TWO THEOREMS ON THE FOCK-BARGMANN-HARTOGS DOMAINS

Aкio KODAMA and Satoru SHIMIZU*

(Received April 16, 2018)

Abstract

In this paper, we prove two mutually independent theorems on the family of Fock-BargmannHartogs domains. Let D_{1} and D_{2} be two Fock-Bargmann-Hartogs domains in $\mathbb{C}^{N_{1}}$ and $\mathbb{C}^{N_{2}}$, respectively. In Theorem 1, we obtain a complete description of an arbitrarily given proper holomorphic mapping between D_{1} and D_{2} in the case where $N_{1}=N_{2}$. Also, we shall give a geometric interpretation of Theorem 1. And, in Theorem 2, we determine the structure of $\operatorname{Aut}\left(D_{1} \times D_{2}\right)$ using the data of $\operatorname{Aut}\left(D_{1}\right)$ and $\operatorname{Aut}\left(D_{2}\right)$ for arbitrary N_{1} and N_{2}.

1. Introduction

This is a continuation of our previous paper [9], and we retain the terminology and notation there.

In this paper, we prove two mutually independent theorems on the Fock-BargmannHartogs domains

$$
D_{n, m}(\mu)=\left\{(z, w) \in \mathbb{C}^{n} \times \mathbb{C}^{m} ;\|w\|^{2}<e^{-\mu\| \| \|^{2}}\right\}
$$

in $\mathbb{C}^{N}=\mathbb{C}^{n} \times \mathbb{C}^{m}$ introduced by Yamamori [16].
Let $D_{1}=D_{n_{1}, m_{1}}\left(\mu_{1}\right), D_{2}=D_{n_{2}, m_{2}}\left(\mu_{2}\right)$ be two equidimensional Fock-Bargmann-Hartogs domains in \mathbb{C}^{N} and let $f: D_{1} \rightarrow D_{2}$ be a proper holomorphic mapping. Then we know the following:
$(\dagger) f: D_{1} \rightarrow D_{2}$ is necessarily a biholomorphic mapping from D_{1} onto D_{2}, provided that $m_{1} \geq 2$.
In view of this, it would be natural to ask what happens when $m_{1}=1$. One of the main purposes of this paper is to clear up this matter. In fact, in our first Theorem 1, we clarify the structure of the space consisting of all proper holomorphic mappings between two equidimensional Fock-Bargmann-Hartogs domains. By the way, the fact (\dagger) was first proved by Tu-Wang [15; Theorem 1.1]. After that, Kodama [9; Theorem 2] gave an alternative proof. In their proofs, it was a key point to verify that the complex Jacobian determinant J_{f} of f does not vanish everywhere on D_{1}. For the verification of this, Tu-Wang used some known facts in algebraic geometry and Kodama employed a technique in Lie group theory. Anyway, both the proofs are a little bit long and complicated. Taking this into account, we give

[^0]a new proof of (\dagger) in Theorem 1, which is a very short and simple one by making use of the well-known maximum principle for plurisubharmonic functions defined on a connected complex analytic subvariety of \mathbb{C}^{N}.

In order to state our precise result, let us here introduce the holomorphic self-mapping ρ_{k} of $\mathbb{C}^{n} \times \mathbb{C}$ given by

$$
\rho_{k}(z, w)=\left(\sqrt{k} z, w^{k}\right) \quad \text { for }(z, w) \in \mathbb{C}^{n} \times \mathbb{C},
$$

where $k=1,2, \ldots$. It is obvious that the restriction of ρ_{k} to the Fock-Bargmann-Hartogs domain $D_{n, 1}(\mu)$, say again ρ_{k}, gives rise to a proper holomorphic self-mapping of $D_{n, 1}(\mu)$; and moreover, it is not an automorphism of $D_{n, 1}(\mu)$ unless $k=1$, i.e., $\rho_{1}=\operatorname{id}_{D_{n, 1}(\mu)}$. For given positive real numbers μ, ν, we also define the non-singular linear mapping

$$
L_{\mu, v}: \mathbb{C}^{n} \times \mathbb{C}^{m} \rightarrow \mathbb{C}^{n} \times \mathbb{C}^{m} \text { by } L_{\mu, v}(z, w)=(\sqrt{\mu / v} z, w)
$$

for $(z, w) \in \mathbb{C}^{n} \times \mathbb{C}^{m}$. Then $L_{\mu, \nu}$ induces a biholomorphic mapping, denoted by the same notation, $L_{\mu, \nu}: D_{n, m}(\mu) \rightarrow D_{n, m}(\nu)$.

With these notations, our first result can be stated as follows:
Theorem 1. Let $D_{1}=D_{n_{1}, m_{1}}\left(\mu_{1}\right), D_{2}=D_{n_{2}, m_{2}}\left(\mu_{2}\right)$ be two equidimensional Fock-Bargmann-Hartogs domains in \mathbb{C}^{N} and let $f: D_{1} \rightarrow D_{2}$ be a proper holomorphic mapping. Then we have the following:
(I) If $m_{1} \geq 2$, then $f: D_{1} \rightarrow D_{2}$ is necessarily a biholomorphic mapping from D_{1} onto D_{2}. Moreover, we have $\left(n_{1}, m_{1}\right)=\left(n_{2}, m_{2}\right)$ in this case and, by putting $(n, m)=\left(n_{j}, m_{j}\right), D_{j}=$ $D_{n, m}\left(\mu_{j}\right)$ for $j=1,2, f: D_{1} \rightarrow D_{2}$ can be written in the form

$$
f=g \circ L_{\mu_{1}, \mu_{2}} \quad \text { with some } g \in \operatorname{Aut}\left(D_{2}\right) \text {. }
$$

(II) If $m_{1}=1$, then $m_{2}=1$ and hence $n_{1}=n_{2}$. Moreover, by putting $n=n_{j}, D_{j}=D_{n, 1}\left(\mu_{j}\right)$ for $j=1,2, f: D_{1} \rightarrow D_{2}$ can be written in the form

$$
f=g \circ \rho_{k} \circ L_{\mu_{1}, \mu_{2}} \text { with some } k \in \mathbb{N} \text { and some } g \in \operatorname{Aut}\left(D_{2}\right) \text {. }
$$

In particular, $f: D_{1} \rightarrow D_{2}$ is a biholomorphic mapping if and only if $k=1$.
Therefore, together with the result in [6] (see Fact A in the next section), Theorem 1 gives us an explicit expression of any proper holomorphic mapping between two equidimensional Fock-Bargmann-Hartogs domains in \mathbb{C}^{N}.

Here we shall give a geometric interpretation of Theorem 1. (For the detailed arguments, see Section 3.) For the given two Fock-Bargmann-Hartogs domains $D_{j}=D_{n_{j}, m_{j}}\left(\mu_{j}\right)$ in \mathbb{C}^{N} for $j=1,2$, let $C\left(D_{1}, \mathbb{C}^{N}\right)$ be the set of all continuous mappings from D_{1} to \mathbb{C}^{N} equipped with the compact-open topology. Note that in our case the compact-open topology coincides with the topology of uniform convergence on compact sets in D_{1}. Moreover, $C\left(D_{1}, \mathbb{C}^{N}\right)$ is a Hausdorff space satisfying the second axiom of countability. Now, let us denote by
$B\left(D_{1}, D_{2}\right)$ the set of all biholomorphic mappings from D_{1} onto D_{2}; and $P\left(D_{1}, D_{2}\right)$ the set of all proper holomorphic mappings from D_{1} to D_{2}.
Then we have the natural inclusions: $B\left(D_{1}, D_{2}\right) \subset P\left(D_{1}, D_{2}\right) \subset C\left(D_{1}, \mathbb{C}^{N}\right)$. From now on,
we assume that $P\left(D_{1}, D_{2}\right) \neq \emptyset$ and we always consider $P\left(D_{1}, D_{2}\right)$ as well as $B\left(D_{1}, D_{2}\right)$ as a topological space in the topology induced from that of $C\left(D_{1}, \mathbb{C}^{N}\right)$. Thus $B\left(D_{1}, D_{2}\right)$ and $P\left(D_{1}, D_{2}\right)$ are also Hausdorff spaces satisfying the second axiom of countability. Notice here that $\operatorname{Aut}\left(D_{2}\right)$ acts continuously on $P\left(D_{1}, D_{2}\right)$ by the natural action-mapping

$$
\Phi: \operatorname{Aut}\left(D_{2}\right) \times P\left(D_{1}, D_{2}\right) \rightarrow P\left(D_{1}, D_{2}\right) \quad \text { given by } \quad \Phi(f, p)=f \cdot p
$$

for $f \in \operatorname{Aut}\left(D_{2}\right)$ and $p \in P\left(D_{1}, D_{2}\right)$, where $f \cdot p$ is of course the composite mapping of f and p. It then follows immediately from Theorem 1 that $B\left(D_{1}, D_{2}\right)$ is just the $\operatorname{Aut}\left(D_{2}\right)$-orbit passing through the point $L_{\mu_{1}, \mu_{2}} \in P\left(D_{1}, D_{2}\right)$. Moreover, in the case where $m_{1}=1$, let us put, for $k=1,2, \ldots$,

$$
p_{k}=\rho_{k} \circ L_{\mu_{1}, \mu_{2}} \quad \text { and } \quad P_{k}=\operatorname{Aut}\left(D_{2}\right) \cdot p_{k}
$$

the $\operatorname{Aut}\left(D_{2}\right)$-orbit passing through the point $p_{k} \in P\left(D_{1}, D_{2}\right)$. Then our Theorem 1 can be interpreted as follows: Each orbit P_{k} is open and closed in $P\left(D_{1}, D_{2}\right)$ and P_{k} with the relative topology from $P\left(D_{1}, D_{2}\right)$ is homeomorphic to the connected Lie group $\operatorname{Aut}\left(D_{2}\right)$. In particular, P_{k} is the connected component of $P\left(D_{1}, D_{2}\right)$ containing the point p_{k} and the space $P\left(D_{1}, D_{2}\right)$ can be decomposed into the connected components P_{k} :

$$
P\left(D_{1}, D_{2}\right)= \begin{cases}B\left(D_{1}, D_{2}\right) & \text { if } \quad m_{1} \geq 2 \\ \bigcup_{k=1}^{\infty} P_{k} & \text { if } \quad m_{1}=1\end{cases}
$$

