i � 
�
i�n

C
1

�i � 
�
iCn

�
C

�Z i�n

i�n�1

�.x/dy
x� �i

C

Z iCn

iCn�1

�.x/dx
x� �i

�
DWB1.n/CB2.n/: (6-83)

We now use 1
3

-Hölder regularity,

�.x/D �.�i /CO.jx� 
�
i j
1
3 /:
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We thus haveX
n�n.i/

Z i�n

i�n�1

�.x/ dy
x� �i

D

X
n�n.i/

�.�i / log
i�n�1� 

�
i

i�n� 
�
i

CO

�Z iCn.i/

i�n.i/�1

dx

jx� �i j
2
3

�
(6-84)

and similarlyX
n�n.i/

Z iCn

iCn�1

�.x/ dy
x� �i

D

X
n�n.i/

�.�i / log
iCn�1� 

�
i

iCn� 
�
i

CO

�Z iCn.i/

i�n.i/�1

dx

jx� �i j
2
3

�
: (6-85)

The error terms are bounded by CN�
1
4 using (6-75) and therefore we haveX

n�n.i/

B2.n/D
X
n�n.i/

�.�i /

�
log

�i � i�n�1

�i � i�n
� log

iCn� 
�
i

iCn�1� 
�
i

�
CO.N�

1
4 /

D

X
n�n.i/

�.�i /

�
log

�i � i�n�1

iCn� 
�
i

C log
iCn�1� 

�
i

�i � i�n

�
CO.N�

1
4 /:

We now use the bound

j�.x/� �.�i /j.
jx� �i j

�.�i /
2C �.�i /�

1
3

; x 2 Œi�n.i/�1; iCn.i/�; (6-86)

which follows from the derivative bound (6-67) if � in the definition of i� D �N is chosen sufficiently
small, depending on ı since throughout the proof 1� ji j � 2i� and n.i/� i�.

Note that

n

N
D

Z i

i�n

�.x/ dx D �.�i /Œi � i�n�CO
�

ji�n� 
�
i j
2

�.�i /
2C �.�i /�

1
3

�
: (6-87)

Thus, using (6-87) also for iCn� i , equating the two equations and dividing by �.�i /, we have

i � i�n D iCn� i CO

�
ji�n� 

�
i j
2

�.�i /
3C �.�i /

2�
1
3

�
: (6-88)

A similar relation holds for the semiquantiles,

�i � 
�
i�n D 

�
iCn� 

�
i CO

�
j�i�n� 

�
i j
2

�.�i /
3C �.�i /

2�
1
3

�
; (6-89)

and for the mixed relations among quantiles and semiquantiles,

�i � i�n D iCn�1� 
�
i CO

�
ji�n� 

�
i j
2

�.�i /
3C �.�i /

2�
1
3

�
;

�i � i�n�1 D iCn� 
�
i CO

�
ji�n� 

�
i j
2

�.�i /
3C �.�i /

2�
1
3

�
:
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Thus, using �i � i�n�1 � iCn� 
�
i , we have

�.�i /

ˇ̌̌̌
log

�i � i�n�1

iCn� 
�
i

ˇ̌̌̌
.

�.�i /

iCn� 
�
i

O

�
ji�n�1� 

�
i j
2

�.�i /
3C �.�i /

2�
1
3

�
.

ji�n�1� 
�
i j

�.�i /
2C �.�i /�

1
3

: (6-90)

Using n� n.i/ and (6-75), we have ji�n�1��i j.N
� 3
4 . The contribution of this term to

P
nB2.n/ is

thus

N�
3
4

X
n�n.i/

1

�.�i /
2C �.�i /�

1
3

�
n.i/N�

3
4

�.�i /
2C �.�i /�

1
3

: (6-91)

In the bulk regime we have �.�i /� 1 and n.i/�N
1
4 , so this contribution is much smaller than N�

1
4 .

In the cusp regime, i.e., when � � .i=N /
3
4 , then we have �i � .i=N /

3
4 and �.�i / � .i=N /

1
4 , thus

we get

(6-91)�
n.i/N�

3
4

�.�i /
2C �.�i /�

1
3

�
n.i/N�

3
4

�.�i /
2
.N�

1
4n.i/i�

1
2 .N�

1
4

since n.i/� i
1
4 .

In the edge regime, i.e., when �� .i=N /
3
4 , we have �i ��

1
9 .i=N /

2
3 and �.�i /��

� 1
9 .i=N /

1
3 ; thus

we get

(6-91)�
n.i/N�

3
4

�.�i /
2C �.�i /�

1
3

�
n.i/N�

3
4

�.�i /�
1
3

.
n.i/N�

5
12

�
2
9 i

1
3

�
N�

5
12

�
2
9

�N�
1
4

since n.i/� i
1
3 and ��N�

3
4 . This completes the proof of

P
nB2.n/.N�

1
4 .

Finally the
P
nB1.n/ term from (6-83) is estimated as follows by using (6-89):X

n

1

N

�
1

�i � 
�
i�n�1

C
1

�i � 
�
iCn�1

�
D

X
n

1

N

1

.�i � 
�
i�n/

2
O

�
.i � i�n�1/

2

�.�i /
2Œ�.�i /C�

1
3 �

�
.

n.i/

N�.�i /
2Œ�.�i /C�

1
3 �
: (6-92)

In the bulk regime this is trivially bounded by CN�
3
4 . In the cusp regime, �� .i=N /

3
4 , and we have

n.i/

N�.�i /
2Œ�.�i /C�

1
3 �
�

n.i/

N�.�i /
3
.

n.i/

N
1
4 i

3
4

.N�
1
4

since n.i/� i
1
4 .

Finally, in the edge regime, �� .i=N /
3
4 , we just use

n.i/

N�.�i /
2Œ�.�i /C�

1
3 �
�

n.i/

N�.�i /
2�

1
3

.
n.i/

N
1
4 i

3
4

.N�
1
4

since n.i/ � i
1
3 . This gives

P
nB1.n/.N�

1
4 . Together with the estimate on

P
nB2.n/ we get

jS2j.N�
1
4 ; see (6-80) and (6-83). This completes the estimate of G1 in (6-69), which, together

with (6-74) and (6-58), finishes the proof of Proposition 6.7. �
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6D. Phase 2W rigidity of Oz on scale N�
3
4
C 1

6
!1 , without i dependence. For any fixed ˛ 2 Œ0; 1� recall

the definition of the shifted process Qz.t; ˛/ (6-14) and the shifted ˛-interpolating semiquantiles N�i .t/
from (5-10) that trail Qz. Furthermore, for all 0 � t � t� we consider the interpolated density N�t with a
small gap ŒNe�t ; Ne

C
t �, and its Stieltjes transform Nmt . In particular,

Ne˙t D ˛e
˙
x;t C .1�˛/e

˙
y;t :

We recall that by Proposition 6.3 and (6-23) we have

sup
0�t�t�

max
1�ji j�i�

j Qzi .t; ˛/� N
�
i .t/j �N

� 3
4
CC!1 (6-93)

holds with very high probability for some i� DN
1
2
CC�!1 .

In this section we improve the rigidity (6-93) from scale N�
3
4
CC!1 to the almost-optimal but still

i-independent rigidity of order N�
3
4
C 1
6
!1C� but only for a new short-range approximation Ozi .t; ˛/ of

Qzi .t; ˛/. The range of this new approximation `4 DN 4!` with some !`� 1 is much shorter than that
of Vzi .t; ˛/ in Section 6C. Furthermore, the result will hold only for 1� ji j �N 4!`Cı1 for some small
ı1 > 0. The rigorous statement is in Proposition 6.10 below, after we give the definition of the short-range
approximation.

Short-range approximation on fine scale. Adapting the idea of [Landon and Yau 2017] to the cusp
regime, we now introduce a new short-range approximation process Oz.t; ˛/ for the solution to (6-14).
The short-range approximation in this section will always be denoted by hat, Oz, to distinguish it from the
other short-range approximation, Vz, used in Section 6C; see (6-35). Not only is the length scale shorter
for Oz, but the definition of Oz is more subtle than in (6-35)

The new short-scale approximation is characterised by two exponents !` and !A. In particular, we will
always assume that !1� !`� !A� 1, where recall that t� �N�

1
2
C!1 is defined in such a way that

N�t� has an exact cusp. The key quantity is ` WDN!` , which determines the scale on which the interaction
term in (6-14) will be cut off and replaced by its mean-field value. This scale is not constant; it increases
away from the cusp at a certain rate. The cutoff will be effective only near the cusp; for indices beyond
1
2
i�, with i� DN

1
2
CC�!1 , no cutoff is made. Finally, the intermediate scale N!A is used for a technical

reason: closer to the cusp, for indices less than N!A, we always use the density �y;t of the reference
process y.t/ to define the mean field approximation of the cutoff long-range terms. Beyond this scale
we use the actual density N�t . In this way we can exploit the closeness of the density N�t to the reference
density �y;t near the cusp and simplify the estimate. This choice will guarantee that the error term �0

in (6-105) below is nonzero only for ji j>N!A.
Now we define the Oz-process precisely. Let

A WD f.i; j / W ji � j j � `.10`3Cji j
3
4 Cjj j

3
4 /g[

˚
.i; j / W ji j; jj j> 1

2
i�
	
: (6-94)

One can easily check that for each i with 1� ji j � 1
2
i� the set fj W .i; j /2Ag is an interval of the nonzero

integers and that .i; j / 2A if and only if .j; i/ 2A. For each such fixed i we denote the smallest and the



CUSP UNIVERSALITY FOR RANDOM MATRICES, II 665

biggest j such that .i; j / 2A by j�.i/ and jC.i/, respectively. We will use the notation

A; .i/X
j

WD

X
j W.i;j /2A
i¤j

;

Ac; .i/X
j

WD

X
j W.i;j /…A

:

Assuming for simplicity that i� is divisible by 4, we introduce the intervals

Jz.t/ WD Œ N� 3
4
i�
.t/; N 3

4
i�
.t/�; (6-95)

and for each 0 < ji j � 1
2
i� we define

Iz;i .t/ WD Œ Nj�.i/.t/; NjC.i/.t/�: (6-96)

For a fixed ˛ 2 Œ0; 1� and N � ji j> 1
2
i� we let

d Ozi .t; ˛/D

r
2

N
dBi C

�
1

N

A; .i/X
j

1

Ozi .t; ˛/� Ozj .t; ˛/
C
1

N

Ac; .i/X
j

1

Qzi .t; ˛/� Qzj .t; ˛/
Cˆ˛.t/

�
dt; (6-97)

for 0 < ji j �N!A

d Ozi .t;˛/D

r
2

N
dBiC

�
1

N

A; .i/X
j

1

Ozi .t;˛/�Ozj .t;˛/
C

Z
Iy;i .t/c

�y;t .ECe
C
y;t /

Ozi .t;˛/�E
dEC<Œmy;t .eCy;t /�

�
dt; (6-98)

and for N!A < ji j � 1
2
i�

d Ozi .t; ˛/D

r
2

N
dBi C

�
1

N

A; .i/X
j

1

Ozi .t; ˛/� Ozj .t/
C

Z
Iz;i .t/c\Jz.t/

N�t .EC Ne
C
t /

Ozi .t; ˛/�E
dE

C
1

N

X
jj j� 3

4
i�

1

Qzi .t; ˛/� Qzj .t; ˛/
Cˆ˛.t/

�
dt; (6-99)

with initial data

Ozi .0; ˛/ WD Qzi .0; ˛/; (6-100)

where we recall that Qzi .0; ˛/D ˛ Qxi .0/C .1�˛/ Qyi .0/ for any ˛ 2 Œ0; 1�. In particular, Oz.t; 1/D Ox.t/ and
Oz.t; 0/D Oy.t/, which are the short-range approximations of the Qx.t/ WD x.t/�eCx;t and Qy.t/ WD x.t/�eCy;t
processes.

Using the rigidity estimates in (6-21) and (6-93) we will prove the following lemma in Appendix C.

Lemma 6.9. Assuming that the rigidity estimates (6-21) and (6-93) hold, for any fixed ˛ 2 Œ0; 1� we have

sup
1�ji j�N

sup
0�t�t�

j Ozi .t; ˛/� Qzi .t; ˛/j �
NC!1

N
3
4

(6-101)

with very high probability.
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In particular, since (6-21) and (6-93) have already been proven, we conclude from (6-93) and (6-101)
that

sup
0�t�t�

j Ozi .t; ˛/� Ni .t/j �
NC!1

N
3
4

; 1� ji j � i�; (6-102)

for any fixed ˛ 2 Œ0; 1�.
Now we state the improved rigidity for Oz, the main result of Section 6D:

Proposition 6.10. Fix any ˛ 2 Œ0; 1�. There exists a constant C > 0 such that if 0 < ı1 < C!` then

sup
0�t�t�

j Ozi .t; ˛/� Ni .t/j.
N �N

1
6
!1

N
3
4

; 1� ji j �N 4!`Cı1 ; (6-103)

for any � > 0 with very high probability.

Proof. Recall that initially Qzi .0; ˛/ is a linear interpolation between Qxi .0/ and Qyi .0/ and thus for Qzi .0; ˛/
optimal rigidity (6-23) holds. We define the derivative process

wi .t; ˛/ WD @˛ Ozi .t; ˛/: (6-104)

In particular, we find that w D w.t; ˛/ is the solution of

@tw D LwC �.0/; L WD BCV; (6-105)

with initial data

wi .0; ˛/D Oxi .0/� Oyi .0/:

Here, for any 1� ji j �N, the (short-range) operator B is defined on any vector f 2 C2N as

.Bf /i WD
A; .i/X
j

Bij .fi �fj /; Bij WD �
1

N

1

. Ozi .t; ˛/� Ozj .t; ˛//2
: (6-106)

Moreover, V is a multiplication operator, i.e., .Vf /i D Vifi , where Vi is defined in different regimes of i
as follows:

Vi WD�
Z
Iy;i .t/c

�y;t .EC eCy;t /

. Ozi .t; ˛/�E/2
dE; 1� ji j �N!A ;

Vi WD�
Z
Iz;i .t/c\Jz.t/

N�t .EC Ne
C
t /

. Ozi .t; ˛/�E/2
dE; N!A < ji j � 1

2
i�;

(6-107)

and Vi D 0 for ji j> 1
2
i�. The error term �

.0/
i D �

.0/
i .t/ in (6-105) is defined as follows: for ji j> 1

2
i� we

have

�
.0/
i WD

1

N

Ac; .i/X
j

@˛ Qzj .t; ˛/� @˛ Qzi .t; ˛/

. Qzi .t; ˛/� Qzj .t; ˛//2
C @˛ˆ˛.t/DWZ1C @˛ˆ˛.t/; (6-108)
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for N!A < ji j � 1
2
i� we have

�
.0/
i WD

1

N

X
jj j� 3

4
i�

@˛ Qzj .t; ˛/� @˛ Qzi .t; ˛/

. Qzi .t; ˛/� Qzj .t; ˛//2
C

Z
Iz;i .t/c\Jz.t/

@˛Œt .EC Ne
C
t /�

Ozi .t; ˛/�E
dE

C

�
@˛

Z
Iz;i .t/c\Jz.t/

�
N�t .EC Ne

C
t /

Ozi .t; ˛/�E
dEC @˛ˆ˛.t/

DWZ2CZ3CZ4C @˛ˆ˛.t/; (6-109)

and finally for 1� ji j �N!A we have �.0/i D 0. We recall that Iz;i .t/ and Jz.t/ in (6-109) are defined
by (6-96) and (6-95) respectively. Next, we prove that the error term �.0/ in (6-105) is bounded by some
large power of N.