Moreover, it can be seen that $P\left(D_{1}, D_{2}\right)$ is closed in $C\left(D_{1}, \mathbb{C}^{N}\right)$. Thus, considering the special case where $D_{1}=D_{2}$, we have the following:

Let D be an arbitrary Fock-Bargmann-Hartogs domain in \mathbb{C}^{N} and let $\left\{f_{v}\right\}$ be a sequence of proper holomorphic self-mappings of D. Assume that $\left\{f_{v}\right\}$ converges uniformly on every compact set in D to a mapping $f: D \rightarrow \mathbb{C}^{N}$. Then f is necessarily a proper holomorphic self-mapping of D. In particular, let $\left\{\varphi_{v}\right\}$ be a sequence in $\operatorname{Aut}(D)$ which converges uniformly on compact subsets of D to a mapping $\varphi: D \rightarrow \mathbb{C}^{N}$. Then φ is a holomorphic automorphism of D.
This would be interesting when we recall the following well-known theorem of H . Cartan [3]: Let W be a bounded domain in \mathbb{C}^{N} and let $\left\{\varphi_{v}\right\}$ be a sequence in $\operatorname{Aut}(W)$ which converges uniformly on compact subsets of W to a mapping $\varphi: W \rightarrow \mathbb{C}^{N}$. Then the following three properties are equivalent:

$$
\text { (a) } \varphi \in \operatorname{Aut}(W) \quad \text { (b) } \varphi(W) \nsubseteq \partial W \quad \text { (c) } J_{\varphi}(p) \neq 0 \text { at some point } p \in W
$$

Next let us consider two arbitrary Fock-Bargmann-Hartogs domains D_{1} and D_{2}. Then, how can we describe the structure of $\operatorname{Aut}\left(D_{1} \times D_{2}\right)$ using the data of $\operatorname{Aut}\left(D_{1}\right)$ and $\operatorname{Aut}\left(D_{2}\right)$? In connection with this, Peters [11; Satz 3.4] proved the following fact, which is a generalization of the theorem of H. Cartan [4] proved for bounded domains: Let X and Y be connected hyperbolic complex spaces in the sense of Kobayashi. Then the natural isomorphism from $\operatorname{Aut}(X) \times \operatorname{Aut}(Y)$ into $\operatorname{Aut}(X \times Y)$ induces an isomorphism

$$
\operatorname{Aut}^{o}(X) \times \operatorname{Aut}^{o}(Y) \cong \operatorname{Aut}^{o}(X \times Y)
$$

where $\operatorname{Aut}^{\circ}(*)$ denotes the identity component of $\operatorname{Aut}(*)$.
Our second purpose is to establish the following theorem, which tells us that the analogue of (\ddagger) is still valid for the Fock-Bargmann-Hartogs domains:

Theorem 2. Let $D_{j}=D_{n_{j}, m_{j}}\left(\mu_{j}\right)$ be an arbitrary Fock-Bargmann-Hartogs domain in $\mathbb{C}^{N_{j}}$, where $N_{j}=n_{j}+m_{j}$, for $j=1,2$. Then we have the following:
(I) If $\left(n_{1}, m_{1}\right)=\left(n_{2}, m_{2}\right)$, then

$$
\operatorname{Aut}\left(D_{1} \times D_{2}\right)=\left(\operatorname{Aut}\left(D_{1}\right) \times \operatorname{Aut}\left(D_{2}\right)\right) \cup\left\{I \circ f ; f \in \operatorname{Aut}\left(D_{1}\right) \times \operatorname{Aut}\left(D_{2}\right)\right\}
$$

where I is the involutive automorphism of $D_{1} \times D_{2}$ defined by

$$
I\left(z_{1}, w_{1}, z_{2}, w_{2}\right)=\left(\sqrt{\mu_{2} / \mu_{1}} z_{2}, w_{2}, \sqrt{\mu_{1} / \mu_{2}} z_{1}, w_{1}\right) \quad \text { on } D_{1} \times D_{2}
$$

under the natural identification $\left(z_{1}, w_{1}, z_{2}, w_{2}\right)=\left(\left(z_{1}, w_{1}\right),\left(z_{2}, w_{2}\right)\right) \in D_{1} \times D_{2}$.
(II) If $\left(n_{1}, m_{1}\right) \neq\left(n_{2}, m_{2}\right)$, then

$$
\operatorname{Aut}\left(D_{1} \times D_{2}\right)=\operatorname{Aut}\left(D_{1}\right) \times \operatorname{Aut}\left(D_{2}\right) .
$$

Therefore, for any Fock-Bargmann-Hartogs domain D_{j} in $\mathbb{C}^{N_{j}}$ for $j=1,2$, every holomorphic automorphism of $D_{1} \times D_{2}$ can be described explicitly in terms of the natural coordinate system in $\mathbb{C}^{N_{1}} \times \mathbb{C}^{N_{2}}$.

Finally it should be remarked that, since the Fock-Bargmann-Hartogs domains contain non-trivial complex Euclidean spaces, our Theorem 2 is not an immediate consequence of Peters [11]. However, using efficiently the fact (\ddagger) by Peters and some result on algebraic automorphisms of Reinhardt domains in \mathbb{C}^{N} due to Shimizu [13; Section 3], we will be able to prove Theorem 2.

After some preparations in the next Section 2, we prove our Theorem 1 and give a geometric interpretation of Theorem 1 in Section 3. And, Theorem 2 will be proved in the final Section 4.

2. Preliminaries

Throughout this paper, we usually consider the elements ζ of \mathbb{C}^{N} as the row vectors. However we also think of ζ as the column vectors, as the need arises.

In this section, we collect some basic concepts and results on the Fock-Bargmann-Hartogs domains and Reinhardt domains. For later purpose, we also recall the structure of the holomorphic automorphism group $\operatorname{Aut}(\mathcal{E})$ of an elementary Siegel domain \mathcal{E}.

Let us start with recalling the structure of the Fock-Bargmann-Hartogs domain $D_{n, m}(\mu)$ in $\mathbb{C}^{N}=\mathbb{C}^{n} \times \mathbb{C}^{m}$. We set for a while

$$
D=D_{n, m}(\mu), \quad \Delta_{D}=\{(z, w) \in D ; w=0\} \cong \mathbb{C}^{n} \text { and } D^{*}=D \backslash \Delta_{D}
$$

Then we know that Δ_{D} coincides exactly with the degeneracy set

$$
\left\{p \in D ; d_{D}(p, q)=0 \text { for some point } q \neq p\right\}
$$

for the Kobayashi pseudodistance d_{D} of $D[9]$. Hence, d_{D} induces a true distance on D^{*} and, in particular, D^{*} is hyperbolic in the sense of Kobayashi [7].

Concerning the automorphism group of D, we have the following result due to Kim-NinhYamamori [6; Theorem 10]:

Fact A. The automorphism group $\operatorname{Aut}(D)$ of the Fock-Bargmann-Hartogs domain D is generated by the following mappings:

$$
\begin{aligned}
\varphi_{A} & :(z, w) \mapsto(A z, w), \quad A \in U(n) ; \\
\varphi_{B} & :(z, w) \mapsto(z, B w), \quad B \in U(m) ; \\
\varphi_{v} & :(z, w) \mapsto\left(z+v, e^{-\mu(z, v)-(\mu / 2)\|v\|^{2}} w\right), \quad v \in \mathbb{C}^{n} .
\end{aligned}
$$

More precisely, every automorphism φ of D can be written as the composite mapping $\varphi=$ $\varphi_{v} \circ \varphi_{B} \circ \varphi_{A}$ of automorphisms φ_{A}, φ_{B} and φ_{v} of the above type.

In particular, denoting by $\operatorname{Aut}(D) \cdot\left(z_{o}, w_{o}\right)$ the $\operatorname{Aut}(D)$-orbit passing through a given point $\left(z_{o}, w_{o}\right) \in D$, we have the following: $\operatorname{Aut}(D) \cdot\left(z_{o}, w_{o}\right)$ is a real analytic submanifold of D with

$$
\operatorname{dim}_{\mathbb{R}} \operatorname{Aut}(D) \cdot\left(z_{o}, w_{o}\right)= \begin{cases}2 n & \text { if } w_{o}=0, \tag{2.1}\\ 2(n+m)-1 & \text { if } w_{o} \neq 0\end{cases}
$$

Let $T^{N}:=(U(1))^{N}$ be the N-dimensional torus. Then T^{N} acts as a group of holomorphic automorphisms on \mathbb{C}^{N} by the standard rule

$$
\alpha \cdot \zeta=\left(\alpha_{1} \zeta_{1}, \ldots, \alpha_{N} \zeta_{N}\right) \text { for } \alpha=\left(\alpha_{i}\right) \in T^{N}, \zeta=\left(\zeta_{i}\right) \in \mathbb{C}^{N} .
$$

Let D be an arbitrary Reinhardt domain in \mathbb{C}^{N}. Then, just by the definition, D is invariant under this action of T^{N}. Thus, each element $\alpha \in T^{N}$ induces an automorphism π_{α} of D given by $\pi_{\alpha}(\zeta)=\alpha \cdot \zeta$ for $\zeta \in D$, and the mapping ρ_{D} sending α to π_{α} is an injective continuous group homomorphism of T^{N} into $\operatorname{Aut}(D)$. The subgroup $\rho_{D}\left(T^{N}\right)$ of $\operatorname{Aut}(D)$ is denoted by $T(D)$. We have one more important topological subgroup $\operatorname{Aut}_{\text {alg }}(D)$ of $\operatorname{Aut}(D)$ consisting of all elements φ of $\operatorname{Aut}(D)$ such that each component of φ is given by a Laurent monomial, that is, setting $\varphi=\left(\varphi_{1}, \ldots, \varphi_{N}\right)$ by coordinates, φ_{i} are given by

$$
\varphi_{i}(\zeta)=\alpha_{i} \zeta_{1}^{a_{i 1}} \cdots \zeta_{N}^{a_{i N}}, \quad 1 \leq i \leq N,
$$

where $\left(a_{i j}\right) \in G L(N, \mathbb{Z})$ and $\left(\alpha_{i}\right) \in\left(\mathbb{C}^{*}\right)^{N}$. We call $\operatorname{Aut}_{\text {alg }}(D)$ the algebraic automorphism group of D and each element of $\operatorname{Aut}_{\text {alg }}(D)$ is called an algebraic automorphism of D. It follows in particular from this definition that, if D contains the origin 0 of \mathbb{C}^{N}, then every algebraic automorphism φ of D reduces to a simple linear mapping of the form

$$
\begin{equation*}
\varphi(\zeta)=\left(\alpha_{1} \zeta_{\sigma(1)}, \ldots, \alpha_{N} \zeta_{\sigma(N)}\right) \text { for } \zeta=\left(\zeta_{i}\right) \in D, \tag{2.2}
\end{equation*}
$$

where $\left(\alpha_{i}\right) \in\left(\mathbb{C}^{*}\right)^{N}$ and σ is a permutation of $\{1, \ldots, N\}$. Moreover, concerning the algebraic automorphisms of Reinhardt domains in \mathbb{C}^{N}, we have the following result due to Shimizu [13; Section 3]:

Fact B. Let φ be a holomorphic automorphism of a Reinhardt domain D in \mathbb{C}^{N}. Then φ is an algebraic automorphism of D if and only if φ has the property that $\varphi T(D) \varphi^{-1}=T(D)$.

Next we recall the structure of the holomorphic automorphism $\operatorname{group} \operatorname{Aut}(\mathcal{E})$ of the elementary Siegel domain

$$
\mathcal{E}=\left\{(u, v) \in \mathbb{C} \times \mathbb{C}^{n} ; \operatorname{Im} u-\|v\|^{2}>0\right\} \quad \text { in } \mathbb{C}^{n+1} .
$$

This domain is holomorphically equivalent to the unit ball B^{n+1} in \mathbb{C}^{n+1} via the correspon-
dence $\phi: \mathcal{E} \rightarrow B^{n+1}$ given by

$$
\begin{equation*}
\phi(u, v)=\left(\frac{u-i}{u+i}, \frac{2 v_{1}}{u+i}, \ldots, \frac{2 v_{n}}{u+i}\right) \quad \text { for }(u, v)=\left(u, v_{1}, \ldots, v_{n}\right) \in \mathcal{E} \tag{2.3}
\end{equation*}
$$

Let $S U(n+1,1)$ be the special indefinite unitary group of signature $(n+1,1)$. Then it is well-known that every automorphism of B^{n+1} is a linear fractional transformation described by using some element of $S U(n+1,1)$, and we have $\operatorname{Aut}(\mathcal{E})=\phi^{-1} \operatorname{Aut}\left(B^{n+1}\right) \phi$. Hence, every automorphism F of \mathcal{E} is also a linear fractional transformation of \mathbb{C}^{n+1}. In fact, expressing $F=\left(F_{0}, F_{1}, \ldots, F_{n}\right)$ with respect to the coordinate system $(u, v)=\left(u, v_{1}, \ldots, v_{n}\right)$ in $\mathbb{C} \times \mathbb{C}^{n}=$ \mathbb{C}^{n+1}, we can see that each F_{i} has the form

$$
\begin{equation*}
F_{i}(u, v)=\frac{\alpha_{i 0} u+\sum_{j=1}^{n} \alpha_{i j} v_{j}+\beta_{i}}{\gamma_{0} u+\sum_{j=1}^{n} \gamma_{j} v_{j}+\delta}, \quad 0 \leq i \leq n \tag{2.4}
\end{equation*}
$$

where all the coefficients $\alpha_{i j}, \beta_{i}, \gamma_{i}(0 \leq i, j \leq n)$ and δ are suitable complex constants. (For the precise description of $F \in \operatorname{Aut}(\mathcal{E})$, see [8; Section 3].) Let $\operatorname{Aff}\left(\mathbb{C}^{n+1}\right)$ be the Lie group consisting of all non-singular complex affine transformations of \mathbb{C}^{n+1} and set

$$
\operatorname{Aff}(\mathcal{E})=\left\{F \in \operatorname{Aff}\left(\mathbb{C}^{n+1}\right) ; F(\mathcal{E})=\mathcal{E}\right\} .
$$

Then $\operatorname{Aff}(\mathcal{E})$ is a closed subgroup of $\operatorname{Aff}\left(\mathbb{C}^{n+1}\right)$. We call $\operatorname{Aff}(\mathcal{E})$ the affine automorphism group of \mathcal{E} and each element of $\operatorname{Aff}(\mathcal{E})$ is called an affine automorphism of \mathcal{E}. As for the $\operatorname{group} \operatorname{Aff}(\mathcal{E})$, we know the following (cf. [10; Section 2]):

Fact C. Every affine automorphism F of the elementary Siegel domain \mathcal{E} in $\mathbb{C} \times \mathbb{C}^{n}$ can be written in the form

$$
F(u, v)=\left(k u+a+2 i\langle B v, b\rangle+i\|b\|^{2}, B v+b\right) \quad \text { for }(u, v) \in \mathcal{E}
$$

where $a \in \mathbb{R}, b \in \mathbb{C}^{n}$ and $0<k \in \mathbb{R}, B \in G L(n, \mathbb{C})$ with $k\|v\|^{2}=\|B v\|^{2}$ for all $v \in \mathbb{C}^{n}$ or $(1 / \sqrt{k}) B \in U(n)$.

3. Proof of Theorem 1 and a geometric interpretation of Theorem 1

Throughout this section, we denote by D_{1}, D_{2} the equidimensional Fock-BargmannHartogs domains in \mathbb{C}^{N} and let $f: D_{1} \rightarrow D_{2}$ be a proper holomorphic mapping as in Theorem 1.
3.1. Proof of Theorem 1. First of all, by a result of Tu-Wang [15; Theorem 2.5], f extends holomorphically to a connected open neighborhood W of $\overline{D_{1}}$, the closure of D_{1} in \mathbb{C}^{N}. We set

$$
V_{f}=D_{1} \cap\left\{\zeta \in W ; J_{f}(\zeta)=0\right\} .
$$

To prove the assertion (I) of Theorem 1, we assume that $m_{1} \geq 2$. Once it is shown that $f: D_{1} \rightarrow D_{2}$ is a biholomorphic mapping, it follows from Tu-Wang [15; Theorem 1.2] or Kodama [9; Fact 5] that $\left(n_{1}, m_{1}\right)=\left(n_{2}, m_{2}\right)$ and f has the form $f=g \circ L_{\mu_{1}, \mu_{2}}$ with some $g \in \operatorname{Aut}\left(D_{2}\right)$. Thus, in order to complete the proof of the assertion (I), it suffices to show that $f: D_{1} \rightarrow D_{2}$ is biholomorphic. To this end, note that D_{2} is a simply connected domain in \mathbb{C}^{N}. Then we have only to verify the following:

Lemma 1. The set V_{f} is contained in $\Delta_{D_{1}}$. In particular, if $m_{1} \geq 2$, then $V_{f}=\emptyset$. Moreover, if $m_{1}=1$ and $V_{f} \neq \emptyset$, then $V_{f}=\Delta_{D_{1}}$.