Lemma 6.11. There exists a large constant C > 0 such that

sup
0�t�t�

max
1�ji j�N

j�
.0/
i .t/j �NC : (6-110)

Proof of Lemma 6.11. By (6-15), it follows that

@˛ˆ˛.t/D @˛<Œ Nmt .Ne
C
t C iN�100/�C h��.t; 1/� h��.t; 0/;

with h��.t; ˛/ defined by (6-7). Since the two h�� terms are small by (6-6), for each fixed t , we have

j@˛ˆ˛.t/j. j@˛
Z

R

N�t .Ne
C
t CE/

E � iN�100
dEjCN�1 D U1CU2CN�1; (6-111)

where

U1 WD

ˇ̌̌̌
@˛

Z Ni.ı�/
N�i.ı�/

N�t .Ne
C
t CE/

E � iN�100
dE
ˇ̌̌̌
D

ˇ̌̌̌
@˛

Z
I�

N�t .Ne
C
t C'˛;t .s//

'˛;t .s/� iN�100
'0˛;t .s/ ds

ˇ̌̌̌
;

U2 WD

ˇ̌̌̌
1

N

X
i�.ı/<ji j�N

@˛

Z
R

 .E � N�i .t//

E � iN�100
dE
ˇ̌̌̌
;

using the notation Ni.ı�/ D Ni.ı�/.t/ and the definition of N�t from (5-12). In U1 we changed variables,
i.e., E D '˛;t .s/, using that s ! '˛;t .s/ is strictly increasing. In particular, in order to compute the
limits of integration we used that '˛;t .i=N / D Ni .t/ by (4-2) and defined the ˛-independent interval
I� WD Œ�i.ı�/=N; i.ı�/=N �. Furthermore, in U1 we denoted by prime the s-derivative.

For U1 we have that (omitting the t -dependence, N�D N�t , etc.)

U1 .
ˇ̌̌̌Z
I�

@˛Œ N�.Ne
CC'˛.s//�

'˛.s/� iN�100
'0˛.s/ ds

ˇ̌̌̌
C

ˇ̌̌̌Z
I�

N�.NeCC'˛.s//

.'˛.s/� iN�100/2
.'0˛.s//

2 ds
ˇ̌̌̌

C

ˇ̌̌̌Z
I�

N�.NeCC'˛.s//

'˛.s/� iN�100
@˛'
0
˛.s/ ds

ˇ̌̌̌
: (6-112)

For s 2 I�, by the definition of '˛.s/ and (4-4) it follows that

1D n0˛.'˛.s//'
0
˛.s/D �˛.'˛.s//'˛.s/;
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and hence
'0˛.s/D

1

�˛.'˛.s//
. s�

1
4 ; (6-113)

where in the last inequality we used that �˛.!/ � minf!
1
3 ; !

1
2��

1
6 g and '˛.s/ � maxfs

3
4 ; s

2
3�

1
9 g

by (4-9a).
In the first integral in (6-112) we use that

N�.NeCC'˛.s//D �˛.Ne
C
C'˛.s//; s 2 I�;

by (5-12) and that @˛Œ�˛.NeC C '˛.s//� is bounded by the explicit relation in (4-10). For the other
two integrals in (6-112) we use that N� is bounded on the integration domain and that .'0˛.s//

2 . s� 12
from (6-113); hence it is integrable. In the third integral we also observe that

@˛'˛.s/D '�.s/�'�.s/

by (4-2); thus j@˛'0˛.s/j. s�
1
4 similarly to (6-113). Using j'˛.s/� iN�100j&N�100, we conclude that

U1 .N 200:

Next, we proceed with the estimate for U2.
Notice j@˛ .E� N�i .t//j � k 

0k1j Ox;i .t/� Oy;i .t/j by (5-10). Furthermore, since jE� iN�100j& ı�
on the domain of integration of U2, we conclude that

U2 .N 200
k 0k1;

and therefore from (6-111) we have
j@˛ˆ˛.t/j.N 202; (6-114)

since k 0k1 .N 2 by the choice of  ; see below (5-9).
Similarly, we conclude that

jZ3j.N 200
k 0k1: (6-115)

To estimate Z2, by (6-14), it follows that

d.@˛ Qzi /D
�
1

N

X
j

@˛ Qzj � @˛ Qzi

. Qzi � Qzj /2
C @˛ˆ˛.t/

�
dt;

with initial data
@˛ Qzi .0; ˛/D Qxi .0/� Qyi .0/;

for all 1� ji j �N. Since j@˛ Qzi .0; ˛/j.N 200 for all 1� ji j �N, by Duhamel’s principle and contraction,
it follows that

j@˛ Qzi .t; ˛/j.N 200
C t� max

0���t�
j@˛ˆ˛.�/j.N 202 (6-116)

for all 0� t � t�. In particular, by (6-116) it follows that

jZ2j.N 202
p
N (6-117)

since for all j in the summation in Z2 we have ji �j j& i� �N
1
2 and thus j Qzi � Qzj j& ji �j j=N &N�

1
2 .



CUSP UNIVERSALITY FOR RANDOM MATRICES, II 669

Finally, we estimate Z4 using the fact that the endpoints of Iz;i .t/c \Jz.t/ are quantiles Ni .t/ whose
˛-derivatives are bounded by (5-10). Henceˇ̌̌̌

Z4

ˇ̌̌̌
.
ˇ̌̌̌
N�t . NjC C Ne

C
t /

Ozi � NjC

ˇ̌̌̌
C

ˇ̌̌̌
N�t . Nj� C Ne

C
t /

Ozi � Nj�

ˇ̌̌̌
C

ˇ̌̌̌
N�t . N 3

4
i�
C NeCt /

Ozi � N 3
4
i�

ˇ̌̌̌
.N (6-118)

by rigidity. Combining (6-114)–(6-118) we conclude (6-110), completing the proof of Lemma 6.11. �

Continuing the analysis of (6-105), for any fixed ˛ let us define w# D w#.t; ˛/ as the solution of

@tw
#
D Lw#; (6-119)

with cutoff initial data

w#
i .0; ˛/D 1

fji j�N 4!`Cıgwi .0; ˛/;

with some 0 < ı < C!`, where C > 10 a constant such that .4CC/!` < !A.
By the rigidity (6-102), the finite-speed estimate (B-34), with ı0 WD ı, for the propagator UL of L holds.

Let 0 < ı1 < 1
2
ı; then, using Duhamel’s principle, that the error term �

.0/
i is bounded by (6-110) and that

�
.0/
i D 0 for any 1� ji j �N!A, it easily follows that

sup
0�t�t�

max
ji j�N 4!`Cı1

jw#
i .t; ˛/�wi .t; ˛/j �N

�100 (6-120)

for any ˛ 2 Œ0; 1�. In other words, the initial conditions far away do not influence the w-dynamics; hence
they can be set zero.

Next, we use the heat kernel contraction for the equation in (6-119). By the optimal rigidity of Oxi .0/
and Oyi .0/, since w#

i .0; ˛/ is nonzero only for 1� ji j �N 4!`Cı, it follows that

max
1�ji j�N

jw#
i .0; ˛/j �

N �N
1
6
!1

N
3
4

; (6-121)

and so, by heat kernel contraction and Duhamel’s principle,

sup
0�t�t�

max
1�ji j�N

jw#
i .t; ˛/j �

N �N
1
6
!1

N
3
4

: (6-122)

Next, we recall that Oz.t; ˛D0/D Oy.t/.
Combining (6-120) and (6-122), integrating wi .t; ˛0/ over ˛0 2 Œ0; ˛�, and by a high-moment Markov

inequality as in (6-45)–(6-46), we conclude that

sup
0�t�t�

j Ozi .t; ˛/� Oyi .t/j �
N �N

1
6
!1

N
3
4

; 1� ji j �N 4!`Cı1 ;

for any fixed ˛ 2 Œ0; 1� with very high probability for any � > 0. Since

j Ozi .t; ˛/� Ni .t/j � j Oyi .t/� Oy;i .t/jC j Ni .t/� Oy;i .t/jC
N �N

1
6
!1

N
3
4
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for all 1� ji j �N 4!`Cı1 and ˛ 2 Œ0; 1�, by (4-18) and the optimal rigidity of Oyi .t/, see (6-3), we conclude
that

sup
0�t�t�

j Ozi .t; ˛/� Ni .t/j �
N �N

1
6
!1

N
3
4

; 1� ji j �N 4!`Cı1 ; (6-123)

for any fixed ˛ 2 Œ0; 1�, for any � > 0 with very high probability. This concludes the proof of (6-103). �

6E. Phase 3W rigidity for Oz with the correct i -dependence. In this subsection we will prove almost-
optimal i -dependent rigidity for the short-range approximation Ozi .t; ˛/ (see (6-97)–(6-100)) for 1� ji j �
N 4!`Cı1.

Proposition 6.12. Let ı1 be defined in Proposition 6.10; then, for any fixed ˛ 2 Œ0; 1�, we have

sup
0�t�t�

j Ozi .t; ˛/� Ni .t/j.
N �N

1
6
!1

N
3
4 ji j

1
4

; 1� ji j �N 4!`Cı1 ; (6-124)

for any � > 0 with very high probability.

Proof. Define
K WD dN �

eI

then (6-103) (with �! 1
2
�) implies (6-124) for all 1� ji j � 2K. Next, we prove (6-124) for all 2K �

ji j �N 4!`Cı1 by coupling Qxi .t/ with Qyhi�Ki.t/, where we make the following notational convention:

hi �Ki WD

�
i �K if i 2 ŒKC 1;N �[ Œ�N;�1�;
i �K � 1 if i 2 Œ1;K�:

(6-125)

This slight complication is due to our indexing convention that excludes i D 0.
In order to couple the Brownian motion of Qxi .t/ with the one of Qyhi�Ki.t/, we construct a new process
Qz�.t; ˛/ satisfying

d Qz�i .t; ˛/D

r
2

N
dBhi�KiC

�
1

N

X
j¤i

1

Qz�i .t; ˛/� Qz
�
j .t; ˛/

Cˆ˛.t/

�
dt; 1� ji j �N; (6-126)

with initial data
Qz�i .0; ˛/D ˛ Qxi .0/C .1�˛/ Qyhi�Ki.0/; (6-127)

for any ˛ 2 Œ0; 1�. Notice that the only difference with respect to Qzi .t; ˛/ from (6-14) is a shift in the
index of the Brownian motion; i.e., Qz and Qz� (almost) coincide in distribution, but their coupling to the
y-process is different. The slight discrepancy comes from the effect of the few extreme indices. Indeed, to
make the definition (6-126) unambiguous even for extreme indices, i 2 Œ�N;�N CK � 1�, additionally
we need to define independent Brownian motions Bj and initial padding particles Qyj .0/D�jN 300 for
j D�N � 1; : : : ;�N �K. Similarly to Lemma 5.1, the effect of these very distant additional particles
is negligible on the dynamics of the particles for 1� ji j � �N for some small �.

Next, we define the process Oz�.t; ˛/ as the short-range approximation of Qz�.t; ˛/, given by (6-97)–
(6-99) but with Bi replaced with Bhi�Ki and we use initial data Oz�.0; ˛/D Qz�.0; ˛/. In particular,

Oz�i .t; 1/D Oxi .t/CO.N
�100/; Oz�i .t; 0/D Oyhi�Ki.t/CO.N

�100/; 1� ji j � �N; (6-128)
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the discrepancy again coming from the negligible effect of the additional K distant particles on the
particles near the cusp regime.

Let w�i .t; ˛/ WD @˛ Oz
�
i .t; ˛/; i.e., w� D w�.t; ˛/ is a solution of

@tw
�
D Bw�CVw�C �.0/;

with initial data
w�i .0; ˛/D Ox

�
i .0/� Oyhi�Ki.0/:

The operators B, L and the error term �.0/ are defined as in (6-106)–(6-109) with all Qz and Oz replaced by
Qz� and Oz�, respectively.

We now define .w�/# as the solution of

@t .w
�/# D L.w�/#; (6-129)

with cutoff initial data
.w�i /

#.0; ˛/D 1
fji j�N 4!`Cıgw

�
i .0; ˛/;

with 0 < ı < C!` with C > 10 such that .4CC/!` < !A.
We claim that

.w�i /
#.0; ˛/� 0; 1� ji j �N: (6-130)

We need to check it for 1� ji j �N 4!`Cı, otherwise .w�i /
#.0; ˛/D 0 by the cutoff. In the regime 1� ji j �

N 4!`Cı we use the optimal rigidity (Lemma 6.1 with �! 1
10
�) for Ox�i .0/ and Oyhi�Ki.0/, which yields

.w�i /
#.0; ˛/D Ox�i .0/� Oyhi�Ki.0/

� �N
1
10
��f .

�
x;i .0//C Ox;i .0/� Oy;hi�Ki.0/�N

1
10
��f .

�
y;hi�Ki.0//: (6-131)

We now check that Ox;i .0/� Oy;hi�Ki.0/ is sufficiently positive to compensate for the N
1
10
��f error

terms. Indeed, by (4-13a) and (4-18), for all ji j � 2K we have

Ox;i .t/� Oy;hi�Ki.t/&K�f .�x;i .t//�N
1
10
��f .

�
x;i .t//

and
�f .

�
y;hi�Ki.t//� �f .

�
x;i .t//:

This shows (6-130) in the 2K � ji j �N 4!`Cı regime. If K � ji j � 2K or �K � i � �1 we have that
.w�i /

#.0; ˛/� 0 since

Ox;i .0/� Oy;hi�Ki.0/&max
�
K
3
4

N
3
4

; .t�� t /
1
6
K
2
3

N
2
3

�
&K maxf�f .

�
x;i .0//; �f .

�
y;hi�Ki.0//g;

so Ox;i .0/� Oy;hi�Ki.0/ beats the error terms N
1
10
��f as well. Finally, if 1 � i � K � 1, the bound

in (6-131) is easy since Ox;i .0/ and Oy;hi�Ki.0/ have opposite signs; i.e., they are in two different sides
of the small gap and one of them is at least of order .K=N/

3
4 , beating N

1
10
��f . This proves (6-130).

Hence, by the maximum principle we conclude that

.w�i /
#.t; ˛/� 0; 0� t � t�; ˛ 2 Œ0; 1�: (6-132)
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Let ı1 < 1
2
ı be defined in Proposition 6.10. The rigidity estimate in (6-102) holds for Oz� as well, since

Oz and Oz� have the same distribution. Furthermore, by (6-102) the propagator U of L WD BCV satisfies
the finite-speed estimate in Lemma B.3. Then, using Duhamel’s principle and (6-110), we obtain

sup
0�t�t�

max
1�ji j�N 4!`Cı1

j.w�i /
#.t; ˛/�w�i .t; ˛/j �N

�100 (6-133)

for any ˛ 2 Œ0; 1� with very high probability.
By (6-133), integrating w�i .t; ˛

0/ over ˛0 2 Œ0; ˛�, we conclude that

Oz�i .t; ˛/� Oyhi�Ki.t/� �N
�100; 1� ji j �N;4!`Cı1 ; (6-134)

for all ˛ 2 Œ0; 1� and 0� t � t� with very high probability. Note that in order to prove (6-134) with very
high probability we used a Markov inequality as in (6-45)–(6-46). Hence,

Oz�i .t; ˛/� Ni .t/� Œ Oyhi�Ki.t/� Oy;hi�Ki.t/�C Œ Oy;hi�Ki.t/� Oy;i .t/�C Œ Oy;i .t/� Ni .t/��N
�100

& �K
�
�f .

�
y;hi�Ki.t//C �f .

�
y;i .t//

�
� �i .t/t

1
3
�

� �2K
�
�f .

�
y;hi�Ki.t//C �f .

�
y;i .t//

�
(6-135)

for all 1 � ji j � N 4!`Cı1 , where we used the optimal rigidity (6-3) and (4-18) in going to the second
line. In particular, since for ji j � 2K we have �f .�y;i .t//� �f .