Proof. For the verification of the first assertion, we may assume that $V_{f} \neq \emptyset$; and so V_{f} is a complex analytic subvariety of D_{1} of $\operatorname{dim}_{\mathbb{C}} V_{f}=N-1>0$. Moreover, $\overline{V_{f}} \cap \partial D_{1}=\emptyset$ by the same method as in the proof of [2; Theorem 2] or [12; Lemma 1.3]; accordingly, V_{f} may be regarded as a closed complex analytic subvariety of \mathbb{C}^{N} contained in D_{1}.

Choosing an irreducible component V of V_{f} arbitrarily, we wish to show that $V \subset \Delta_{D_{1}}$. To this end, we introduce the function h on V given by

$$
h(z, w)=\|w\|^{2} \quad \text { for } \quad(z, w) \in V
$$

Then h is a continuous plurisubharmonic function on V and

$$
h(z, w)=\|w\|^{2}<e^{-\mu_{1}\|z\|^{2}} \leq 1 \quad \text { for all }(z, w) \in V \subset D_{1}
$$

Once it is shown that $h(z, w) \equiv 0$ on V, we conclude that $V \subset \Delta_{D_{1}}$. Assume that there exists a point $\zeta_{o}=\left(z_{o}, w_{o}\right) \in V$ such that $h\left(\zeta_{o}\right)=\left\|w_{o}\right\|^{2} \neq 0$. Then

$$
0<\left\|w_{o}\right\|^{2}=h\left(\zeta_{o}\right) \leq \sup \{h(\zeta) ; \zeta \in V\}=: M \leq 1
$$

and hence, there is a sequence $\zeta_{v}=\left(z_{v}, w_{v}\right) \in V, v=1,2, \ldots$, such that

$$
\left\|w_{o}\right\|^{2} / 2 \leq\left\|w_{v}\right\|^{2} \leq M, \quad v=1,2, \ldots, \quad \text { and } \quad \lim _{v \rightarrow \infty} h\left(\zeta_{v}\right)=M
$$

Passing to a subsequence, if necessary, we may assume that $\left\{w_{\nu}\right\}_{\nu=1}^{\infty}$ converges to some point $w^{*} \in \mathbb{C}^{m_{1}}$ with $\left\|w^{*}\right\|^{2}=M$. Moreover, we have

$$
\left\|z_{v}\right\|^{2}<\left(-1 / \mu_{1}\right) \log \left(\left\|w_{o}\right\|^{2} / 2\right)<+\infty, \quad v=1,2, \ldots
$$

because $\zeta_{v}=\left(z_{v}, w_{v}\right) \in V \subset D_{1}$. Thus, passing again to a subsequence, we may further assume that $\left\{\zeta_{v}\right\}_{v=1}^{\infty}$ converges to a point $\zeta^{*}=\left(z^{*}, w^{*}\right) \in \bar{V}$. Since V is now a closed subset of \mathbb{C}^{N} contained in D_{1}, it then follows that

$$
\zeta^{*} \in V \subset D_{1} \quad \text { and } \quad h\left(\zeta^{*}\right)=M
$$

Consequently, $h(\zeta) \equiv h\left(\zeta_{o}\right)>0$ on V by the maximum principle for plurisubharmonic functions on a closed connected complex analytic subvariety of \mathbb{C}^{N} (cf. [5; Chapter IX]). Thus V is contained in the bounded subset $\left\{(z, w) \in D_{1} ;\|w\|=\left\|w_{o}\right\|\right\}$ of \mathbb{C}^{N}. Accordingly, V is a compact, irreducible complex analytic subvariety of \mathbb{C}^{N} contained in D_{1}; and hence, $V=\left\{\zeta_{o}\right\} \subset D_{1}$. But this contradicts the fact $\operatorname{dim}_{\mathbb{C}} V>0$. As a result, we have shown that $h(\zeta) \equiv 0$ on V and so $V \subset \Delta_{D_{1}}$, as desired.

Next, consider the case where $m_{1} \geq 2$. Then $\operatorname{dim}_{\mathbb{C}} \Delta_{D_{1}}=n_{1} \leq N-2$ and $\operatorname{dim}_{\mathbb{C}} V_{f}=N-1$, provided that $V_{f} \neq \emptyset$. Hence, $V_{f} \subset \Delta_{D_{1}}$ can only happen when $V_{f}=\emptyset$. Moreover, if $m_{1}=1$ and $V_{f} \neq \emptyset$, then V_{f} is a complex analytic subvariety of $\Delta_{D_{1}} \cong \mathbb{C}^{n_{1}}$ with $\operatorname{dim}_{\mathbb{C}} V_{f}=n_{1}$; consequently, we conclude that $V_{f}=\Delta_{D_{1}}$, as asserted.

Eventually we have completed the proof of the assertion (I) of Theorem 1.
Remark 1. With exactly the same argument as in the proof of Lemma 1, one can prove the following:

Proposition. Let V be an irreducible complex analytic subvariety of the Fock-BargmannHartogs domain $D=D_{n, m}(\mu)$ in \mathbb{C}^{N} with $\operatorname{dim}_{\mathbb{C}} V>0$ and $\bar{V} \subset D$. Then V is contained in Δ_{D}.

Before undertaking the proof of (II), we show the following:
Lemma 2. Assume that $m_{j}=1, \mu_{j}=1$ for $j=1,2$. Then, putting $n=n_{j}, D=D_{j}$ for $j=1,2$, we have $f\left(\Delta_{D}\right)=\Delta_{D}$ and $f\left(D^{*}\right)=D^{*}$, where $D^{*}=D \backslash \Delta_{D}$.

Proof. If f is a holomorphic automorphism of D, then this lemma is an immediate consequence of the fact that the Kobayashi pseudodistance d_{D} is invariant under f and that Δ_{D} is just the degeneracy set for d_{D}.

We now consider the case where f is not a holomorphic automorphism of D. Then V_{f} is a complex analytic subvariety of D of $\operatorname{dim}_{\mathbb{C}} V_{f}=n$. In order to prove that $f\left(D^{*}\right) \subset D^{*}$, consider here the proper holomorphic mapping $F:=f \circ f: D \rightarrow D$. Then, since Lemma 1 remains true for any proper holomorphic mapping from D_{1} onto D_{2}, we have $V_{f} \subset V_{F}=\Delta_{D}$; and hence, $V_{f}=\Delta_{D}$. Assume that there exists a point $\zeta_{o} \in D^{*}$ such that $f\left(\zeta_{o}\right) \in \Delta_{D}$. Then $J_{F}\left(\zeta_{o}\right)=J_{f}\left(f\left(\zeta_{o}\right)\right) J_{f}\left(\zeta_{o}\right)=0$ and $\zeta_{o} \in V_{F}=\Delta_{D}$, a contradiction. Therefore we have $f\left(D^{*}\right) \subset D^{*}$.

Next we assert that $f\left(\Delta_{D}\right)=\Delta_{D}$. Indeed, assume that there exists a point $p \in \Delta_{D}$ with $f(p) \in D^{*}$. Then there exists a small open Euclidean ball $B(p)$ with center p such that $f(B(p)) \subset D^{*}$. Recall that the Kobayashi pseudodistance d_{D} of D is identically zero on Δ_{D} and d_{D} is a true distance on D^{*}. Then, by the distance-decreasing property of d_{D} under holomorphic mappings, we have

$$
d_{D}(f(p), f(q)) \leq d_{D}(p, q)=0 \quad \text { for all } q \in B(p) \cap \Delta_{D}
$$

which implies that $f(q)=f(p)$ for all $q \in B(p) \cap \Delta_{D}$. Thus $f\left(\Delta_{D}\right)=\{f(p)\}$ by analytic continuation. Anyway, in such a case, $f^{-1}(f(p))$ is not a finite subset of D. However this contradicts the fact that $f: D \rightarrow D$ is a proper holomorphic mapping. Therefore $f\left(\Delta_{D}\right) \subset \Delta_{D}$. Since $f\left(\Delta_{D}\right)$ is also a complex analytic subvariety of D of $\operatorname{dim}_{\mathbb{C}} f\left(\Delta_{D}\right)=n$ by Remmert's proper mapping theorem, we conclude that $f\left(\Delta_{D}\right)=\Delta_{D}$. Accordingly, we obtain that $f\left(D^{*}\right)=D^{*}$ because $f(D)=D$; proving the Lemma 2 .

We can now prove the assertion (II) of Theorem 1. First consider the case where f : $D_{1} \rightarrow D_{2}$ is a biholomorphic mapping. It then follows that $f\left(\Delta_{D_{1}}\right)=\Delta_{D_{2}}$ and f induces a biholomorphic mapping from $\Delta_{D_{1}} \cong \mathbb{C}^{n_{1}}$ onto $\Delta_{D_{2}} \cong \mathbb{C}^{n_{2}}$ because the degeneracy sets for Kobayashi pseudodistances are invariant under biholomorphic mappings, in general. Hence $n_{1}=n_{2}$ and so $m_{2}=m_{1}=1$. Moreover, putting $n=n_{j}$ and $D_{j}=D_{n, 1}\left(\mu_{j}\right)$ for $j=1,2$, we know by [15; Theorem 1.2] or [9; Fact 5] that f has the form $f=g \circ L_{\mu_{1}, \mu_{2}}$ with some $g \in \operatorname{Aut}\left(D_{2}\right)$. Therefore we obtain the assertion (II) in the case where $f: D_{1} \rightarrow D_{2}$ is a biholomorphic mapping, since $\rho_{1}=\operatorname{id}_{D_{2}}$.