�
y;i�K.t//, we conclude that

Oz�i .t; ˛/� Ni .t/� �
CKN

1
6
!1

N
3
4 ji j

1
4

; 2K � ji j �N 4!`Cı1 ; (6-136)

for all 0� t � t� and for any ˛ 2 Œ0; 1�. This implies the lower bound in (6-124).
In order to prove the upper bound in (6-124) we consider a very similar process Qz�i .t; ˛/ (we continue

to denote it by star) where the index shift in y is in the other direction. More precisely, it is defined as a
solution of

d Qz�i .t; ˛/D

r
2

N
dBhiCKiC

�
1

N

X
j¤i

1

Qz�i .t; ˛/� Qz
�
j .t; ˛/

Cˆ˛.t/

�
dt;

with initial data

Qzi .0; ˛/D ˛ QyhiCKi.0/C .1�˛/ Qxi .0/;

for any ˛ 2 Œ0; 1�. Here hi CKi is defined analogously to (6-125). Then, by similar computations, we
conclude that

Oz�i .t; ˛/� Ni .t/�
KN

1
6
!1

N
3
4 ji j

1
4

; 2K � ji j �N 4!`Cı1 ; (6-137)

for all 0� t � t� and for any ˛ 2 Œ0; 1�. Combining (6-136) and (6-137) we conclude (6-124) and complete
the proof of Proposition 6.12. �
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7. Proof of Proposition 3.1: Dyson Brownian motion near the cusp

In this section t1 � t�, indicating that we are before the cusp formation; we recall that t1 is defined as

t1 WD
N!1

N
1
2

for a small fixed !1 > 0 and t� is the time of the formation of the exact cusp. The main result of this
section is the following proposition, from which we can quickly prove Proposition 3.1 for t1 � t�. If
t1 > t� we conclude Proposition 3.1 using the analogous Proposition 8.1 instead of Proposition 7.1 exactly
in the same way.

Proposition 7.1. For t1 � t�, with very high probability we have

j.�j .t1/� eC
�;t1

/� .�jCi��i�.t1/� eC�;t1/j �N
� 3
4
�c!1 (7-1)

for some small constant c > 0 and for any j such that jj � i�j �N!1.

Note that if t1 D t� then eCr;t� D e�r;t� D cr for r D �;�, with cr being the exact cusp point of the
scDOSs �r;t� . The proof of Proposition 7.1 will be given at the end of the section after several auxiliary
lemmas.

Proof of Proposition 3.1. Firstly, we recall the definition of the physical cusp

br;t1 WD

8<:
1
2
.eCr;t1 C e�r;t1/ if t1 < t�;

cr if t1 D t�;
mr;t1 if t1 > t�

of �r;t1 as in (2-5), for r D �;�. Then, using the change of variables x DN
3
4 .x0� br;t1/ for r D �;�,

and the definition of correlation function, for each Lipschitz continuous and compactly supported test
function F, we haveZ

Rk
F.x/

�
N

1
4
kp

.N;�/

k;t1

�
b�;t1 C

x

N
3
4

�
�N

1
4
kp

.N;�/

k;t1

�
b�;t1 C

x

N
3
4

��
dx

DN k
�N
k

��1 X
fi1;:::;ikg�ŒN �

�
E
H
.�/
t1

F.N
3
4 .�i1 �b�;t1/; : : : ; N

3
4 .�ik �b�;t1//�E

H
.�/
t1

F.�!�/
�
; (7-2)

where �1; : : : ; �N and �1; : : : ; �N are the eigenvalues, labelled in increasing order, of H .�/
t1

and H .�/
t1

respectively. In E
H
.�/
t1

F.�! �/ we also replace b�;t1 by b�;t1 .
In order to apply Proposition 7.1 we split the sum in the right-hand side of (7-2) into two sums,X

fi1;:::;ikg�ŒN �
ji1�i�j;:::;jik�i�j<N

�

and its complement
0X
; (7-3)

where � is a positive exponent with �� !1.
We start with the estimate for the second sum of (7-3). In particular, we will estimate only the term

EH .�/
t1
. � /; the estimate for EH .�/

t1
. � / will follow in an analogous way.
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Since the test function F is compactly supported in some set �� Rk and in
P0 there is at least one

index il such that jil � i�j �N �, we have
0X

E
H
.�/
t1

F.N
3
4 .�i1 � b�;t1/; : : : ; N

3
4 .�ik � b�;t1//

.N k�1
kF k1

X
il W jil�i�j�N �

P
H
.�/
t1

�
j�il � b�;t1 j. C�N

� 3
4

�
; (7-4)

where C� is the diameter of �. Let
�;i D O�;i C eC

�;t1

be the classical eigenvalue locations of ��.t1/ defined by (4-10) for all 1� i� � i �N C1� i�. Then, by
the rigidity estimate from [Erdős et al. 2018, Corollary 2.6], we have

P
H
.�/
t1

�
j�il � b�;t1 j. C�N

� 3
4 ; jil � i�j �N

�
�
�N�D (7-5)

for each D > 0 if N is large enough, depending on C�. Indeed, by rigidity it follows that

j�il � b�;t1 j � j�;il � �;i� j � j�il � �;il j � jb�;t1 � �;i� j&
N c�

N
3
4

�
N c�

N
3
4

&
N c�

N
3
4

(7-6)

with very high probability if N � � jil � i�j � QcN for some 0 < Qc < 1. In (7-6) we used the rigidity from
[Erdős et al. 2018, Corollary 2.6] in the form

j�i � �;i j �
N �

N
3
4

;

for any � > 0, with very high probability. Note that (7-5) and (7-6) hold for any � & � . If jil � i�j � QcN,
then jil � i� j � 1 and the bound in (7-6) clearly holds. A similar estimate holds for H .�/

t1
; hence,

choosing D > kC 1 we conclude that the second sum in (7-3) is negligible.
Next, we consider the first sum in (7-3). For t1 � t� we have, by (4-6a), that

j.eC
�;t1
� b�;t1/� .e

C
�;t1
� b�;t1/j D

1
2
j��;t1 ���;t1 j.��;t1.t�� t1/

1
3 �N�

3
4
� 1
6
CC!1 :

Hence, by (7-1), using that
jF.x/�F.x0/j. kF kC1kx�x0k;

we conclude thatX
fi1;:::;ikg�ŒN �

ji1�i�j;:::;jik�i�j�N
�

ŒE
H
.�/
t1

F.N
3
4 .�i1 � b�;t1/; : : : ; N

3
4 .�ik � b�;t1//� E

H
.�/
t1

F.�! �/�

� CkkF kC1
N k�

N c!1
(7-7)

for some c > 0. Then, using that

N k.N � k/Š

N Š
D 1COk.N�1/;

we easily conclude the proof of Proposition 3.1. �
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7A. Interpolation. In order to prove Proposition 7.1 we recall a few concepts introduced previously. In
Section 5 we introduced the padding particles xi .t/, yi .t/, for 1� ji j �N, which are good approximations
of the eigenvalues �j .t/,�j .t/ respectively, for 1�j �N, in the sense of Lemma 5.1. They satisfy a Dyson
Brownian motion equation (5-5), (5-7) mimicking the DBM of genuine eigenvalue processes (5-3), (5-4).
It is more convenient to consider shifted processes where the edge motion is subtracted.

More precisely, for r D x; y and r.t/D x.t/; y.t/, we defined

Qri .t/ WD ri .t/� eCr;t ; 1� ji j �N;

for all 0� t � t�. In particular, Qr.t/ is a solution of

d Qri .t/D

r
2

N
dBi C

�
1

N

X
j¤i

1

Qri .t/� Qrj .t/
C<Œmr;t .e

C
r;t /�

�
dt; (7-8)

with initial data
Qri .0/D ri .0/� eCr;0; (7-9)

for all 1� ji j �N.
Next, following a similar idea of [Landon and Yau 2017], we also introduced in (6-14) an interpolation

process between Qx.t/ and Qy.t/. For any ˛ 2 Œ0; 1� we defined the process Qz.t; ˛/ as the solution of

d Qzi .t; ˛/D

r
2

N
dBi C

�
1

N

X
j¤i

1

Qzi .t; ˛/� Qzj .t; ˛/
Cˆ˛.t/

�
dt; (7-10)

with initial data
Qzi .0; ˛/D ˛ Qxi .0/C .1�˛/ Qyi .0/;

for each 1� ji j �N. Recall thatˆ˛.t/ was defined in (6-15) and it is such thatˆ0.t/D<Œmy;t .eCy;t /� and
ˆ1.t/D<Œmx;t .e

C
x;t /�. Note that Qzi .t; 1/D Qxi .t/ and Qzi .t; 0/D Qyi .t/ for all 1� ji j �N and 0� t � t�.

We recall the definition of the interpolated quantiles from (5-10) of Section 5:

Ni .t/ WD ˛ Ox;i .t/C .1�˛/ Oy;i .t/; ˛ 2 Œ0; 1�; (7-11)

where Ox;i and Oy;i are the shifted quantiles of �x;t and �y;t respectively, defined in Section 5. In
particular,

Ne˙t D ˛e
˙
x;t C .1�˛/e

˙
y;t ; ˛ 2 Œ0; 1�:

We denoted the interpolated density, whose quantiles are the Ni .t/, by N�t (5-12), and its Stieltjes transform
by Nmt .

Let Oz.t; ˛/ be the short-range approximation of Qz.t; ˛/ defined by (6-97)–(6-99), with exponents !1�
!`� !A� 1 and with initial data Oz.0; ˛/D Qz.0; ˛/ and i�DN

1
2
CC�!1 for some large constant C� > 0.

In particular, Ox.t/D Oz.t; 1/ and Oy.t/D Oz.t; 0/. Assuming optimal rigidity in (6-3) for Qri .t/D Qxi .t/; Qyi .t/,
the following lemma shows that the process Qr and its short-range approximation Or D Ox; Oy stay very close
to each other; i.e., j Ori � Qri j �N�

3
4
�c for some small c > 0. This is the analogue of Lemma 3.7 in [Landon

and Yau 2017] and its proof, given in Appendix C, follows similar lines. It assumes the optimal rigidity,
see (7-12) below, which is ensured by [Erdős et al. 2018, Corollary 2.6]; see Lemma 6.1.
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Lemma 7.2. Let i� DN
1
2
CC�!1 . Assume that Qz.t; 0/ and Qz.t; 1/ satisfy the optimal rigidity

sup
0�t�t1

j Qzi .t; ˛/� Or;i .t/j �N
��
�r;t
f .eCr;t C Or;˙i .t//; 1� ji j � i�; ˛ D 0; 1; (7-12)

with r D x; y, for any � > 0, with very high probability. Then, for ˛ D 0 or ˛ D 1 we have

sup
1�ji j�N

sup
0�t�t1

j Qzi .t; ˛/� Ozi .t; ˛/j

.
N
1
6
!1N �

N
3
4

�
N!1

N 3!`
C
N!1

N
1
8

C
NC!1N

1
2
!A

N
1
6

C
N
1
2
!ANC!1

N
1
4

C
NC!1

N
1
18

�
(7-13)

for any � > 0, with very high probability.

In particular, (7-13) implies that there exists a small fixed universal constant c > 0 such that

sup
1�ji j�N

sup
0�t�t1

j Qzi .t; ˛/� Ozi .t; ˛/j.N�
3
4
�c ; ˛ D 0; 1; (7-14)

with very high probability.

Remark 7.3. Note the denominator in the first error term in (7-13): the factor N 3!` is better than N 2!`

in Lemma 3.7 in [Landon and Yau 2017]; this is because of the natural cusp scaling. The fact that this
power is at least N .1C�/!` was essential in that paper since this allowed them to transfer the optimal
rigidity from Qz to the Oz-process for all ˛ 2 Œ0; 1�. Optimal rigidity for Oz is essential (i) for the heat kernel
bound for the propagator of L, see (6-105)–(6-106), and (ii) for a good `p-norm for the initial condition
in (7-25). With our approach, however, this power in (7-13) is not critical since we have already obtained
an even better, i-dependent rigidity for the Oz-process for any ˛ by using the maximum principle; see
Proposition 6.12. We still need (7-13) for the x- and y-processes (i.e., only for ˛ D 0; 1), but only with a
precision below the rigidity scale; therefore the denominator in the first term has only to beat N

7
6
!1C� .

7B. Differentiation. Next, we consider the ˛-derivative of the process Oz.t; ˛/. Let

ui .t/D ui .t; ˛/ WD @˛ Ozi .t; ˛/; 1� ji j �N I

then u is a solution of the equation

@tuD LuC �.0/; (7-15)

where �.0/, defined by (6-108)–(6-109), is an error term that is nonzero only for ji j > N!A and such
that j�.0/i j.N

C for some large constant C > 0 with very high probability, by (6-110), and the operator
LD BCV acting on R2N is defined by (6-106)–(6-107).

In the following by UL we denote the semigroup associated to (7-15); i.e., by Duhamel’s principle

u.t/D UL.0; t/u.0/C

Z t

0

UL.s; t/�.0/.s/ ds
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and UL.s; s/D Id for all 0� s � t . Furthermore, for each a; b such that jaj; jbj �N, by UL
ab

we denote
the entries of UL, which can be seen as the solution of (7-15) with initial condition ua.0/D ıab .

By Proposition 6.3 and Lemma C.1, for any fixed ˛ 2 Œ0; 1�, it follows that

sup
0�t�t�

j Ozi .t; ˛/� Ni .t/j.
NC!1

N
1
2

; 1� ji j �N; (7-16)

sup
0�t�t�

j Ozi .t; ˛/� Ni .t/j.
NC!1

N
3
4

; 1� ji j � i�; (7-17)

with very high probability. Then, using (7-17), as a consequence of Lemma B.3 we have the following:

Lemma 7.4. There exists a constant C > 0 such that for any 0 < ı < C!`, if 1 � jaj � 1
2
N 4!`Cı and

jbj �N 4!`Cı, then
sup

0�s�t�t�

UL
ab.s; t/CUL

ba.s; t/�N
�D (7-18)

for any D > 0 with very high probability.

Furthermore, by Proposition 6.12, for any fixed ˛ 2 Œ0; 1�, we have

sup
0�t�t�

j Ozi .t; ˛/� Ni .t/j.
N �N

1
6
!1

N
3
4 ji j

1
4

; 1� ji j �N 4!`Cı1 ; (7-19)

for some small fixed ı1 > 0 and for any � > 0 with very high probability.
Next, we introduce the `p norms

kukp WD

�X
i

jui j
p

�1
p

; kuk1 WDmax
i
jui j:

Following a similar scheme to [Bourgade et al. 2014; Erdős and Yau 2015] with some minor modifications
we will prove the following Sobolev-type inequalities in Appendix D.

Lemma 7.5. For any small � > 0 there exists c� > 0 such that

X
i¤j2ZC

.ui �uj /
2

ji
3
4 � j

3
4 j2��

� c�

�X
i�1

jui j
p

�2
p

;
X

i¤j2Z�

.ui �uj /
2

jji j
3
4 � jj j

3
4 j2��

� c�

�X
i��1

jui j
p

�2
p

(7-20)

hold, with p D 8=.2C 3�/, for any function kukp <1.

Using the Sobolev inequality in (7-20) and the finite-speed estimate of Lemma 7.4, in Appendix E we
prove the energy estimates for the heat kernel in Lemma 7.6 via a Nash-type argument.

Lemma 7.6. Assume (7-16), (7-17) and (7-19). Let 0 < ı4 < 1
10
ı1 and w0 2 R2N such that j.w0/i j �

N�100kw0k1 for ji j � `4N ı4 . Then, for any small � > 0 there exists a constant C > 0 independent of �
and a constant c� such that for all 0� s � t � t�

kUL.s; t/w0k2 �

�
NC�C 1

3
!1

c�N
1
2 .t � s/

�1�3�
kw0k1 (7-21)
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and

kUL.0; t/w0k1 �

�
NC�C 1

3
!1

c�N
1
2 t

�2
p
.1�3�/

kw0kp (7-22)

for each p � 1.

Let 0 < ıv < 1
2
ı4. Define vi D vi .t; ˛/ to be the solution of

@tv D Lv; vi .0; ˛/D ui .0; ˛/1fji j�N 4!`Cıv g: (7-23)

Then, by Lemma 7.4 the next result follows.

Lemma 7.7. Let u be the solution of the equation in (7-15) and v defined by (7-23); then we have

sup
0�t�t1

sup
ji j�`4

jui .t/� vi .t/j �N
�100 (7-24)

with very high probability.

Proof. By (7-15) and (7-23) have

ui .t/� vi .t/D

NX
jD�N

UL
ij .0; t/uj .0/�

N 4!`CıvX
jD�N 4!`Cıv

UL
ij .0; t/uj .0/C

Z t

0

X
jj j�N!A

UL
ij .s; t/�

.0/
j .s/ ds:

Then, using that �.0/i D 0 for 1� ji j �N!A and (6-110), the bound in (7-24) follows by Lemma 7.4. �

Proof of Proposition 7.1. We consider only the j D i� case. By Lemma 5.1 and (7-14) we have

j.�i�.t1/� eC
�;t1

/� .�i�.t1/� eC�;t1/j � j Qx1.t1/� Ox1.t1/jC j Ox1.t1/� Oy1.t1/jC j Oy1.t1/� Qy1.t1/j

� j Ox1.t1/� Oy1.t1/jCN
� 3
4
�c

with very high probability.
Since Ozi .t1; 1/ D Oxi .t1/ and Ozi .t1; 0/ D Oyi .t1/ for all 1 � ji j � N, by the definition of ui .t; ˛/, it

follows that

Ox1.t1/� Oy1.t1/D

Z 1

0

u1.t1; ˛/ d˛:

Furthermore, by a high-moment Markov inequality as in (6-45)–(6-46) and Lemma 7.7, we getZ 1

0

ju1.t1; ˛/j d˛ .N�100C
Z 1

0

jv1.t1; ˛/j d˛:

Since vi .0/D ui .0/1fji j�N 4!`Cıv g and, by (4-18) and (6-3), for 1� ji j �N 4!`Cıv we have

jui .0/j. j Oxi .0/� Ox;i .0/jC j Oyi .0/� Oy;i .0/jC j Ox;i .0/� Oy;i .0/j

.
N
1
6
!1

ji j
1
4N

3
4

C
ji j

3
4N

1
2
!1

N
11
12

.
N
1
6
!1

ji j
1
4N

3
4

;
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we conclude that

kv.0/k5 .
N
1
6
!1

N
3
4

(7-25)

with very high probability. Hence, recalling that t1 DN�
1
2
C!1, by (7-22) and Markov’s inequality again,

we get Z 1

0

jv1.t1; ˛/j d˛ � sup
˛2Œ0;1�

kv.t1; ˛/k1 �

�
NC�C 1

3
!1

N
1
2 t1

�2
5
.1�3�/

kv.0/k5

.
N
1
6
!1C

1
5
�.2CC3!1�6�C/

N
3
4N

4
15
!1

D
1

N
3
4N

1
20
!1

(7-26)

with very high probability, for � small enough, say �� !1.8C C 12!1/�1. Notice that the constant in
front of the !1 in the exponents plays a crucial role: eventually the constant

�
1� 1

3

�
2
5
D

4
15

from the
Nash estimate beats the constant 1

6
from (7-25). This completes the proof of Proposition 7.1. �

8. Case of t � t�: small minimum

In this section we consider the case when the densities �x;t , �y;t , hence their interpolation N�t as well, have
a small minimum, i.e., t� � t � 2t�. We deal with the small minimum case in this separate section mainly
for notational reasons: for t� � t � 2t� the processes x.t/ and y.t/, and consequently the associated
quantiles and densities, are shifted by Qmr;t , for r D x; y, instead of eCr;t . We recall that Qmr;t , defined
in (4-14a), denotes a close approximation of the actual local minimum mr;t near the physical cusp. We
chose to shift x.t/ and y.t/ by the tilde approximation of the minimum instead of the minimum itself
for technical reasons, namely because the t -derivative of Qmr;t , r D x; y, satisfies the convenient relation
in (4-14d).

As we explained at the beginning of Section 7, in order to prove universality, i.e., Proposition 3.1 at
time t1 � t�, it is enough to prove the following:

Proposition 8.1. For t1 � t�, we have, with very high probability, that

j.�j .t1/�m�;t1/� .�jCi��i�.t1/�m�;t1/j �N
� 3
4
�c (8-1)

for some small constant c > 0 and for any j such that jj � i�j �N!1 . Here m�;t1 and m�;t1 are the local
minimums of ��;t1 and ��;t1 , respectively.

We introduce the shifted process Qri .t/D Qxi .t/; Qyi .t/ for t � t�. Let us define

Qri .t/ WD ri .t/� Qmr;t ; 1� ji j �N; (8-2)

for r D x; y; hence, by (4-14d), the shifted points satisfy the DBM

d Qri .t/D

r
2

N
dBi C

1

N

X
j¤i

1

Qri .t/� Qrj .t/
dt �

�
d
dt
Qmr;t

�
dt: (8-3)
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Furthermore we recall that by Or;i .t/ we denote the quantiles of �r;t , with rDx; y, for all t�� t � 2t�; i.e.,

Or;i D r;i � Qmr;t ; 1� ji j �N:

By the rigidity estimate of [Erdős et al. 2018, Corollary 2.6], using Lemma 5.1 and the fluctuation
scale estimate in (4-17a) the proof of the following lemma is immediate.

Lemma 8.2. Let Qr.t/D Qx.t/; Qy.t/. There exists a fixed small � >0 such that for each 1�ji j� �N we have

sup
t��t�t1

j Qri .t/� Or;i .t/j �N
��
�r;t
f .r;i .t// (8-4)

for any � > 0 with very high probability, where we recall that the behaviour of ��r;tf .eCr;t C Or;˙i .t//, with
r D x; y, is given by (4-17b).

In order to prove Proposition 8.1, by Lemma 5.1 and (4-14b), it is enough to prove the following:

Proposition 8.3. For t1 � t� we have, with very high probability, that

j.xi .t1/� Qmx;t1/� .yi .t1/� Qmy;t1/j �N
� 3
4
�c (8-5)

for some small constant c > 0 and for any 1� ji j �N!1 .

The remaining part of this section is devoted to the proof of Proposition 8.3. We start with some
preparatory lemmas. We recall the definition of the interpolated quantiles given in Section 5,

Ni .t/ WD ˛ Ox;i .t/C .1�˛/ Oy;i .t/ (8-6)

for all ˛ 2 Œ0; 1� and t� � t � 2t�, as well as

Nmt WD ˛ Qmx;t C .1�˛/ Qmy;t

for all ˛ 2 Œ0; 1� and t� � t � 2t�. Furthermore by N�t from (5-12) we denote the interpolated density
between �x;t and �y;t and by Nmt its Stieltjes transform.

We now define the process Qzi .t; ˛/ whose initial data are given by the linear interpolation of Qx.0/ and
Qy.0/. Analogously to the small gap case, we define the function ‰˛.t/, for t� � t � 2t�, that represents
the correct shift of the process Qz.t; ˛/, in order to compensate the discrepancy of our choice of the
interpolation for N�t with respect to the semicircular flow evolution of the density N�0.

Analogously to the edge case, see (6-5)–(6-11), we define h.t; ˛/ with the following properties:

h.t; ˛/D ˛<Œmx;t . Qmx;t /�C .1�˛/<Œmy;t . Qmy;t /��<Œ Nmt . Nmt C iN�100/�CO.N�1/ (8-7)

and h.t; 0/D h.t; 1/D 0. Then, similarly to the edge case, we define

‰˛.t/ WD �˛
d
dt
Œmx;t . Qmx;t /�� .1�˛/

d
dt
Œmy;t . Qmy;t /�� h.t; ˛/: (8-8)

In particular, by our definition of h.t; ˛/ in (8-7) it follows that ‰0.t/D d
dt Qmy;t , ‰1.t/D

d
dt Qmx;t and

‰˛.t/D<Œ Nmt . Nmt /�CO.N�
1
2
C!1/: (8-9)
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Note that the error in (8-9) is somewhat weaker than in the analogous equation (6-16) due to the additional
error in (4-14d) compared with (4-14e).

More precisely, the process Qz.t; ˛/ is defined by

d Qzi .t; ˛/D

r
2

N
dBi C

�
1

N

X
j¤i

1

Qzi .t; ˛/� Qzj .t; ˛/
C‰˛.t/

�
dt; (8-10)

with initial data
Qzi .t�; ˛/ WD ˛ Qxi .t�/C .1�˛/ Qyi .t�/; (8-11)

for all 1� ji j �N and for all ˛ 2 Œ0; 1�.
We recall that !1� !`� !A� 1 and that i� DN

1
2 CC�!1 with some large constant C�.

Next, we define the analogues of Jz.t/ and Iz;i .t/ for the small minimum by (6-95) and (6-96) using
the definition in (8-6) for the quantiles. Then, for each t�� t � t1, we define the short-range approximation
Ozi .t; ˛/ of Qz.t; ˛/ by the following SDE:

For ji j> 1
2
i� we let

d Ozi .t; ˛/D

r
2

N
dBi C

�
1

N

A; .i/X
j

1

Ozi .t; ˛/� Ozj .t; ˛/
C
1

N

Ac; .i/X
j

1

Qzi .t; ˛/� Qzj .t; ˛/
C‰˛.t/

�
dt; (8-12)

for ji j �N!A

d Ozi .t;˛/D

r
2

N
dBiC

�
1

N

A; .i/X
j

1

Ozi .t;˛/�Ozj .t;˛/
C

Z
Iy;i .t/c

�y;t .EC Qm
C
y;t /

Ozi .t;˛/�E
dE
�

dt�
�

d
dt
Qmr;t

�
dt; (8-13)

and for N!A < ji j � 1
2
i�

d Ozi .t; ˛/D

r
2

N
dBi C

�
1

N

A; .i/X
j

1

Ozi .t; ˛/� Ozj .t; ˛/
C

Z
Iz;i .t/c\Jz.t/

N�t .EC Nm
C
t /

Ozi .t; ˛/�E
dE

C

X
jj j� 3

4
i�

1

Qzi .t; ˛/� Qzj .t; ˛/
C‰˛.t/

�
dt; (8-14)

with initial data
Ozi .t�; ˛/ WD Qzi .t�; ˛/: (8-15)

Next, by Lemma C.2, by the optimal rigidity in (8-4) for Qx.t/ and Qy.t/, the next lemma follows
immediately.

Lemma 8.4. For ˛ D 0 and ˛ D 1, with very high probability, we have

sup
1�ji j�N

sup
t��t�t1

j Qzi .t; ˛/� Ozi .t; ˛/j.
N �

N
3
4

�
N!1

N 3!`
C
NC!1

N
1
24

�
(8-16)

for any � > 0 and C > 0 a large universal constant.
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In order to proceed with the heat-kernel estimates we need an optimal i -dependent rigidity for Ozi .t; ˛/
for 1� ji j �N 4!`Cı for some 0 < ı < C!`. In particular, analogously to Proposition 6.12 we have:

Proposition 8.5. Fix any ˛ 2 Œ0; 1�. There exists a small fixed 0 < ı1 < C!`, for some constant C > 0,
such that

sup
t��t�2t�

j Ozi .t; ˛/� Ni .t/j.
N �N

1
6
!1

N
3
4 ji j

1
4

; 1� ji j �N 4!`Cı1 ; (8-17)

for any � > 0 with very high probability.

Proof. We can adapt the arguments in Section 6 to the case of the small minimum, t � t�, in a
straightforward way. In Section 6, as the main input, we used the precise estimates on the density �r;t
(4-6b), (4-20), on the quantiles Or;i .t/ (4-13a), on the quantile gaps (4-18), on the fluctuation scale (4-17a)
and on the Stieltjes transform (4-22a), all formulated for the small gap case, 0 � t � t�. In the small
minimum case, t � t�, the corresponding estimates are all available in Section 4; see (4-6d), (4-21),
(4-13b), (4-19), (4-17b) and (4-22b), respectively. In fact, the semicircular flow is more regular after the
cusp formation; see, e.g., the better (larger) exponent in the .t � t�/ error terms when comparing (4-6b)
with (4-6d). This makes handling the small minimum case easier. The most critical part in Section 6 is
the estimate of the forcing term (Proposition 6.7), where the derivative of the density (4-7a) was heavily
used. The main mechanism of this proof is the delicate cancellation between the contributions to S2 from
the intervals Œi�n�1; i�n� and ŒiCn�1; iCn�; see (6-83). This cancellation takes place away from
the edge. The proof is divided into two cases: the so-called “edge regime”, where the gap length � is
relatively large, and the “cusp regime”, where � is small or zero. The adaptation of this argument to
the small minimum case, t � t�, will be identical to the proof for the small gap case in the cusp regime.
In this regime the derivative bound (4-7a) is used only in the form j�0j. ��2, which is available in the
small minimum case, t � t�, as well; see (4-8a). This proves Proposition 6.7 for t � t�. The rest of the
argument is identical to the proof in the small minimum case up to obvious notational changes; the details
are left to the reader. �

Let us define ui .t; ˛/ WD @˛ Ozi .t; ˛/ for t� � t � 2t�. In particular, u is a solution of the equation

@tuD LuC �.0/ (8-18)

with initial condition u.t�; ˛/D Qx.t�/� Qy.t�/ from (8-11). The error term �.0/ is defined analogously
to (6-108)–(6-109) but replacing ˆ˛ and NeCt with ‰˛ and Qmt , respectively. Note that this error term is
nonzero only for ji j �N!A and for any i we have j�.0/i j �N

C with very high probability, for some large
C > 0. Furthermore, LD BCV is defined as in (6-106)–(6-107) replacing eCy;t and NeCt by Qmy;t and Nmt ,
respectively. In the following by UL we denote the propagator of the operator L.

Let 0 < ıv < 1
2
ı4, with ı4 defined in Lemma 7.6. Define vi D vi .t; ˛/ to be the solution of

@tv D Lv; vi .t�; ˛/D ui .t�; ˛/1fji j�N 4!`Cıv g: (8-19)

By the finite speed of propagation estimate in Lemma B.3, similarly to the proof of Lemma 7.7, we
immediately obtain the following:
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Lemma 8.6. Let u be the solution of (8-18) and v defined by (8-19); then we have

sup
t��t�2t�

sup
1�ji j�`4

jui .t/� vi .t/j �N
�100 (8-20)

with very high probability.

Collecting all the previous lemmas we conclude this section with the proof of Proposition 8.3.