Consider next the case where $f: D_{1} \rightarrow D_{2}$ is not a biholomorphic mapping. To prove that $m_{2}=1$, assume to the contrary that $m_{2} \geq 2$. Then $\operatorname{dim}_{\mathbb{C}} \Delta_{D_{2}}=n_{2} \leq N-2$. On the other hand, $f\left(\Delta_{D_{1}}\right)$ is a complex analytic subvariety of D_{2} of $\operatorname{dim}_{\mathbb{C}} f\left(\Delta_{D_{1}}\right)=n_{1}=N-1$ by Remmert's proper mapping theorem. Thus $\Delta_{D_{2}}$ is too small to contain $f\left(\Delta_{D_{1}}\right)$; and hence, there exists a point $p \in \Delta_{D_{1}}$ with $f(p) \in D_{2}^{*}:=D_{2} \backslash \Delta_{D_{2}}$. Choose a small open Euclidean
ball $B(p) \subset D_{1}$ with center p such that $f(B(p)) \subset D_{2}^{*}$. Then, with exactly the same argument as in the proof of Lemma 2, it can be seen that $f^{-1}(f(p))$ is not a finite subset of D_{1}, a contradiction. Therefore we conclude that $m_{2}=1$ and $n_{1}=n_{2}$, as required.

From now on, we set $n=n_{j}$ for $j=1,2$. The proof will be divided into two cases as follows:

CASE 1. $\left(\mu_{1}, \mu_{2}\right)=(1,1)$: In this case, we put $D=D_{j}$ for $j=1,2$ and use the following notation: For the domain $D^{*}=D \backslash \Delta_{D}$, we set

$$
S=\left\{(z, w) \in \mathbb{C}^{n} \times \mathbb{C} ;|w|^{2} e^{\|z\|^{2}}=1\right\}=\partial D
$$

the subset of ∂D^{*} consisting of all C^{ω}-smooth strictly pseudoconvex boundary points of D^{*}. We also set

$$
\mathcal{E}=\left\{(u, v) \in \mathbb{C} \times \mathbb{C}^{n} ; \operatorname{Im} u-\|v\|^{2}>0\right\}
$$

the elementary Siegel domain in \mathbb{C}^{n+1}. Note that $f(S) \subset S$ and f can be regarded as a proper holomorphic self-mapping of D^{*} by Lemma 2; and, via the mapping ϕ given in (2.3), \mathcal{E} is now biholomorphically equivalent to the unit ball B^{n+1} in \mathbb{C}^{n+1}.

Consider here a holomorphic mapping ϖ from \mathcal{E} into $\mathbb{C}^{n} \times \mathbb{C}^{*}$ defined by

$$
\varpi(u, v)=\left(v, e^{i u / 2}\right) \quad \text { for }(u, v) \in \mathcal{E} .
$$

Then it is easily seen that $\varpi(\mathcal{E})=D^{*}$ and \mathcal{E} is the universal covering of D^{*} with the covering projection ϖ. Clearly, ϖ is, in fact, defined on $\mathbb{C} \times \mathbb{C}^{n}$ and $\varpi(\partial \mathcal{E})=S$.

Now, pick a point $p_{1} \in S$ arbitrarily and put $p_{2}=f\left(p_{1}\right) \in S$. Notice that $f \mid S \neq \mathrm{id}_{S}$ because $f \neq \operatorname{id}_{D}$. Thus we may assume that $p_{1} \neq p_{2}$. Let $q_{1}, q_{2} \in \partial \mathcal{E}$ such that $\varpi\left(q_{j}\right)=p_{j}$ for $j=1,2$. Since $\overline{V_{f}} \cap \mathcal{S}=\emptyset$, there exist connected open neighborhoods V_{1}, V_{2} of p_{1}, p_{2}, respectively, such that f gives rise to a biholomorphic mapping, say again f, from V_{1} onto V_{2}. Moreover, since ω is a covering projection from $\mathbb{C} \times \mathbb{C}^{n}$ onto $\mathbb{C}^{n} \times \mathbb{C}^{*}$ with $\sigma(\partial \mathcal{E})=S$, we can find connected open neighborhoods W_{1}, W_{2} of q_{1}, q_{2}, respectively, such that both the restrictions

$$
\Pi_{j}:=\left.\varpi\right|_{W_{j}}: W_{j} \rightarrow V_{j} \quad \text { for } j=1,2
$$

are biholomorphic mappings, after shrinking V_{1} sufficiently small, if necessary. Thus we obtain a biholomorphic mapping

$$
F:=\Pi_{2}^{-1} \circ f \circ \Pi_{1}: W_{1} \rightarrow W_{2}
$$

with

$$
F\left(W_{1} \cap \mathcal{E}\right)=W_{2} \cap \mathcal{E} \quad \text { and } \quad F\left(W_{1} \cap \partial \mathcal{E}\right)=W_{2} \cap \partial \mathcal{E}
$$

As an immediate consequence of the main result of Alexander [1], F now extends to a holomorphic automorphism, denoted by the same letter F, of \mathcal{E}. Therefore

$$
\begin{equation*}
\varpi(F(\xi))=f(\varpi(\xi)) \quad \text { for all } \xi \in \mathcal{E} \tag{3.1}
\end{equation*}
$$

by analytic continuation. Let us represent F as $F=\left(F_{0}, F_{1}, \ldots, F_{n}\right)$ with respect to the coordinate system $(u, v)=\left(u, v_{1}, \ldots, v_{n}\right)$ in $\mathbb{C} \times \mathbb{C}^{n}=\mathbb{C}^{n+1}$ and assume that F has the form
written in (2.4). Note that

$$
\varpi^{-1}(\varpi(\xi))=\{(u+4 \pi v, v) ; v \in \mathbb{Z}\} \quad \text { for any } \xi=(u, v) \in \mathcal{E}
$$

Then the equation (3.1) tells us the following fact: For any point $\xi=(u, v) \in \mathcal{E}$ and any integer v, there exists an integer $n(\xi, v)$ such that

$$
\begin{align*}
& F_{0}(u+4 \pi v, v)=F_{0}(u, v)+4 \pi n(\xi, v) ; \\
& F_{i}(u+4 \pi v, v)=F_{i}(u, v), \quad 1 \leq i \leq n . \tag{3.2}
\end{align*}
$$

Since F is an automorphism of \mathcal{E}, the integer $n(\xi, v)$ is uniquely determined by (ξ, v) and depends continuously on $\xi \in \mathcal{E}$ for each fixed $v \in \mathbb{Z}$. Consequently, $n(\xi, v)$ is independent on ξ; and so, we may write $n(\xi, v)=n(v)$. Also, it is clear that $n(v)=0$ if and only if $v=0$. Moreover, since \mathcal{E} is a complete hyperbolic manifold in the sense of Kobayashi [7], the closure of the set $\left\{\xi \in \mathcal{E} ; d_{\mathcal{E}}(p, \xi)<r\right\}$ is a compact subset of \mathcal{E} for all $p \in \mathcal{E}$ and all $0<r \in \mathbb{R}$. Thus

$$
\begin{equation*}
|n(v)| \rightarrow+\infty \quad \text { if and only if } \quad|v| \rightarrow+\infty \tag{3.3}
\end{equation*}
$$

Now we assert that F is an affine automorphism of \mathcal{E}. Indeed, this can be verified as follows. If we set

$$
g(u, v)=\gamma_{0} u+\sum_{j=1}^{n} \gamma_{j} v_{j}+\delta \text { and } h_{i}(u, v)=\alpha_{i 0} u+\sum_{j=1}^{n} \alpha_{i j} v_{j}+\beta_{i}
$$

for $0 \leq i \leq n$, then $F_{i}(u, v)=h_{i}(u, v) / g(u, v)$ and by (3.2)

$$
\begin{align*}
& \frac{4 \pi v \cdot \alpha_{00}+h_{0}(u, v)}{4 \pi v \cdot \gamma_{0}+g(u, v)}=\frac{h_{0}(u, v)}{g(u, v)}+4 \pi n(v) ; \\
& \frac{4 \pi v \cdot \alpha_{i 0}+h_{i}(u, v)}{4 \pi v \cdot \gamma_{0}+g(u, v)}=\frac{h_{i}(u, v)}{g(u, v)}, \quad 1 \leq i \leq n ; \tag{3.4}
\end{align*}
$$

for any point $(u, v) \in \mathcal{E}$ and any integer v.
If $\gamma_{0} \neq 0$, then it follows from (3.4) that

$$
\alpha_{i 0} / \gamma_{0}=F_{i}(u, v) \quad \text { on } \mathcal{E} \text { for } 1 \leq i \leq n
$$

which contradicts the fact that F is an automorphism of \mathcal{E}. Thus $\gamma_{0}=0$. In this case, it follows at once that $\alpha_{i 0}=0$ for each $i=1, \ldots, n$. Therefore, F_{i} does not depend on the variable u; accordingly, it has the form $F_{i}(u, v)=F_{i}(v)$ for every $1 \leq i \leq n$. Next, consider the first equation in (3.4). If $\alpha_{00}=0$, then F does not depend on the variable u. But this is absurd because F is an automorphism of \mathcal{E}. Thus $\alpha_{00} \neq 0$ and

$$
\sum_{j=1}^{n} \gamma_{j} v_{j}+\delta=\alpha_{00} \cdot v / n(v) \quad \text { on } \mathcal{E}
$$

where v is any integer with $v \neq 0$. Clearly, this can only happen when $\gamma_{j}=0$ for all $1 \leq j \leq n$; and hence, $g(u, v)=\delta$ on \mathcal{E} and F reduces to an affine automorphism of \mathcal{E}, as asserted.