Proof of Proposition 8.3. We consider only the i D 1 case. By Lemmas 5.1 and 8.4 we have

j.x1.t1/� Qmx;t1/� .y1.t1/� Qmy;t1/j � j Qx1.t1/� Ox1.t1/jC j Ox1.t1/� Oy1.t1/jC j Oy1.t1/� Qy1.t1/j

� j Ox1.t1/� Oy1.t1/jC
1

N
3
4
Cc

with very high probability. Since u.t; ˛/ D @˛ Oz.t; ˛/, using Ox1.t1/ � Oy1.t1/ D
R 1
0 u.t1; ˛/ d˛ and

Lemma 8.6 it will be sufficient to estimate
R 1
0 jv1.t1; ˛/j d˛. By rigidity from (8-4), we have

jvi .t�; ˛/j D jui .t�; ˛/j D j Qyi .t�/� Qxi .t�/j.
N �

N
3
4 ji j

1
4

for any 1� ji j �N 4!`Cıv ; hence

kv.t�; ˛/k5 .
N �

N
3
4

for any � > 0 with very high probability.
Finally, using the heat kernel estimate in (7-22) for UL.0; t/ for t� � t � 2t�, we conclude, after a

Markov inequality as in (6-45)–(6-46),Z 1

0

jv1.t1; ˛/j d˛ .
N �

N
3
4N

4
15
!1

(8-21)

with very high probability. �

Appendix A: Proof of Theorem 2.4

We now briefly outline the changes required for the proof of Theorem 2.4 compared to the proof of
Theorem 2.2. We first note that for 0� �1 � � � � � �k .N�

1
2 in distribution .H .�1/; : : : ;H .�k// agrees

with

.H C
p
�1U1;H C

p
�1U1C

p
�2� �1U2; : : : ;H C

p
�1U1C � � �C

p
�k � �k�1Uk/; (A-1)

where U1; : : : ; Uk are independent GOE matrices. Next, we claim and prove later by Green’s function
comparison that the time-dependent k-point correlation function of (A-1) asymptotically agrees with the
one of

. zHt C
p
�1U1; zHt C

p
�1U1C

p
�2� �1U2; : : : ; zHt C

p
�1U1C � � �C

p
�k � �k�1Uk/; (A-2)



684 GIORGIO CIPOLLONI, LÁSZLÓ ERDŐS, TORBEN KRÜGER AND DOMINIK SCHRÖDER

and thereby also with the one of

.Ht C
p
ctU C

p
�1U1;Ht C

p
ctU C

p
�1U1C

p
�2� �1U2; : : : ;

Ht C
p
ctU C

p
�1U1C � � �C

p
�k � �k�1Uk/ (A-3)

for any fixed t �N�
1
4
��, where zHt and Ht are constructed as in Section 3 (see (3-3)). Finally, we notice

that the joint eigenvalue distribution of the matrices in (A-3) is precisely given by the joint distribution of

.�i .ct C �1/; : : : ; �i .ct C �k/; i 2 ŒN �/

where �i .s/ are the eigenvalues evolved according to the DBM

d�i .s/D

r
2

N
dBi C

X
j¤i

1

�i .s/��j .s/
ds; �i .0/D �i .Ht /: (A-4)

The high probability control on the eigenvalues evolved according to (A-4) in Propositions 7.1 and 8.1
allows us to simultaneously compare eigenvalues at different times with those of the Gaussian reference
ensemble automatically.

In order to establish Theorem 2.4 it thus only remains to argue that the k-point functions of (A-1)
and (A-2) are asymptotically equal. For the sake of this argument we consider only the randomness in H
and the condition on the randomness in U1; : : : ; Uk . Then the OU-flow

d zH 0s D�
1
2

�
zH 0s �A�

p
�1U1� � � � �

p
�l � �l�1Ul

�
dsC†

1
2 ŒdBs�;

with initial conditions
zH 00 DH C

p
�1U1C � � �C

p
�l � �l�1Ul ;

for fixed U1; : : : ; Ul is given by

zH 0s D
zHsC

p
�1U1C � � �C

p
�l � �l�1Ul I

i.e., we view
p
�1U1C � � �C

p
�l � �l�1Ul as an additional expectation matrix. Thus we can appeal to

the standard Green’s function comparison technique already used in Section 3 to compare the k-point
functions of (A-1) and (A-2). Here we can follow the standard resolvent expansion argument from [Erdős
et al. 2018, equation (116)] and note that the proof therein verbatim also allows us to compare products
of traces of resolvents with differing expectations. Finally we then take the EU1 : : : EUk expectation to
conclude that not only the conditioned k-point functions of (A-1) and (A-2) asymptotically agree, but
also the k-point functions themselves.

Appendix B: Finite speed of propagation estimate

In this section we prove a finite speed of propagation estimate for the time evolution of the ˛-derivative of
the short-range dynamics defined in (6-97)–(6-99). It is an adjustment to the analogous proof of Lemma 4.1
in [Landon and Yau 2017]. For concreteness, we present the proof for the propagator UL, where LDBCV
is defined in (6-105)–(6-107). The point is that once the dynamics is localised, i.e., the range of the
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interaction term B is restricted to a local scale ji�j j� jjC.i/�j�.i/j, with jjC.i/�j�.i/j&N 4!`DWL,
and the time is also restricted, 0� t � 2t� .N�

1
2
C!1, the propagation cannot go beyond a scale that is

much bigger than the interaction scale. This mechanism is very general and will also be used in a slightly
different (simpler) setup of Lemma 6.5 and Proposition 6.8 where the interaction scale is much bigger
L�
p
N . We will give the necessary changes for the proof of Lemma 6.5 and Proposition 6.8 at the end

of this section.

Lemma B.1. Let Oz.t/ D Oz.t; ˛/ be the solution to the short-range dynamics (6-97)–(6-99) with i� D
N
1
2
CC�!1, exponents !1 � !` � !A � 1 and propagator L D BC V from (6-105)–(6-107). Let us

assume that

sup
0�t�t�

j Ozi .t/� Ni .t/j �
NC!1

N
3
4

; 1� ji j � i�; (B-1)

where Ni .t/ are the quantiles from (5-10). Then, there exists a constant C 0 > 0 such that for any
0 < ı < C 0!`, jaj � LN ı and jbj � 3

4
LN ı, for any fixed 0� s � t�, we have

sup
s�t�t�

UL
ab.s; t/CUL

ba.s; t/�N
�D (B-2)

for any D > 0, with very high probability. The same result holds for the short-range dynamics after the
cusp defined in (8-18) for t� � s � 2t�.

Proof of Lemma B.1. For concreteness we assume that 0 � s � t � t�, i.e., we are in the small gap
regime. For t� � s � t � 2t� the proof is analogous using the definition (8-6) for the Ni .t/, the definition
of the short-range approximation in (8-12)–(8-15) for the Ozi .t; ˛/ and replacing NeCt by Nmt . With these
adjustments the proof follows in the same way except for (B-25) below, where we have to use the estimates
in (4-22b) instead of (4-22a).

First we consider the s D 0 case; then in Lemma B.3 below we extend the proof for all 0� s � t . Let
 .x/ be an even 1-Lipschitz real function; i.e.,  .x/D  .�x/, k 0k1 � 1 such that

 .x/D jxj for jxj �
L
3
4N

3
4
ı

N
3
4

;  0.x/D 0 for jxj � 2
L
3
4N

3
4
ı

N
3
4

: (B-3)

and

k 00k1 .
N
3
4

L
3
4N

3
4 ı
: (B-4)

We consider a solution of the equation

@tf D Lf; 0� t � t�;

with some discrete Dirac delta initial condition fi .0/ D ıip� at p� for any jp�j � N 4!`N ı. For
concreteness, assume p� > 0 and set p WDN 4!`N ı. Define

�i D �i .t; ˛/ WD e
1
2
� . Ozi .t;˛/� Np.t//; mi Dmi .t; ˛/ WD fi .t; ˛/�i .t; ˛/; � D

N
3
4

L
3
4N ı 0

; (B-5)
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with some ı0 � 1
2
ı to be chosen later. Let Ozi D Ozi .t; ˛/ and set

F.t/ WD
X
i

f 2i e
� . Ozi� Np.t// D

X
i

m2i : (B-6)

Since

2
X
i

fi .Bf /i�2i D
X

.i;j /2A

Bij .mi �mj /2�
X

.i;j /2A

Bijmimj
�
�i

�j
C
�j

�i
� 2

�
;

using Itô’s formula, we conclude that

dF D
X

.i;j /2A

Bij .mi �mj /2 dt C 2
X
i

Vim2i dt (B-7)

�

X
.i;j /2A

Bijmimj
�
�i

�j
C
�j

�i
� 2

�
dt (B-8)

C

X
i

�m2i  
0. Ozi � Np/ d. Ozi � Np/ (B-9)

C

X
i

m2i

�
�2

N
 0. Ozi � Np/

2
C
�

N
 00. Ozi � Np/

�
dt: (B-10)

Let �1 � t� be the first time such that F � 5 and let �2 be the stopping time such that the estimate (B-1)
holds with t � �2 instead of t � t�; the condition (B-1) then says that �2 D t� with very high probability.
Define � WD �1 ^ �2 ^ t�; our goal is to show that � D t�. In the following we assume t � � .

Now we estimate the terms in (B-7)–(B-10) one by one. We start with (B-8). Note that the rigidity
scale N�

3
4
CC!1 in (B-1) is much smaller than N�

3
4
.1�ı/C3!`, the range of the support of  0, which, in

turn, is comparable with j Ni � Npj& .p=N/
3
4 for any i � 2p D 2LN ı. Therefore  0. Ozi � Np/D 0 unless

ji j.LN ı. Moreover, if ji j.LN ı and .i; j / 2A, then jj j.LN ı. Hence, the nonzero terms in the sum
in (B-8) have ji j; jj j.N 4!`Cı. By (B-1) and C!1� !`, for such terms we have

j Ozi � Ozj j.
ji � j j

N
3
4 minfji j; jj jg

1
4

C
NC!1

N
3
4

.
L
3
4N

1
2
ı

N
3
4

: (B-11)

Note that �j Ozi � Ozj j. 1. Therefore, by Taylor expanding in the exponent, we haveˇ̌̌̌
�i

�j
C
�j

�i
�2

ˇ̌̌̌
D .e

1
2
�. . Ozj� Np/� . Ozi� Np//�e

1
2
�. . Ozi� Np/� . Ozj� Np///2 . �2j . Ozi � Np/� . Ozj � Np/j2;

and thus ˇ̌̌̌
Bij
�
�i

�j
C
�j

�i
� 2

�ˇ̌̌̌
. �2

j . Ozi � Np/� . Ozj � Np/j
2

N. Ozi � Ozj /2
.
�2

N
; (B-12)

where in the last inequality we used that  is Lipschitz continuous. Hence we conclude the estimate
of (B-8) asˇ̌̌̌ X

.i;j /2A

Bijmimj
�
�i

�j
C
�j

�i
� 2

�ˇ̌̌̌
.
�2

N

X
i

m2i

A; .i/X
j

1f�j¤�i g .
�2LN

3
4 ı

N
F.t/; (B-13)
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since the number of j ’s in the summation is at most

jjC.i/� j�.i/j � `
4
C `ji j

3
4 � LN

3
4
ı : (B-14)

By (B-4) and since j 0.x/j � 1, (B-10) is bounded as follows:ˇ̌̌̌X
i

m2i

�
�2

N
 0. Ozi � Np/

2
C
�

N
 00. Ozi � Np/

�ˇ̌̌̌
.
�
�2

N
C

�

N
1
4L

3
4N

3
4
ı

�
F.t/: (B-15)

The next step is to get a bound for (B-9). Since  0. Ozi� Np/D 0 unless ji j.N 4!`Cı�N!A , choosing
C > 0 such that .4CC/!` < !A and using (6-98) we get

d. Ozi .t/� Np.t//D

r
2

N
dBi C

1

N

A; .i/X
j

1

Ozi .t/� Ozj .t/
CQi .t/; (B-16)

with

Qi .t/ WD

Z
Iy;i .t/c

�y;t .ECe
C
y;t /

Ozi .t/�E
dEC<Œmy;t .eCy;t /�C˛

�
<Œmx;t . Ox;p.t/Ce

C
x;t /�mx;t .e

C
x;t /�

�
C.1�˛/

�
<Œmy;t . Oy;p.t/Ce

C
y;t /�my;t .e

C
y;t /�

�
: (B-17)

We insert (B-16) into (B-9) and estimate all three terms separately in the regime ji j. LN ı. For the
stochastic differential, by the definition of � � t� and the Burkholder–Davis–Gundy inequality we have

sup
0�t��

Z t

0

r
2

N
�
X
i

m2i  
0. Ozi � Np/ dBi �N �0 �

p
N

p
t� sup
0�t��

F.t/. �N �0N�
3
4
C 1
2
!1 (B-18)

for any �0 > 0, with very high probability. In (B-18) we used that � � t� � N�
1
2
C!1, and that, by the

definition of � , F.t/ is bounded for all 0� t � � .
The contribution of the second term in (B-16) to (B-9) is written, after symmetrisation, as

�

N

X
.i;j /2A

 0. Ozi � Np/m
2
i

Ozj � Ozi

D
�

2N

X
.i;j /2A

 0. Ozi � Np/.m
2
i �m

2
j /

Ozj � Ozi
C

�

2N

X
.i;j /2A

m2i
 0. Ozi � Np/� 

0. Ozj � Np/

Ozj � Ozi
: (B-19)

Using (B-4) and (B-14), the second sum in (B-19) is bounded byˇ̌̌̌
�

2N

X
.i;j /2A

m2i
 0. Ozi� Np/� 

0. Ozj� Np/

Ozj�Ozi

ˇ̌̌̌
.

�

N
1
4L

3
4N

3
4
ı

X
i

m2i

A; .i/X
j

1f 0. Ozi� Np/¤ 0. Ozj� Np/g

.
�L

1
4

N
1
4

F: (B-20)
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Using m2i �m
2
j D .mi �mj /.mi Cmj / and the Schwarz inequality, the first sum in (B-19) is bounded as

follows:

�

2N

X
.i;j /2A

 0. Ozi � Np/.m
2
i �m

2
j /

Ozj � Ozi

� �
1

100

X
.i;j /2A

Bij .mi �mj /2C
C�2

2N

X
.i;j /2A

 0. Ozi � Np/
2.m2i Cm

2
j /: (B-21)

The second sum in (B-21), using (B-14), is bounded by

C�2

2N

X
.i;j /2A

 0. Ozi � Np/.m
2
i Cm

2
j /�

C�2LN
3
4 ı

2N
F I (B-22)

hence we conclude that

�

N

X
.i;j /2A

 0. Ozi � Np/m
2
i

Ozj � Ozi
� �

1

100

X
.i;j /2A

Bij .mi �mj /2CC
�
�L

1
4

N
1
4

C
�2LN

3
4 ı

N

�
F: (B-23)

Note that the first term on the right-hand side of (B-23) can be incorporated in the first, dissipative term
in (B-7).

To conclude the estimate of (B-9) we write the third term in (B-16) as

Qi .t/D

�Z
Iy;i .t/c

�y;t .EC eCy;t /

Ozi .t/�E
dEC<Œmy;t . Np.t/C eCy;t /�

�
C˛

�
<Œmx;t . Ox;p.t/C eCx;t /�mx;t .e

C
x;t /��<Œmy;t . Ox;p.t/C eCy;t /�my;t .e

C
y;t /�

�
C˛

�
<Œmy;t . Ox;p.t/C eCy;t /��<Œmy;t . Np.t/C eCy;t /�

�
C .1�˛/

�
<Œmy;t . Oy;p.t/C eCy;t /��<Œmy;t . Np.t/C eCy;t /

�
DW A1CA2CA3CA4: (B-24)

Similarly to the estimates in (6-58), for A2 we use (4-22a), while for A3; A4 we use (4-7b); then we
use the asymptotic behaviour of Op; Np by (4-13a) and p D LN ı to conclude that

jA2jC jA3jC jA4j.
L
1
4N

1
4
ıNC!1 logN

N
1
4N

1
6

: (B-25)

We write the A1-term as

A1 D

Z
Iy;i .t/c

Np.t/� Ozi .t/

. Ozi .t/�E/. Np.t/�E/
�y;t .EC eCy;t / dEC

Z
Iy;i .t/

�y;t .EC eCy;t /

Np.t/�E
dE: (B-26)

Since i � Cp, we have �y;t .E C eCy;t / � �y;t . NCp.t/C eCy;t / . L
1
4N�

1
4
C 1
4
ı for any E 2 Iy;i .t/; the

second term in (B-26) is bounded by L
1
4N�

1
4
C 1
4
ı logN. In the first term in (B-26) we use that

j Ozi .t/�Ej � j Ni .t/�Ej � jOzi .t/� Ni .t/j& Np.t/
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for E 62 Iy;i .t/, by rigidity (B-1) and by the fact that in the i �Cp regime j Ni .t/� Ni˙j˙.i/.t/j& Np.t/�
N�

3
4
CC!1 since !1� !` and D LN ı DN 4!`C!1.

We thus conclude that the first term in (B-26) is bounded by

j Ozi .t/� Np.t/j
=Œmy;t .e

C
y;t C i Np.t//�

Np.t/
. N

1
3
p . L

1
4N�

1
4
C 1
4
ı ;

where we used again the rigidity (B-1). In summary, we have

jA1j. L
1
4N�

1
4
C 1
4
ı logN: (B-27)

In particular (B-24)–(B-27) imply that

Q WD sup
0�t�t�

sup
ji j.LN ı

jQi .t/j. L
1
4N�

1
4
C 1
4
ı logN: (B-28)

Collecting all the previous estimates using the choice of � from (B-5) with ı0 � 1
2
ı and that F is

bounded up to t � � , we integrate (B-7)–(B-10) from 0 up to time 0� t � t� and conclude that

sup
0�t��

F.t/�F.0/.
�
�2LN

3
4
ıC!1

N
3
2

C
�L

1
4N!1

N
3
4

C
�QN!1

N
1
2

�

.
N
3
4
ıC!1

L
1
2N 2ı 0

C
N!1

L
1
2N ı 0

C
N!1C

1
4
ı

L
1
2N ı 0

logN � 1 (B-29)

for large N and with very high probability, where we used the choice of � (B-5) and that !1� !` in the
last line. Since F.0/D 1, we get that � D t� with very high probability, and so

sup
0�t�t�

F.t/� 5 (B-30)

with very high probability.
Furthermore, since pDLN ı, if i � 3

4
LN ı, choosing ı0D 3

4
ı��1, with �1� 1

4
ı, then by Proposition 6.3

we have

� . Ozi .t/� Np/D �j Ozi .t/� Npj& �
ji �pj

N
3
4 jpj

1
4

&
N
3
4 ı

N ı 0
DN �1

with very high probability.
Note that (B-30) implies

fi .t/� 5e
� 1
2
� . Ozi .t/� Np/:

Therefore, if i � 3
4
LN ı and p� � p, then for each fixed 0� t � t� we have

UL
ip�
.0; t/�N�D (B-31)

for any D > 0 with very high probability. A similar estimate holds if i and p� are negative or have
opposite sign. This proves the estimate on the first term in (B-2) for any fixed s. The estimate for
UL
p�i
.s; t/ is analogous with initial condition f D ıi . This proves Lemma B.1. �
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Next, we enhance this result to a bound uniform in 0� s � t�. We first have:

Lemma B.2. Let u be a solution of

@tuD Lu (B-32)

with nonnegative initial condition ui .0/� 0. Then, for each 0� t � t� we have

1

2

X
i

ui .0/�
X
i

ui .t/�
X
i

ui .0/ (B-33)

with very high probability.

Proof. Since UL is a contraction semigroup the upper bound in (B-33) is trivial. Notice that @t
P
i ui DP

i Viui . Thus the lower bound will follow once we prove �Vi .N
1
2L�

1
2 with very high probability

since t�N
1
2L�

1
2 is much smaller than 1 by !1� !`.

The estimate �Vi . N
1
2L�

1
2 proceeds similarly to (B-26). Indeed, for 1 � ji j < N!A we use

�y;t .EC eCy;t /. jEj
1
3 and that j Ozi .t/�Ej � j Ni .t/�Ej by rigidity (B-1) and by the fact that

jjC.i/� i j; jj�.i/� i j&N 4!` CN!` ji j
3
4

is much bigger than the rigidity scale. Therefore, we have

�Vi D
Z
Iy;i .t/c

�r;t .EC eCr;t /

. Ozi .t/�E/2
dE

.
Z
Iy;i .t/c

1

jE � Ni .t/j
5
3

dEC
Z
Iy;i .t/c

j Ni j
1
3

.E � Ni .t//2
dE .

N
1
2

N 2!`
D
N
1
2

L
1
2

:

The estimate of �Vi for N!A < ji j � 1
2
i� is similar. This concludes the proof of Lemma B.2. �

Finally we prove the following version of Lemma B.1 that is uniform in s:

Lemma B.3. Under the same hypotheses of Lemma B.1, for any ı0 > 0 such that ı0 < C 0!`, with C 0 > 0
the constant defined in Lemma B.1, jaj � 1

2
LN ı 0 and jbj � LN ı 0 we have

sup
0�s�t�t�

UL
ab.s; t/CUL

ba.s; t/�N
�D (B-34)

with very high probability. The same result holds for t� � s � t � 2t� as well.

Proof. By the semigroup property for any 0� s � t � t� and any j we have

UL
aj .0; t/� UL

ab.s; t/U
L
bj .0; s/: (B-35)

Furthermore, by Lemma B.2 for the dual dynamics we have

1

2

X
j

uj .0/�
X
j

uj .s/D
X
i

X
j

.UL
j i .0; s//

T ui .0/;
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and so, by choosing u.0/D ıb we conclude thatX
j

UL
bj .0; s/�

1
2

for all 0� s � t�:

From the last inequality and since sups�t� U
L
bj
.0; s/�N�100 with very high probability for any jj j �

3
4
LN ı 0 by Lemma B.1, it follows that there exists an j� D j�.s/, maybe depending on s, with jj�.s/j �
3
4
LN ı 0, such that UL

bj�.s/
.0; s/ � 1=.4N /. Furthermore, by the finite-speed propagation estimate in

Lemma B.1 (this time with jaj� 3
4
LN ı and jbj� 1

2
LN ı ; note that its proof only used that ja�bj&LN ı ),

we have
sup
t�t�

UL
aj�
.0; t/�N�D for all jj�j � 3

4
LN ı 0

with very high probability. Hence we get from (B-35) with j D j�.s/ that sups�t UL
ab
.s; t/.N�DC1

with very high probability. The estimate for UL
ba
.s; t/ follows in a similar way. This concludes the proof

of Lemma B.3. �

Finally, we prove Lemma 6.5 and Proposition 6.8 which are versions of Lemma B.3 but for the
short-range approximation on scale LDN

1
2
CC1!1 needed in Section 6C2.

Proof of Lemma 6.5. Choosing LDN
1
2
CC1!1 , the proof of Lemma B.1 is exactly the same except for

the estimate of Q in (B-28), since, for any ˛ 2 Œ0; 1�, Qi .t/ from (6-41) is now defined as

Qi .t/ WD
ˇ

N

X
j Wjj�i j>L

1

N�i � N
�
j

C
1�ˇ

N

X
j Wjj�i j>L

1

Qzi � Qzj
dt Cˆ˛.t/; (B-36)

with ˆ˛.t/ given in (6-15) instead of (B-17). Then Lemmas B.2 and B.3 follow exactly in the same way.
By (B-36) it easily follows that

Q WD sup
0�t�t�

sup
ji j�LN ı

0

jQi .t/j. logN: (B-37)

Hence, by an estimate similar to (B-29), we conclude that

sup
0�t��

F.t/�F.0/.
�
�2LN

3
4
ıC!1

N
3
2

C
�L

1
4N!1

N
3
4

C
�QN!1

N
1
2

�

.
N
3
4
ıC!1

L
1
2N ı 0

C
N!1

L
1
2N ı 0

C
N
3
4
C!1

L
3
4N

1
2N ı 0

logN � 1 (B-38)

with very high probability. Note that in the last inequality we used that LDN
1
2
CC1!1. �

Proof of Proposition 6.8. This proof is almost identical to the previous one, except that Qi .t/ is now
defined from (6-52) as

Qi .t/ WD ˇ

�
1

N

X
j Wjj�i j>L

1

N�i � N
�
j

Cˆ.t/

�
C .1�ˇ/

�
d
dt
N�i .t/�

1

N

X
j Wjj�i j�L

1

N�i � N
�
j

�
;

which satisfies the same bound (B-37). The rest of the proof is unchanged. �
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Appendix C: Short-long approximation

In this section we estimate the difference of the solution of the DBM Qz.t; ˛/ and its short-range approx-
imation Oz.t; ˛/, closely following the proof of Lemma 3.7 in [Landon and Yau 2017] and adapting it
to the more complicated cusp situation. In particular, in Section C1 we estimate j Qz.t; ˛/� Oz.t; ˛/j for
0� t � t�, i.e., until the formation of an exact cusp; in Section C2, instead, we estimate j Qz.t; ˛/� Oz.t; ˛/j
for t�< t � 2t�, i.e., after the formation of a small minimum. The precision of this approximation depends
on the rigidity bounds we put as a condition. We consider a two-scale rigidity assumption, a weaker
rigidity valid for all indices and a stronger rigidity valid for 1� ji j. i� DN

1
2
CC�!1 ; both described by

an exponent.

C1. Short-long approximationW small gap and exact cusp. In this subsection we estimate the difference
of the solution of the DBM Qz.t; ˛/ defined in (6-14) and its short-range approximation Oz.t; ˛/ defined
by (6-97)–(6-100) for 0� t � t�. We formulate Lemma C.1 (for 0� t � t�) below a bit more generally
than we need in order to indicate the dependence of the approximation precision on these two exponents.
For our actual application in Lemmas 6.9 and 7.2 we use specific exponents.

Lemma C.1. Let !1 � !` � !A � 1. Let 0 < a0 �
1
4
C C!1, C > 0 a universal constant and

0 < a � C!1. Let i� WDN
1
2
CC�!1 with C� defined in Proposition 6.3. We assume that

j Qzi .t; ˛/� Ni .t/j �
N a0

N
3
4

; 1� ji j �N; 0� t � t�; (C-1)

and

j Qzi .t; ˛/� Ni .t/j �
N a

N
3
4

; 1� ji j � i�; 0� t � t�: (C-2)

Then, for any ˛ 2 Œ0; 1�, we have

sup
1�ji j�N

sup
0�t�t�

j Ozi .t; ˛/� Qzi .t; ˛/j

�
N aNC!1

N
3
4

�
1

N 2!`
C
N
1
2
!A logN

N
1
6N a

C
N
1
2
!A logN

N
1
4N a

C
1

N
2
5
ai
1
5
�

C
N a0

N ai
1
2
�

C
1

N
1
18N a

�
(C-3)

with very high probability.

Proof of Lemma 6.9. Use Lemma C.1 with the choice a0 D 1
4
CC!1 and aD C!1 for some universal

constant C > 0. The conditions (C-1) and (C-2) are guaranteed by (6-21) and (6-22). �

Proof of Lemma C.1. Let wi WD Ozi � Qzi ; hence w is a solution of

@tw D B1wCV1wC �; (C-4)

where the operator B1 is defined for any f 2 C2N by

.B1f /i D
1

N

A; .i/X
j

fj �fi

. Qzi .t; ˛/� Qzj .t; ˛//.Ozi .t; ˛/� Ozj .t; ˛//
: (C-5)
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The diagonal operator V1 is defined by .V1f /i D V1.i/fi , where

V1.i/ WD �
Z
Iy;i .t/c

�y;t .EC eCy;t /

. Qzi .t; ˛/�E/. Ozi .t; ˛/�E/
dE for 0 < ji j �N!A ; (C-6)

V1.i/ WD �
Z
Iz;i .t/c\Jz.t/

N�t .EC Ne
C
t /

. Qzi .t; ˛/�E/. Ozi .t; ˛/�E/
dE for N!A < ji j � 1

2
i�: (C-7)

Finally, V1.i/D 0 for ji j � 1
2
i�. The vector � in (C-4) collects various error terms.

We define the stopping time

T WDmax
n
t 2 Œ0; t�� W sup

0�s�t

j Qzi .s; ˛/� Ozi .s; ˛/j �
1
2

minfjIz;i .t/j; jIy;i .t/jg for all ˛ 2 Œ0; 1�
o
; (C-8)

where we recall that

jIz;i .t/j � jIy;i .t/j �N�
3
4 C 3!`:

For 0� t � T we have V1 � 0. Therefore, sinceX
i

.Bf /i D 0;

by the symmetry of A, the semigroup of B1CV1, denoted by UB1CV1, is a contraction on every `p space.
Hence, since w.0/D 0 by (6-100), we have

w.t/D

Z t

0

UB1CV1.s; t/�.s/ ds;

and so

kw.t/k1 � t sup
0�s�t

k�.s/k1 �N
� 1
2
C!1 sup

0�s�t

k�.s/k1: (C-9)

Thus, to prove (C-3) it is enough to estimate k�.s/k1, for all 0� s � t�.
The error term � is given by �i D 0 for ji j> 1

2
i�; then for 1� ji j �N!A, �i is defined as

�i D

Z
Iy;i .t/c

�y;t .EC eCy;t /

Qzi .t; ˛/�E
dE �

1

N

Ac; .i/X
j

1

Qzi .t; ˛/� Qzj .t; ˛/
Cˆ˛.t/�<Œmy;t .e

C
y;t /�; (C-10)

with ˆ˛.t/ defined in (6-15), and for N!A < ji j � 1
2
i� as

�i D

Z
Iz;i .t/c\Jz.t/

N�t .EC Ne
C
t /

Qzi .t; ˛/�E
dE �

1

N

Ac; .i/X
1�jj j< 3

4
i�

1

Qzi .t; ˛/� Qzj .t; ˛/
: (C-11)

Note that in the sum in (C-11) we do not have the summation over jj j � 3
4
i� since if 1� ji j � 1

2
i� and

jj j � 3
4
i� then .i; j / 2Ac.

In the following we will often omit the t - and the ˛-arguments from Qzi and Ni for notational simplicity.
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First, we consider the error term (C-11) for N!A < ji j � 1
2
i�. We start with the estimate

j�i j D

ˇ̌̌̌Z
Ic
z;i
.t/\Jz.t/

N�t .EC Ne
C
t /

Qzi �E
dE �

1

N

Ac; .i/X
1�jj j< 3

4
i�

1

Qzi � Qzj

ˇ̌̌̌

.
ˇ̌̌̌ Ac; .i/X
1�jj j< 3

4
i�

Z NjC1
Nj

N�t .EC Ne
C
t /.E � Nj /

. Qzi �E/. Qzi � Nj /
dE
ˇ̌̌̌
C

ˇ̌̌̌
1

N

Ac; .i/X
1�jj j< 3

4
i�

Qzj � Nj

. Qzi � Qzj /. Qzi � Nj /

ˇ̌̌̌

C

ˇ̌̌̌Z NjCC1
NjC

N�t .EC Ne
C
t /

Qzi �E
dE
ˇ̌̌̌
C

ˇ̌̌̌Z N�.3=4/i�C1
N�.3=4/i�

N�t .EC Ne
C
t /

Qzi �E
dE
ˇ̌̌̌
C

ˇ̌̌̌Z N1
0

N�t .EC Ne
C
t /

Qzi �E
dE
ˇ̌̌̌
: (C-12)

Since jjC� i j �N 4!` CN!` ji j
3
4 and N!A , i.e.,

j NjC � Ni j �
N!` ji j

1
2

N
3
4

is bigger than the rigidity scale (C-2), all terms in the last line of (C-12) are bounded by N�
1
4
�3!` .