Let us express the affine automorphism F of \mathcal{E} as in Fact C in Section 2. Then, if we write $B=\sqrt{k} \widetilde{B}$ with $\widetilde{B} \in U(n)$, it follows from (3.1) that

$$
\begin{equation*}
f\left(v, e^{i u / 2}\right)=\left(\widetilde{B} \sqrt{k} v+b, e^{-\langle\widetilde{B} \sqrt{k} v, b\rangle-(1 / 2)\|b\|^{2}} e^{(a / 2) i}\left(e^{i u / 2}\right)^{k}\right) \tag{3.5}
\end{equation*}
$$

for all $(u, v) \in \mathcal{E}$. Moreover, since f is a single-valued holomorphic mapping defined on D, the positive real number k has to be an integer. With the notation as in Fact A, let us now introduce an automorphism g of D defined by

$$
g=\varphi_{b} \circ \varphi_{e^{(a / 2) i} E_{1}} \circ \varphi_{\widetilde{B}}
$$

where $a \in \mathbb{R}, b \in \mathbb{C}^{n}, \widetilde{B} \in U(n)$ are the same objects appearing in (3.5) and E_{1} denotes the identity matrix of degree one. Then the equation (3.5) can be rewritten as

$$
f(z, w)=g \circ \rho_{k} \circ L_{1,1}(z, w) \quad \text { for all }(z, w) \in D^{*}
$$

since $L_{1,1}=\operatorname{id}_{D}$. Therefore we conclude that $f=g \circ \rho_{k} \circ L_{1,1}$ on D by analytic continuation; thereby the proof of the assertion (II) of Theorem 1 is completed in Case 1.

Case 2. $\left(\mu_{1}, \mu_{2}\right) \neq(1,1)$: In this case, putting $D=D_{n, 1}(1)$, let us consider the biholomorphic mapping $L_{\mu_{j}, 1}: D_{n, 1}\left(\mu_{j}\right) \rightarrow D$ for $j=1,2$ defined in the Introduction. Then the composite mapping

$$
\tilde{f}:=L_{\mu_{2}, 1} \circ f \circ L_{\mu_{1}, 1}^{-1}: D \rightarrow D
$$

is a proper holomorphic self-mapping of D. Hence, \tilde{f} can be written in the form

$$
\tilde{f}(z, w)=\left(\widetilde{B} \sqrt{k} z+b, e^{-\langle\widetilde{B} \sqrt{k} z, b\rangle-(1 / 2)\|b\|^{2}} e^{(a / 2) i} w^{k}\right) \quad \text { on } D
$$

as in (3.5); accordingly,

$$
\begin{aligned}
f(z, w) & =\left(\widetilde{B} \sqrt{k} z^{*}+b^{*}, e^{-\mu_{2}\left\langle\widetilde{B} \sqrt{k} z^{*}, b^{*}\right\rangle-\left(\mu_{2} / 2\right)\left\|b^{*}\right\|^{2}} e^{(a / 2) i} w^{k}\right) \\
& =g \circ \rho_{k} \circ L_{\mu_{1}, \mu_{2}}(z, w) \quad \text { on } D_{n, 1}\left(\mu_{1}\right)
\end{aligned}
$$

where we have put $z^{*}=\sqrt{\mu_{1} / \mu_{2}} z, b^{*}=b / \sqrt{\mu_{2}}$ and

$$
g=\varphi_{b^{*}} \circ \varphi_{e^{(a / 2)} E_{1}} \circ \varphi_{\tilde{B}} \in \operatorname{Aut}\left(D_{n, 1}\left(\mu_{2}\right)\right)
$$

Therefore we have proved the assertion (II) of Theorem 1 in Case 2; thereby the proof of Theorem 1 is now completed.

Remark 2. In [9], we proved that Δ_{D} is just the degeneracy set for the Kobayashi pseudodistance d_{D} of D without using any information on $\operatorname{Aut}(D)$. In fact, this comes from the fact that d_{D} is identically zero on $\Delta_{D} \cong \mathbb{C}^{n}$ and that there exists a strictly plurisubharmonic function u on D^{*} with $0<u(\zeta)<1$ for all $\zeta \in D^{*}$, which implies the hyperbolicity of D at every point $p \in D^{*}$ by a result of Sibony [14]. Let f be an arbitrary element in $\operatorname{Aut}(D)$. Then f preserves D^{*} and it is uniquely determined by the restriction $\left.f\right|_{D^{*}} \in \operatorname{Aut}\left(D^{*}\right)$. Therefore, our proof here of the assertion (II) of Theorem 1 based on the explicit description of $\operatorname{Aut}(\mathcal{E})$ of the universal covering space \mathcal{E} of D^{*} gives an alternative proof of Kim-Ninh-Yamamori [6; Theorem 10] in the case where D is the Fock-Bargmann-Hartogs domain $D_{n, 1}(\mu)$ in $\mathbb{C}^{n} \times \mathbb{C}$.
3.2. A geometric interpretation of Theorem 1. Throughout this subsection, we use the same terminology and notation in the Introduction. Then, just by the definition of the
compact-open topology, it is easily seen that the action-mapping $\Phi: \operatorname{Aut}\left(D_{2}\right) \times P\left(D_{1}, D_{2}\right) \rightarrow$ $P\left(D_{1}, D_{2}\right)$ is continuous. Moreover, $\operatorname{Aut}\left(D_{2}\right)$ acts freely on $P\left(D_{1}, D_{2}\right)$, since any proper holomorphic mapping $p: D_{1} \rightarrow D_{2}$ is surjective. We have now two cases to consider:

Case 1. $m_{1}=1$: In this case, we have $m_{2}=1$ by the assertion (II) of Theorem 1. Now, putting $(n, 1)=\left(n_{j}, m_{j}\right)$ for $j=1$, 2 , we assert the following:
(A.1) Every orbit $P_{k}=\operatorname{Aut}\left(D_{2}\right) \cdot p_{k}$ is open and closed in $P\left(D_{1}, D_{2}\right)$, and the topological space P_{k} in the topology induced from that of $P\left(D_{1}, D_{2}\right)$ is homeomorphic to the connected Lie group Aut $\left(D_{2}\right)$. In particular, P_{k} is the connected component of $P\left(D_{1}, D_{2}\right)$ containing the point p_{k};
(A.2) $P_{1}=B\left(D_{1}, D_{2}\right)$ and $P\left(D_{1}, D_{2}\right)$ can be decomposed into the connected components $P_{k}: P\left(D_{1}, D_{2}\right)=\bigcup_{k=1}^{\infty} P_{k}$; and
(A.3) $P\left(D_{1}, D_{2}\right)$ is closed in $C\left(D_{1}, \mathbb{C}^{N}\right)$.

Once the assertion (A.1) has been shown, (A.2) is an immediate consequence of (II) in Theorem 1. So, we first verify the assertion (A.1).

To prove the closedness of P_{k} in (A.1), let us consider an arbitrary sequence $\left\{q_{v}\right\}_{v=1}^{\infty}$ in P_{k} converging to a point $q \in P\left(D_{1}, D_{2}\right)$. It then follows from Theorem 1 that there exist some $g \in \operatorname{Aut}\left(D_{2}\right)$ and $p_{\ell}=\rho_{\ell} \circ L_{\mu_{1}, \mu_{2}} \in P\left(D_{1}, D_{2}\right)$ such that $q=g \cdot p_{\ell}$. Let $\left\{g_{v}\right\}_{v=1}^{\infty}$ be a sequence in $\operatorname{Aut}\left(D_{2}\right)$ such that $q_{v}=g_{v} \cdot p_{k}$ for $v=1,2, \ldots$. According to Fact A in Section 2, we can write

$$
\begin{equation*}
g=\varphi_{v} \circ \varphi_{B} \circ \varphi_{A}, \quad g_{v}=\varphi_{v_{v}} \circ \varphi_{B_{v}} \circ \varphi_{A_{v}} \quad \text { for } v=1,2, \ldots, \tag{3.6}
\end{equation*}
$$

where $v, v_{v} \in \mathbb{C}^{n}, B, B_{v} \in U(1)$ and $A, A_{v} \in U(n)$. Thanks to the compactness of $U(n) \times$ $U(1)$, one may assume that $\left\{\left(A_{v}, B_{v}\right)\right\}_{v=1}^{\infty}$ converges to some element $(\widetilde{A}, \widetilde{B})$ of $U(n) \times U(1)$. Moreover, since $\lim _{v \rightarrow \infty} q_{v}=q$, we have