Then, using the rigidity estimate in (C-2) for the first and the second term of the right-hand side
of (C-12), we conclude that

j�i j.
N a

N
7
4

Ac; .i/X
1�jj j< 3

4
i�

1

. Ni � Nj /2
CN�

1
4
�3!` : (C-13)

The sum on the right-hand side of (C-13) is over all the j , negative and positive, but the main contribution
comes from i and j with the same sign, because if i and j have opposite signs then

1

. Ni � Nj /2
�

1

. N�i � Nj /2
:

Hence, assuming that i is positive (for negative i’s we proceed exactly in the same way), we conclude
that

j�i j.
N a

N
7
4

Ac; .i/X
1�j< 3

4
i�

1

. Ni � Nj /2
CN�

1
4
�3!` : (C-14)

From now we assume that both i and j are positive. In order to estimate (C-14) we use the explicit
expression of the quantiles from (4-13a), i.e.,

Nj �max
��

j

N

�2
3

N�
1
9

t ;

�
j

N

�3
4
�
;

where N�t . t
3
2
� denotes the length of the small gap of N�t , for all jj j � i� � N

1
2 . A simple calculation

from (4-13a) shows that in the regime i �N!A and j 2Ac we may replace j Ni� Nj j� jy;i .t/�y;j .t/j�
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ji
3
4 � j

3
4 j=N

3
4 ; hence

j�i j.
N a

N
1
4

Ac; .i/X
1�j< 3

4
i�

i
1
2 C j

1
2

.i � j /2
CN�

1
4
�3!` : (C-15)

In fact, the same replacement works if either i � N 4!` or j � N 4!` and at least one of these two
inequalities always holds as .i; j / 2 Ac. Using i � 1

2
i� and that by the restriction .i; j / 2 Ac we have

jj � i j � `.`3C i
3
4 /, elementary calculation gives

j�i j.
N a

N
1
4N 2!`

: (C-16)

Since analogous computations hold for i and j both negative, we have

j�i j.
N a

N
1
4N 2!`

for any N!A < ji j � 1
2
i� (C-17)

with very high probability.
Next, we proceed with the bound for �i for ji j �N!A. From (C-10) we have

�i D

�Z
Iz;i .t/c\Jz.t/

N�t .EC Ne
C
t /

Qzi �E
dE �

1

N

Ac; .i/X
jj j< 3

4
i�

1

Qzi � Qzj

�

C

�Z
Jz.t/c

N�t .EC Ne
C
t /

Qzi �E
dE �

1

N

Ac; .i/X
jj j� 3

4
i�

1

Qzi � Qzj

�
Cˆ˛.t/�<Œ Nmt . Qzi C Ne

C
t /�C<Œmy;t . Qzi C eCy;t /��<Œmy;t .e

C
y;t /�

C

�Z
Iz;i .t/

N�t .EC Ne
C
t /

Qzi �E
dE �

Z
Iy;i .t/

�y;t .EC eCy;t /

Qzi �E
dE
�
DW A1CA2CA3CA4: (C-18)

By the remark after (C-15), the estimate of A1 proceeds as in (C-15) and so we conclude that

jA1j.
N a

N
1
4N 2!`

: (C-19)

To estimate A2, we first notice that the restriction .i; j / 2 Ac in the summation is superfluous for
ji j �N!A and jj j � 3

4
i�. Let �1 2 ŒN�

3
4
C 3
4
!A ; N�ı �, for some small fixed ı > 0, be an auxiliary scale

we will determine later in the proof; then we write A2 as

A2 D

�Z
Jz.t/c

N�t .EC Ne
C
t /

Qzi �E
dE �

Z
Jz.t/c

N�t .EC Ne
C
t /

Qzi �EC i�1
dE
�

C

�
1

N

X
jj j� 3

4
i�

1

Qzi � Qzj C i�1
�
1

N

X
jj j� 3

4
i�

1

Qzi � Qzj

�

C

�
1

N

X
jj j< 3

4
i�

1

Qzi � Qzj C i�1
�

Z
Jz.t/

N�t .EC Ne
C
t /

Qzi �EC i�1
dE
�

C . Nmt . Qzi C i�1/�m2N . Qzi C i�1; t; ˛//DW A2;1CA2;2CA2;3CA2;4; (C-20)
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where we introduced
m2N .z; t; ˛/ WD

1

N

X
jj j�N

1

zj .t; ˛/� z
; z 2 H:

For 1� ji j �N!A and jj j> 3
4
i�, the term A2;2 is bounded by the crude rigidity (C-1) as

jA2;2j �
1

N

X
jj j> 3

4
i�

�1

. Qzi � Qzj /2
.
N
1
2�1

i
1
2
�

: (C-21)

Exactly the same estimate holds for A2;1.
Next, using the rigidity estimates in (C-1) and (C-2) we conclude that

jA2;4j.
1

N

X
1�jj j�i�

j Qzj � Nj j

j Qzi � Qzj C i�1j2
C
1

N

X
i��jj j�N

j Qzj � Nj j

j Qzi � Qzj C i�1j2

.
N a

N
3
4�1
=mN . Ni C i�1/C

N a0

N
7
4

X
i��jj j�N

1

. Ni � Nj /2

.
N a

N
3
4�1

�
N
3
4!A

N
3
4

C �1

�1
3

C
N a0

N
1
4 i

1
2
�

.
N a

N
3
4�

2
3

1

C
N a0

i
1
2
� N

1
4

: (C-22)

Here we used that the rigidity scale near i for 1� ji j �N!A is much smaller than �1 �N�
3
4
C 3
4
!A . In

particular, we know that =mN . Ni C i�1/ can be bounded by the density N�t . Ni C �1/, which in turn is
bounded by . Ni C �1/

1
3 . Similarly we conclude that

jA2;3j �
N a

N
3
4�

2
3

1

:

Optimising (C-21) and (C-22) for �1, we choose �1 D .i
1
2
� N

a� 5
4 /
3
5 , which falls into the required

interval for �1. Collecting all estimates for the parts of A2 in (C-20), we therefore conclude that

jA2j �
N
3
5
a

i
1
5
� N

1
4

C
N a0

i
1
2
� N

1
4

: (C-23)

Next, we treat A3 from (C-18). By (6-16), we have ˆ˛.t/D<Œ Nmt .NeCt /�CO.N�1/, and so by (4-22a)
we conclude that

jA3j D
ˇ̌
<Œ Nmt .Ne

C
t /��<Œ Nmt . Qzi C Ne

C
t /�C<Œmy;t . Qzi C eCy;t /��<Œmy;t .e

C
y;t /�

ˇ̌
.
�
ji j

1
4N

7
18
!1

N
1
4N

1
6

C
ji j

1
2

N
1
2

�
jlogj Ni jj.

N
1
4
!AN

7
18
!1 logN

N
1
4N

1
6

C
N

1
2
!A logN

N
1
2

: (C-24)

We proceed writing A4 as

A4 D

�Z
Iz;i .t/

N�t .EC Ne
C
t /

Qzi �E
dE �

Z
Iz;i .t/

�y;t .EC eCy;t /

Qzi �E
dE
�

C

�Z
Iz;i .t/

�y;t .EC eCy;t /

Qzi �E
dE �

Z
Iy;i .t/

�y;t .EC eCy;t /

Qzi �E
dE
�
DW A4;1CA4;2: (C-25)
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We start with the estimate for A4;2. By (6-96) and the comparison estimates between Nz;i and Oy;i
by (4-18) we have

jIz;i .t/�Iy;i .t/j. j Nz;i�j�.i/� Oy;i�j�.i/jC j Nz;iCjC.i/� Oy;iCjC.i/j.
N

1
2
!1.`3Cji j

3
4 /

N
11
12

; (C-26)

where � is the symmetric difference. In the second inequality of (C-26) we used that ji ˙ j˙.i/j.N!A

and !A� 1. For E 2 Iz;i�Iy;i we haveˇ̌̌̌
�y;t .EC eCy;t /

Qzi �E

ˇ̌̌̌
.
N
1
2 .`2Cji j

1
2 /

`3Cji j
3
4

; (C-27)

and so, using ji j �N!A ,

jA4;2j.
N
1
2
!1N

1
2
!A

N
5
12

D
N

1
2
!1N

1
2
!A

N
1
4N

1
6

(C-28)

with very high probability.
To estimate the integral in A4;1 we have to deal with the logarithmic singularity due to the values of E

close to Qzi .t/. For maxfNe�t ; e
�
y;tg<E � 0 we have

�y;t .EC eCy;t /D N�t .EC Ne
C
t /D 0: (C-29)

For minfNe�t ; e
�
y;tg �E �maxfNe�t ; e

�
y;tg, using the 1

3
-Hölder continuity of N�t and �y;t and (4-6a) we have

j�y;t .EC eCy;t /� N�t .EC Ne
C
t /j.�

1
3

y;t .t�� t /
1
9 .

N
11
18
!1

N
11
36

(C-30)

for all 0� t � t�. In the last inequality we used that �y;t ��y;0 .N�
3
4
C 1
2
3!1 for all t � t�. Similarly,

for E �minfNe�t ; e
�
y;tg we have

j�y;t .EC eCy;t /� N�t .EC Ne
C
t /j. j�y;t .E

0
C e�y;t /� N�t .E

0
C Ne�t /jC�

1
3

y;t .t�� t /
1
9 ; (C-31)

with E 0 � 0.
Using (4-6b) for E � 0 and combining (4-6b) with (C-29)–(C-31) for E < 0, we have

jA4;1j.
�
.`Cji j

1
4 /N

1
3
!1

N
1
4N

1
6

C
.`2Cji j

1
2 /

N
1
2

C
N
11
18
!1

N
11
36

�Z
I;i .t/\fjE�Qzi j>N�60g

1

j Qzi �Ej
dE

C

ˇ̌̌̌Z
jE�Qzi j�N�60

N�t .EC Ne
C
t /� �y;t .EC eCy;t /

Qzi �E
dE
ˇ̌̌̌
: (C-32)

The two singular integrals in the second line are estimated separately. By the 1
3

-Hölder continuity �y;t
we conclude thatˇ̌̌̌Z

jE�Qzi j�N�60

�y;t .EC eCy;t /

Qzi �E
dE
ˇ̌̌̌
D

ˇ̌̌̌Z
jE�Qzi j�N�60

�y;t .EC eCy;t /� �y;t . Qzi C eCy;t /

Qzi �E
dE
ˇ̌̌̌

.
Z
jE�Qzi j�N�60

1

j Qzi �Ej
2
3

dE .N�20:
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The same bound holds for the other singular integral in (C-32) by using the 1
3

-Hölder continuity of N�t .
Hence, for 1� ji j �N!A , by (C-32) we have

jA4;1j �
N
1
4
!AN

1
3
!1 logN

N
1
4N

1
6

C
N
1
2
!A logN

N
1
2

C
N
11
18
!1 logN

N
11
36

(C-33)

with very high probability.
Collecting all the estimates (C-17), (C-19), (C-23), (C-24), (C-28) and (C-33), and recalling !1�

!`� !A� 1, we see that (C-19) is the largest term and thus j�j.N� 14�2!`NC!1 as a � C!1. Thus,
using (C-9), we conclude that the estimate in (C-3) is satisfied for all 0� t �T . In particular, this means that

j Ozi .t; ˛/� Qzi .t; ˛/j �N
� 3
4
CC!1 ; 0� t � T;

for some small constant C > 0. We conclude the proof of this lemma by showing that T � t�.
Suppose by contradiction that T < t�; then, since the solution of the DBM have continuous paths (see

Theorem 12.2 of [Erdős and Yau 2017]), we have

j Ozi .T C Qt ; ˛/� Qzi .T C Qt ; ˛/j �
N aN c!1

N
3
4N 2!`

for some tiny Qt >0 and for any ˛2 Œ0; 1�. This bound is much smaller than the threshold jIy;i .t/j; jIz;i .t/j�
N�

3
4 C 3!` in the definition of T. But this is a contradiction by the maximality in the definition of T ;

hence T D t�, proving (C-3) for all 0� t � t�. This completes the proof of Lemma C.1. �

Proof of Lemma 7.2. The proof of this lemma is very similar to that of Lemma C.1; hence we will only
sketch the proof by indicating the differences. The main difference is that in this lemma we have optimal
i-dependent rigidity for all 1 � ji j � i�. Hence, we can give a better estimate on the first two terms
in (C-12) as follows (recall that N!A � i � 1

2
i�):

j�i j.
N �N

1
6
!1

N
3
4

X
jj j< 3

4
i�

1

. Ni � Nj /2jj j
1
4

.
N �N

1
6
!1

N
3
4

X
jj j< 3

4
i�

ji j
1
2 Cjj j

1
2

.ji j � jj j/2jj j
1
4

.
N �N

1
6
!1

N
1
4N 3!`

:

Compared with (C-16), the additional N!` factor in the denominator comes from the jj j
1
4 factor before-

hand that is due to the optimal dependence of the rigidity on the index. Consequently, using the optimal
rigidity in (6-3), we improve the denominator in the first term on the right-hand side of (C-3) from N 2!`

to N 3!` with respect Lemma C.1.
Furthermore, by (6-3),

jA2;3j; jA2;4j �
N �

N�1
and jA2;1j; jA2;2j.

N
1
2�1

i
1
2
�

.N
1
4
� 1
2
C�!1�1;

since i� DN
1
2
CC�!1 ; hence, choosing �1 DN�

5
8 , we conclude that

jA1jC jA2j.
N �N

1
6
!1

N
1
4N 3!`

C
N �

N
3
8

:

All other estimates follow exactly in the same way of the proof of Lemma C.1. This concludes the proof
of Lemma 7.2. �
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C2. Short-long approximation: small minimum. In this subsection we estimate the difference of the
solution of the DBM Qz.t; ˛/ defined by (8-10) and its short-range approximation Oz.t; ˛/ defined by (8-12)–
(8-15) for t� � t � 2t�.

Lemma C.2. Under the same assumption as Section C1 and assuming that the rigidity bounds (C-1)
and (C-2) hold for the Qz.t; ˛/ dynamics (8-10) for all t� � t � 2t�, we conclude that

sup
1�ji j�N

sup
t��t�2t�

j Qzi .t; ˛/� Ozi .t; ˛/j.
N aNC!1

N
3
4

�
1

N 2!`
C

1

N
2
5
ai
1
5
�

C
N a0

N ai
1
2
�

C
1

N aN
1
24

�
(C-34)

with very high probability, for any ˛ 2 Œ0; 1�.

Proof. The proof of this lemma is similar to the proof of Section C1, but some estimates for the semicircular
flow are slightly different mainly because in this lemma the Qzi .t; ˛/ are shifted by Nmt instead of NeCt .
Hence, we will skip some details in this proof, describing carefully only the estimates that are different
with respect to Section C1.

Let wi WD Ozi � Qzi ; hence w is a solution of

@t D B1wCV1wC �;

where B1 and V1 are defined as in (C-5)–(C-7) substituting NeCt by Nmt .
Without loss of generality we assume that V1� 0 for all t�� t �T (see (C-8) in the proof of Section C1

but now we have t� � t � 2t� in the definition of the stopping time). This implies that UB1CV1 is a
contraction semigroup and so in order to prove (C-34) it is enough to estimate

sup
t��t�T

k�.s/k1:

At the end, exactly as at the end of the proof of Lemma C.1, by continuity of the paths, we can easily
establish T D 2t� for the stopping time.

The error term � is given by �i D 0 for ji j> 1
2
i�; then �i for 1� ji j �N!A is defined as

�i D

Z
Iy;i .t/c

�y;t .EC Qmy;t /

Qzi �E
dE �

1

N

Ac; .i/X
j

1

Qzi � Qzj
C‰˛.t/C

d
dt
Qmy;t ; (C-35)

with ‰˛.t/ defined in (8-8), and for N!A < ji j � 1
2
i� as

�i D

Z
Iz;i .t/c\Jz.t/

N�t .EC Nmt /

Qzi �E
dE �

1

N

Ac; .i/X
jj j< 3

4
i�

1

Qzi � Qzj
: (C-36)

We start to estimate the error term for N!A < ji j � 1
2
i�. By a similar computation to the one leading

to (C-17) in Section C1, using (C-2), we conclude that

j�i j D

ˇ̌̌̌Z
Ic
i;z
.t/\Jz.t/

N�t .EC Nmt /

Qzi �E
dE �

1

N

Ac; .i/X
jj j< 3

4
i�

1

Qzi � Qzj

ˇ̌̌̌
.

N a

N
1
4N 2!`

; N!A < ji j � 1
2
i�: (C-37)
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Next, we proceed with the bound for �i for 1� ji j �N!A. We rewrite �i as

�i D

�Z
Ic
i;z
.t/

N�t .EC Nmt /

Qzi �E
dE �

1

N

Ac; .i/X
j

1

Qzi � Qzj

�
C<Œmy;t . Qzi C Qmy;t /�C

d
dt
Qmy;t C‰˛.t/�<Œ Nmt . Qzi C Nmt /�

C

�Z
Iz;i .t/

N�t .EC Nmt /

Qzi �E
dE �

Z
Iy;i .t/

�y;t .EC Qmy;t /

Qzi �E
dE
�
DW .A1CA2/CA3CA4; (C-38)

where .A1CA2/ indicates that for the actual estimates we split the first line in (C-38) into two terms as
in (C-18). By similar computations to those in Section C1, see (C-19) and (C-23), we conclude that

jA1jC jA2j.
N a

N
1
4N 2!`

C
N

3
5
a

N
1
4 i

1
5
�

C
N a0

i
1
2
� N

1
4

: (C-39)

By (4-14b), (4-14d), (4-22b) and the definition of ‰˛.t/ in (8-8) it follows that

jA3j.
ˇ̌
<Œmy;t . Qzi C Qmy;t /�my;t . Qmy;t /��<Œ Nmt . Nmt /� Nmt . Qzi C Nmt /�

ˇ̌
C
N!1

N

.
�
N

1
4
!AN

1
4
!1

N
1
4N

1
8

C
N
3
4
!1

N
3
8

C
N
1
2
!A

N
1
2

�
jlogj Oi .t/jjC

N
7
12
!1

N
7
24

.
N

7
12
!1

N
7
24

: (C-40)

We proceed writing A4 as

A4 D

�Z
Iz;i .t/

N�t .EC Nmt /

Qzi �E
dE �

Z
Iz;i .t/

�y;t .EC Qmy;t /

Qzi �E
dE
�

C

�Z
Iz;i .t/

�y;t .EC Qmy;t /

Qzi �E
dE �

Z
Iy;i .t/

�y;t .EC Qmy;t /

Qzi �E
dE
�
DW A4;1CA4;2: (C-41)

We start with the estimate for A4;2.
By (4-19) we have

jIz;i .t/�Iy;i .t/j.
N �.`Cji j/

N
; (C-42)

where � is the symmetric difference. Note that this bound is somewhat better than the analogous (C-26)
due to the better bound in (4-19) compared with (4-18). For E 2 Iz;i .t/�Iy;i .t/ we have

j
�y;t .EC Nmt /

Qzi �E
j.

N
1
2 .`2Cji j

1
2 /

`3Cji j
3
4

; (C-43)

and so

jA4;2j.
N
3
4
!A

N
1
2

(C-44)

with very high probability.
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To estimate the integral in A4;1, we combine (4-6d) and (4-14b) to obtain

j N�t . NmtCE/��y;t . Qmy;tCE/j � j�x;t .˛mx;tC.1�˛/my;tCE/��y;t .my;tCE/jC.t� t�/
7
12 : (C-45)

Proceeding similarly to the estimate of jA4;1j at the end of the proof of Section C1, we conclude that

jA4;1j.
�
N �.`2Cji j

1
2 /

N
1
2

C
N

7
12
!1

N
7
24

�Z
Iz;i .t/\fjE�Qzi j>N�60g

1

j Qzi �Ej
dE

C

ˇ̌̌̌Z
jE�Qzi j�N�60

N�t .EC Nmt /� �y;t .EC Qmy;t /

Qzi �E
dE
ˇ̌̌̌
: (C-46)

Furthermore, similarly to the estimate in the singular integral in (C-32), but substituting NeCt and eCy;t by
Nmt and Qmy;t respectively, we conclude that the last term in (C-46) is bounded by N�20. Therefore,

jA41j.
N �.`2Cji j

1
2 /

N
1
2

C
N

7
12
!1

N
7
24

.
N

7
12
!1

N
7
24

(C-47)

for any ji j �N!A. Collecting (C-39), (C-40), (C-44) and (C-47) completes the proof of Lemma C.2. �

Appendix D: Sobolev-type inequality

The proof of the Sobolev-type inequality in the cusp case is essentially identical to that in the edge case
presented in Appendix B of [Bourgade et al. 2014]; only the exponents need adjustment to the cusp
scaling. We give some details for completeness.

Proof of Lemma 7.5. We will prove only the first inequality in (7-20). The proof for the second one is
exactly the same. We start by proving a continuous version of (7-20) and then we will conclude the proof
by linear interpolation. We claim that for any small � there exists a constant c� > 0 such that for any real
function f 2 Lp.RC/ we haveZ C1

0

Z C1
0

.f .x/�f .y//2

jx
3
4 �y

3
4 j2��

dx dy � c�

�Z C1
0

jf .x/jp dx
�2
p

: (D-1)

We recall the representation formula for fractional powers of the Laplacian: for any 0 < ˛ < 2 and for
any function f 2 Lp.R/ for some p 2 Œ1;1/ we have

hf; jpj˛f i D C.˛/

Z
R

Z
R

.f .x/�f .y//2

jx�yj1C˛
dx dy; (D-2)

with some explicit constant C.˛/, where jpj WD
p
��.

Since for 0 < x < y we have

y
3
4 � x

3
4 D

4

3

Z y

x

s�
1
4 ds � C.y � x/.xy/�

1
8 ;
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in order to prove (D-1) it is enough to show thatZ C1
0

Z C1
0

.f .x/�f .y//2

jx�yj2��
.xy/q dx dy � c�

�Z C1
0

jf .x/jp dx
�2
p

; (D-3)

where q WD 1
4
�
1
8
� and p WD 8=.2C 3�/. Let Qf .x/ be the symmetric extension of f to the whole real

line; i.e., Qf .x/ WD f .x/ for x > 0 and Qf .x/ WD f .�x/ for x < 0. Then, by a simple calculation we have

4

Z C1
0

Z C1
0

.f .x/�f .y//2

jx�yj2��
.xy/q dx dy �

Z
R

Z
R

. Qf .x/� Qf .y//2

jx�yj2��
jxyjq dx dy:

Introducing �.x/ WD jxjq and dropping the tilde for f , the estimate in (D-3) would follow fromZ
R

Z
R

.f .x/�f .y//2

jx�yj2��
�.x/�.y/ dx dy � c0�

�Z
R

jf .x/jp dx
�2
p

: (D-4)

By the same computation as in the proof of Proposition 10.5 in [Bourgade et al. 2014] we conclude thatZ
R

Z
R

.f .x/�f .y//2

jx�yj2��
�.x/�.y/ dx dy D h�f; jpj1���f iCC0.�/

Z
R

j�.x/f .x/j2

jxj1��
dx;

with some C0.�/ > 0; hence for the proof of (D-4) it is enough to show that

h�f; jpj1���f i � c�

�Z
R

jf jp
�2
p

:

Let g WD jpj
1
2
.1��/

jxjqf ; we need to prove that

kgk2 � c�kjxj
�q
jpj�

1
2
.1��/gkp:

By the n-dimensional Hardy–Littlewood–Sobolev inequality in [Stein and Weiss 1958] we havejxj�q Z jx�yj�ag.y/ dy

p

� Ckgkr ;

where
1

r
C
aCq

n
D 1C

1

p
; 0� q <

n

p
and 0 < a < n:

In our case a D 1
2
.1C �/, r D 2, nD 1 and all the conditions are satisfied if we take 0 < � < 1. This

completes the proof of (D-1).
Next, in order to prove (7-20), we proceed by linear interpolation as in Proposition B.2 in [Erdős and

Yau 2015]. Given u W Z! R, let  W R! R be its linear interpolation; i.e.,  .i/ WD ui for i 2 Z and

 .x/ WD ui C .uiC1�ui /.x� i/D uiC1� .uiC1�ui /.i C 1� x/ (D-5)

for x 2 Œi; i C 1�. It is easy to see that for each p 2 Œ2;C1�
�
i.e., �� 2

3

�
there exists a constant Cp such

that
C�1p k kLp.R/ � kukLp.Z/ � Cpk kLp.R/: (D-6)
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In order to prove (7-20) we claim thatZ C1
0

Z C1
0

j .x/� .y/j2

jx
3
4 �y

3
4 j2��

dx dy � c�
X

i¤j2ZC

.ui �uj /
2

ji
3
4 � j

3
4 j2��

(D-7)

for some constant c� > 0. Indeed, combining (D-6) and (D-7) with (D-1) we conclude (7-20). Finally,
the proof of (D-7) is a simple exercise along the lines of the proof of Proposition B.2 in [Erdős and Yau
2015]. �

Appendix E: Heat-kernel estimates

The proof of the heat kernel estimates relies on the Nash method. In the edge scaling regime a similar
bound was proven in [Bourgade et al. 2014] for a compact interval, extended to a noncompact interval
but with compactly supported initial data w0 in [Landon and Yau 2017]. Here we closely follow the latter
proof, adjusted to the cusp regime, where interactions on both sides of the cusp play a role unlike in the
edge regime.

Proof of Lemma 7.6. We start by proving (7-21); then (7-22) follows by (7-21) by duality. Without loss of
generality we assume kw0k1 D 1 and that

kw.Qs/kp �N
�100 (E-1)

for each s � Qs � t , where w.Qs/D UL.s; Qs/w0. Otherwise, by `p-contraction we have kw.Qs/kp �N�100

implying (7-21) directly.
In the following we use the convention w WD w.Qs/ if there is no confusion. By (7-20), we have

kwk2p .
X
i;j�1
i¤j

.wi �wj /
2

ji
3
4 � j

3
4 j2��

C

X
i;j��1
i¤j

.wi �wj /
2

jji j
3
4 � jj j

3
4 j2��

:

First we assume that both i and j are positive. Let ı4 < ı2 < ı3 < 1
2
ı1. We start with the estimate

X
i;j�1
i¤j

.wi �wj /
2

ji
3
4 � j

3
4 j2��

.
X

.i;j /2A
i;j�1

.wi �wj /
2

ji
3
4 � j

3
4 j2��

C

X
i�1

Ac; .i/X
j�1

w2i

ji
3
4 � j

3
4 j2��

: (E-2)

We proceed by writingX
.i;j /2A
i;j�1

.wi �wj /
2

ji
3
4 � j

3
4 j2��

.
X

.i;j /2AW i;j�1
i or j�`4N ı2

.wi �wj /
2

ji
3
4 � j

3
4 j2��

C

X
.i;j /2A

i;j�`4N ı2

.wi �wj /
2

ji
3
4 � j

3
4 j2��

: (E-3)

By Lemma B.3 we have X
.i;j /2A

i;j�`4N ı2

.wi �wj /
2

ji
3
4 � j

3
4 j2��

.N�200; (E-4)
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since i � `4N ı2 and j.w0/j j � N�100 for j � `4N ı4 by our hypotheses. Indeed, for i � `4N ı2 , we
have

wi D .UL.s; Qs/w0/i D

NX
jD�N

UL
ij .w0/j D

`4N ı4X
jD�`4N ı4

UL
ij .w0/j CN

�100 .N�100 (E-5)

with very high probability. If .i; j / 2A, i; j � 1 and i or j is smaller than `4N ı2 , then both i and j are
smaller than `4N ı3. Hence, for such i and j , by (7-19), we have

j Ozi .t; ˛/� Ozj .t; ˛/j.
N

1
6
!1 ji

3
4 � j

3
4 j

N
3
4

(E-6)

for any fixed ˛ 2 Œ0; 1� and for all 0� t � t�, where Ozi .t; ˛/ is defined by (6-106)–(6-107).
If i and j are both negative the estimates in (E-2)–(E-6) follow in the same way.
In the remainder of the proof B, Bij and Vi are defined as in (6-106)–(6-107). By (E-6) it follows thatX

.i;j /2AW i;j�1
i or j�`4N ı2

.wi �wj /
2

ji
3
4 � j

3
4 j2��

C

X
.i;j /2AW i;j��1
i or j��`4N ı2

.wi �wj /
2

ji
3
4 � j

3
4 j2��

. �N�
1
2N

1
3
!1CC�

X
.i;j /2A

Bij .wi �wj /2

D�2N�
1
2N

1
3
!1CC�hw;Bwi: (E-7)

Furthermore, since 1� ji j � `4N ı3, we have
Ac; .i/X
j

1

jji j
3
4 � jj j

3
4 j2��

.
N
1
3
!1CC�

N
3
2

Ac; .i/X
j

1

. Ozi � Ozj /2
: (E-8)

By the rigidity (7-16), (7-17) and (7-19), we can replace Ozj by Nj in the sum on the right-hand side
of (E-8) and so approximate it by an integral; then using that N�t .E/. �y;t .E/ in the cusp regime, i.e.,
jEj � ı�, with ı� defined in Definition 4.1, we conclude that

1

N

Ac; .i/X
j

1

. Ozi .t/� Ozj .t//2
.
Z
Ii;y.t/c

�y;t .EC eCy;t /

. Ozi .t/�E/2
dE D�Vi : (E-9)

Hence, by (E-9), we conclude thatX
i

Ac; .i/X
j

w2i

jji j
3
4 � jj j

3
4 j2��

.
X

1�ji j�`4N ı3

Ac; .i/X
j

w2i

jji j
3
4 � jj j

3
4 j2��

CN�200

. �N�
1
2N

1
3
!1CC�

X
ji j�`4N ı3

w2i Vi CN
�200

. �N�
1
2N

1
3
!1CC�hw;VwiCN�200: (E-10)

Note that in the first inequality of (E-10) we used (E-5).
Summarising (E-4), (E-7) and (E-10) and rewriting N�200 into an `p-norm using (E-1), we obtain

kwk2p � �N
� 1
2N

1
3
!1CC�hw;LwiC 1

10
kwk2p:
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Hence, using Hölder inequality, we have

@tkwk
2
2 D hw;Lwi � �c�N

1
2N�

1
3
!1�C�kwk2p

� �c�N
1
2N�

1
3
!1�C�kwk

1
2
.6�3�/

2 kwk
� 1
2
.2�3�/

1

� �c�N
1
2N�

1
3
!1�C�kwk

1
2
.6�3�/

2 kw0k
� 1
2
.2�3�/

1 : (E-11)

In the last inequality of (E-11) we used the `1-contraction of UL. Integrating (E-11) back in time, it easily
follows that

kUL.s; t/w0k2 �

�
NC�C 1

3
!1

c�N
1
2 .t � s/

�1�3�
kw0k1; (E-12)

proving (7-21). The same bound also holds for the transpose operator .UL/T.
In order to prove (7-22) we follow Lemma 3.11 of [Landon and Yau 2017]. Let �.i/ WD 1

fji j�`4N ı5g,
with ı4 < ı5 < 1

2
ı1, and v 2 R2N. Then, we have

hUL.0; t/w0; vi D hw0; .UL/T�viC hw0; .UL/T .1��/vi:

By Lemma B.3 we have

jhw0; .UL/T .1��/vij �N�100kw0k2kvk1: (E-13)

By (7-21) and the Cauchy–Schwarz inequality we have

jhw0; .UL/T�vij � kw0k2k.UL/T�vk2 � kw0k2

�
NC�C 1

3
!1

c�N
1
2 t

�1�3�
kvk1: (E-14)

Hence, combining (E-13) and (E-14), we conclude that

kUL.0; t/w0k1 �

�
NC�C 1

3
!1

c�N
1
2 t

�1�3�
kw0k2; (E-15)

and so, by (E-12), that

kUL.0; t/w0k1 D
UL�1

2
t; t
�
UL�0; 1

2
t
�
w0

1
.
�
NC�C 1

3
!1

c�N
1
2 t

�1�3�UL�0; 1
2
t
�
w0

2

.
�
NC�C 1

3
!1

c�N
1
2 t

�2.1�3�/
kw0k1; (E-16)

where in the first inequality we used that UL�0; 1
2
t
�
w0 satisfies the hypothesis of Lemma 7.6, sinceˇ̌�

UL�0; 1
2
t
�
w0
�
i

ˇ̌
�N�100 for ji j�`4N 2ı4 by the finite-speed estimate of Lemma B.3. Combining (E-15)

and (E-16), inequality (7-22) follows by interpolation. �
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