$$
\begin{equation*}
\lim _{v \rightarrow \infty}\left(v_{v}, 0\right)=\lim _{v \rightarrow \infty} q_{v}(0)=q(0)=(v, 0) \tag{3.7}
\end{equation*}
$$

for the origin $0=(0,0) \in D_{1} \subset \mathbb{C}^{n} \times \mathbb{C}$. Consequently, we have

$$
\begin{equation*}
\lim _{v \rightarrow \infty} g_{v}=\varphi_{v} \circ \varphi_{\widetilde{B}} \circ \varphi_{\widetilde{A}}=: \tilde{g} \in \operatorname{Aut}\left(D_{2}\right) \tag{3.8}
\end{equation*}
$$

and hence, $\tilde{g} \cdot p_{k}=\lim _{v \rightarrow \infty} g_{v} \cdot p_{k}=g \cdot p_{\ell}$ or

$$
\begin{equation*}
\left(\tilde{z}+v, e^{-\mu_{2}\langle\tilde{z}, v\rangle-\left(\mu_{2} / 2\right)\|v\|^{2}} \widetilde{B} w^{k}\right)=\left(z^{*}+v, e^{-\mu_{2}\left\langle z^{*}, v\right\rangle-\left(\mu_{2} / 2\right)\|v\|^{2}} B w^{\ell}\right) \tag{3.9}
\end{equation*}
$$

for any point $(z, w) \in D_{1}$, where we have put

$$
\tilde{z}=\sqrt{k} \sqrt{\mu_{1} / \mu_{2}} \widetilde{A} z \quad \text { and } \quad z^{*}=\sqrt{\ell} \sqrt{\mu_{1} / \mu_{2}} A z
$$

Clearly, the equation (3.9) assures us that $k=\ell$; thereby $q=g \cdot p_{k} \in P_{k}$. Therefore we have proved that P_{k} is closed in $P\left(D_{1}, D_{2}\right)$, as desired.

To prove the openness of P_{k} in (A.1), note that $P\left(D_{1}, D_{2}\right)=\bigcup_{k=1}^{\infty} P_{k}$ by Theorem 1. Moreover, by the same argument as in the preceding paragraph, it can be checked that $P_{k} \cap$ $P_{\ell}=\emptyset$ unless $k=\ell$. So, putting $P_{k}^{c}=\bigcup_{\ell \neq k} P_{\ell}$, the complement of P_{k} in $P\left(D_{1}, D_{2}\right)$, we would like to prove that P_{k}^{c} is closed in $P\left(D_{1}, D_{2}\right)$. For this purpose, choose an arbitrary sequence $\left\{q_{v}\right\}_{v=1}^{\infty}$ in P_{k}^{c} converging to a point $q \in P\left(D_{1}, D_{2}\right)$. Express q, q_{v} as

$$
q=g \cdot p_{\ell}, \quad q_{v}=g_{v} \cdot p_{n(v)} \quad \text { for } v=1,2, \ldots
$$

where $g, g_{v} \in \operatorname{Aut}\left(D_{2}\right)$ and $n(v) \in \mathbb{N}$ with $n(v) \neq k$ for all v. Write again g, g_{v} as in (3.6) and repeat the same argument as above. Then it can be seen that $\left\{\left(v_{v}, A_{v}, B_{v}\right)\right\}_{v=1}^{\infty}$ converges to some element $(v, \widetilde{A}, \widetilde{B}) \in \mathbb{C}^{n} \times U(n) \times U(1)$, after taking a subsequence, if necessary. Recall that $\left\{q_{v}\right\}_{v=1}^{\infty}$ converges to q in $P\left(D_{1}, D_{2}\right)$. Then

$$
\begin{aligned}
& \lim _{v \rightarrow \infty}\left(\tilde{z}_{v}+v_{v}, e^{-\mu_{2}\left\langle\tilde{z}_{v}, v_{\nu}\right\rangle-\left(\mu_{2} / 2\right)\left\|v_{v}\right\|^{2}} B_{v} w^{n(v)}\right) \\
&=\left(z^{*}+v, e^{-\mu_{2}\left\langle z^{*}, v\right\rangle-\left(\mu_{2} / 2\right)\|v\|^{2}} B w^{\ell}\right)
\end{aligned}
$$

uniformly on any compact set in D_{1}, where we have put

$$
\tilde{z}_{v}=\sqrt{n(v)} \sqrt{\mu_{1} / \mu_{2}} A_{v} z \quad \text { and } \quad z^{*}=\sqrt{\ell} \sqrt{\mu_{1} / \mu_{2}} A z
$$

It then follows at once that $\lim _{v \rightarrow \infty} \sqrt{n(v)} A_{v} z=\sqrt{\ell} A z$ uniformly on any compact set in \mathbb{C}^{n} and so $\lim _{v \rightarrow \infty} n(v)=\ell$. Hence, $\ell=n(v) \neq k$ for all $v \geq v_{o}$ with some $v_{o} \in \mathbb{N}$; and consequently, $q=g \cdot p_{\ell} \in P_{k}^{c}$. Therefore we have shown that P_{k}^{c} is closed in $P\left(D_{1}, D_{2}\right)$; proving the openness of P_{k} in $P\left(D_{1}, D_{2}\right)$.

Next, for every $k \in \mathbb{N}$, we would like to prove that the mapping

$$
\Psi: \operatorname{Aut}\left(D_{2}\right) \rightarrow P_{k} \quad \text { defined by } \quad \Psi(f)=f \cdot p_{k}
$$

for $f \in \operatorname{Aut}\left(D_{2}\right)$ is a homeomorphism from $\operatorname{Aut}\left(D_{2}\right)$ onto the subspace P_{k} of $P\left(D_{1}, D_{2}\right)$. Since $\operatorname{Aut}\left(D_{2}\right)$ acts freely on $P\left(D_{1}, D_{2}\right)$ as mentioned above, Ψ is an injective continuous mapping from $\operatorname{Aut}\left(D_{2}\right)$ onto P_{k}. Thus, in order to show that the inverse mapping Ψ^{-1} : $P_{k} \rightarrow \operatorname{Aut}\left(D_{2}\right)$ of Ψ is also continuous, it suffices to prove that $\Psi: \operatorname{Aut}\left(D_{2}\right) \rightarrow P_{k}$ is a closed mapping. To this end, take a closed subset S of $\operatorname{Aut}\left(D_{2}\right)$ arbitrarily and consider a sequence $\left\{q_{v}\right\}_{v=1}^{\infty}$ in $\Psi(S)$ converging to some point $q \in P_{k}$. Let g be an element of $\operatorname{Aut}\left(D_{2}\right)$ and $\left\{g_{v}\right\}_{v=1}^{\infty}$ a sequence in S such that $q=g \cdot p_{k}$ and $q_{v}=g_{v} \cdot p_{k}$ for $v=1,2, \ldots$. By the same reasoning as above, one may assume that $\left\{g_{v}\right\}_{v=1}^{\infty}$ converges to some element $\tilde{g} \in \operatorname{Aut}\left(D_{2}\right)$. Then, since S is a closed subset of $\operatorname{Aut}\left(D_{2}\right)$, it follows that $\tilde{g} \in S$ and $q=\tilde{g} \cdot p_{k} \in \Psi(S)$; proving that Ψ is, in fact, a closed mapping. As a result, we have shown that Ψ gives a homeomorphism from $\operatorname{Aut}\left(D_{2}\right)$ onto P_{k}; completing the proof of the assertion (A.1).

Finally we wish to prove the assertion (A.3). For this, take an arbitrary sequence $\left\{q_{v}\right\}_{\nu=1}^{\infty}$ in $P\left(D_{1}, D_{2}\right)$ converging to a point $q \in C\left(D_{1}, \mathbb{C}^{N}\right)$. Express

$$
q_{v}=g_{v} \cdot p_{n(v)}, \quad g_{v}=\varphi_{v_{v}} \circ \varphi_{B_{v}} \circ \varphi_{A_{v}} \quad \text { for } v=1,2, \ldots
$$

as before. Also, represent q as $q=\left(q^{1}, q^{2}\right)$ with respect to the coordinate system (z, w) in $\mathbb{C}^{n} \times \mathbb{C}$. Then we have $\lim _{v \rightarrow \infty} v_{v}=q^{1}(0)$ as in (3.7). Hence, putting $v:=q^{1}(0) \in \mathbb{C}^{n}$ for simplicity, one may assume that $\left\{g_{v}\right\}_{v=1}^{\infty}$ converges to an element $\tilde{g} \in \operatorname{Aut}\left(D_{2}\right)$ defined in (3.8). Moreover, since $\left\{q_{v}\right\}_{v=1}^{\infty}$ converges to q in the compact-open topology, we have that

$$
\lim _{v \rightarrow \infty}\left(\tilde{z}_{v}+v_{v}, e^{-\mu_{2}\left\langle\tilde{z}_{v}, v_{v}\right\rangle-\left(\mu_{2} / 2\right)\left\|v_{v}\right\|^{2}} B_{v} w^{n(v)}\right)=q(z, w)
$$

uniformly on any compact set in D_{1}, where $\tilde{z}_{v}=\sqrt{n(v)} \sqrt{\mu_{1} / \mu_{2}} A_{v} z$ for all v. It then follows that

$$
\lim _{v \rightarrow \infty} \sqrt{n(v)} \sqrt{\mu_{1} / \mu_{2}} A_{v} z=q^{1}(z, w)-v
$$

uniformly on any compact set in D_{1}; and hence,

$$
\lim _{v \rightarrow \infty} n(v)=\left(\mu_{2} / \mu_{1}\right)\left\|q^{1}\left(z^{o}, 0\right)-v\right\|^{2}
$$

for any $z^{o} \in \mathbb{C}^{n}$ with $\left\|z^{o}\right\|=1$. Since $n(v) \in \mathbb{N}$ for all v, this says that there exists a large $v_{o} \in \mathbb{N}$ such that $n(v)=n\left(v_{o}\right)$ for all $v \geq v_{o}$. Therefore we conclude that

$$
q=\lim _{v \rightarrow \infty} q_{v}=\tilde{g} \cdot p_{n\left(v_{o}\right)} \in P\left(D_{1}, D_{2}\right)
$$

by (A.2); proving the assertion (A.3).
CASE 2. $m_{1} \geq 2$: In this case, as an immediate consequence of the assertion (I) of Theorem 1, we obtain that

$$
\left(n_{1}, m_{1}\right)=\left(n_{2}, m_{2}\right) \quad \text { and } \quad P\left(D_{1}, D_{2}\right)=B\left(D_{1}, D_{2}\right)=\operatorname{Aut}\left(D_{2}\right) \cdot L_{\mu_{1}, \mu_{2}} .
$$

Moreover, with exactly the same argument as in Case 1 above, it can be checked easily that $P\left(D_{1}, D_{2}\right)$ is closed in $C\left(D_{1}, \mathbb{C}^{N}\right)$ and the mapping

$$
\Psi: \operatorname{Aut}\left(D_{2}\right) \rightarrow P\left(D_{1}, D_{2}\right) \quad \text { defined by } \quad \Psi(f)=f \cdot L_{\mu_{1}, \mu_{2}}
$$

for $f \in \operatorname{Aut}\left(D_{2}\right)$ induces a homeomorphism from $\operatorname{Aut}\left(D_{2}\right)$ onto $P\left(D_{1}, D_{2}\right)$.

4. Proof of Theorem 2

Throughout this section, we use the following notation: For the given Fock-BargmannHartogs domains

$$
D_{j}=D_{n_{j}, m_{j}}\left(\mu_{j}\right)=\left\{\left(z_{j}, w_{j}\right) \in \mathbb{C}^{n_{j}} \times \mathbb{C}^{m_{j}} ;\left\|w_{j}\right\|^{2}<e^{-\mu_{j}\left\|z_{j}\right\|^{2}}\right\}
$$

for $j=1,2$, we denote by

$$
\begin{aligned}
& d_{D_{1} \times D_{2}} \text { the Kobayashi pseudodistance of } D_{1} \times D_{2} \text {; } \\
& \Delta_{D_{1} \times D_{2}} \text { the degeneracy set for } d_{D_{1} \times D_{2}} \text {; and set } \\
& \left(D_{1} \times D_{2}\right)^{*}=D_{1} \times D_{2} \backslash \Delta_{D_{1} \times D_{2}} .
\end{aligned}
$$

Thus, $d_{D_{1} \times D_{2}}$ induces a true distance on $\left(D_{1} \times D_{2}\right)^{*}$ and $\left(D_{1} \times D_{2}\right)^{*}$ is hyperbolic in the sense of Kobayashi. Also, we often set

$$
\begin{aligned}
& \left(k_{1}, k_{2}, k_{3}, k_{4}\right)=\left(n_{1}, m_{1}, n_{2}, m_{2}\right), N_{1}=n_{1}+m_{1}, N_{2}=n_{2}+m_{2}, \\
& N=N_{1}+N_{2} \text { and } \zeta=\left(\zeta_{1}, \ldots, \zeta_{N}\right)=\left(\zeta^{1}, \zeta^{2}, \zeta^{3}, \zeta^{4}\right)=\left(z_{1}, w_{1}, z_{2}, w_{2}\right) .
\end{aligned}
$$

The proof of Theorem 2 will be divided into several steps as follows:
Step 1. $\operatorname{Aut}^{\circ}\left(D_{1} \times D_{2}\right)$ can be canonically identified with the product Lie group $\operatorname{Aut}\left(D_{1}\right) \times$ $\operatorname{Aut}\left(D_{2}\right)$: Since $\operatorname{Aut}\left(D_{j}\right)$ is a connected Lie group for $j=1,2$, it is obvious that $\operatorname{Aut}\left(D_{1}\right) \times$ $\operatorname{Aut}\left(D_{2}\right) \subset \operatorname{Aut}^{\circ}\left(D_{1} \times D_{2}\right)$. Therefore, to prove Step 1, it suffices to show the opposite inclusion. For this, recall that

$$
d_{D_{1} \times D_{2}}\left(\left(p_{1}, p_{2}\right),\left(q_{1}, q_{2}\right)\right)=\max \left\{d_{D_{j}}\left(p_{j}, q_{j}\right) ; j=1,2\right\}
$$

for $p_{j}, q_{j} \in D_{j}, j=1,2$, and $\Delta_{D_{j}}$ is just the degeneracy set for $d_{D_{j}}$ for $j=1,2$. Then it is easily checked that

$$
\Delta_{D_{1} \times D_{2}}=\left(D_{1} \times \Delta_{D_{2}}\right) \cup\left(\Delta_{D_{1}} \times D_{2}\right) \quad \text { and } \quad\left(D_{1} \times D_{2}\right)^{*}=D_{1}^{*} \times D_{2}^{*}
$$

Since $d_{D_{1} \times D_{2}}$ is invariant under the action of $\operatorname{Aut}\left(D_{1} \times D_{2}\right)$, we therefore have

$$
\varphi\left(\Delta_{D_{1} \times D_{2}}\right)=\Delta_{D_{1} \times D_{2}}, \varphi\left(D_{1}^{*} \times D_{2}^{*}\right)=D_{1}^{*} \times D_{2}^{*} \quad \text { for all } \varphi \in \operatorname{Aut}\left(D_{1} \times D_{2}\right)
$$

Thus, the natural restriction mapping $\Phi: \operatorname{Aut}\left(D_{1} \times D_{2}\right) \rightarrow \operatorname{Aut}\left(D_{1}^{*} \times D_{2}^{*}\right)$ gives an injective continuous homomorphism from $\operatorname{Aut}\left(D_{1} \times D_{2}\right)$ into $\operatorname{Aut}\left(D_{1}^{*} \times D_{2}^{*}\right)$. In particular, we have $\Phi\left(\operatorname{Aut}^{o}\left(D_{1} \times D_{2}\right)\right) \subset \operatorname{Aut}^{o}\left(D_{1}^{*} \times D_{2}^{*}\right)$.

Choose an element f in $\operatorname{Aut}^{\circ}\left(D_{1} \times D_{2}\right)$ arbitrarily and set

$$
f^{*}=\Phi(f) \in \operatorname{Aut}^{o}\left(D_{1}^{*} \times D_{2}^{*}\right)
$$

Since D_{1}^{*} and D_{2}^{*} are hyperbolic, we have $\operatorname{Aut}^{o}\left(D_{1}^{*} \times D_{2}^{*}\right)=\operatorname{Aut}^{o}\left(D_{1}^{*}\right) \times \operatorname{Aut}^{o}\left(D_{2}^{*}\right)$ by the fact (\ddagger) in the Introduction. Accordingly, one can find automorphisms φ_{1}, φ_{2} of D_{1}^{*}, D_{2}^{*}, respectively, such that $f^{*}=\varphi_{1} \times \varphi_{2}$. This implies that, if we write

$$
f(\zeta)=\left(f_{1}(\zeta), f_{2}(\zeta)\right) \quad \text { for } \zeta=\left(z_{1}, w_{1}, z_{2}, w_{2}\right) \in D_{1} \times D_{2}
$$

where f_{j} is a mapping from $D_{1} \times D_{2}$ into D_{j} for $j=1,2$, and set

$$
f_{j}^{*}=\left.f_{j}\right|_{D_{1}^{*} \times D_{2}^{*}} \quad \text { for } j=1,2
$$

then $f_{j}^{*}=\varphi_{j}$ for $j=1,2$; and hence, f_{1}^{*} (resp. f_{2}^{*}) depends only on $\left(z_{1}, w_{1}\right) \in D_{1}^{*}$ (resp. on $\left.\left(z_{2}, w_{2}\right) \in D_{2}^{*}\right)$. Thus, f_{1}, f_{2} must be of the form

$$
\begin{equation*}
f_{1}(\zeta)=f_{1}\left(z_{1}, w_{1}\right), f_{2}(\zeta)=f_{2}\left(z_{2}, w_{2}\right) \quad \text { on } D_{1} \times D_{2} \tag{4.1}
\end{equation*}
$$

by analytic continuation. Exactly the same conclusion as in (4.1) remains valid for the inverse mapping f^{-1} of f. Hence, we conclude that $f_{j} \in \operatorname{Aut}\left(D_{j}\right)$ for $j=1,2$ and $f=$ $f_{1} \times f_{2} \in \operatorname{Aut}\left(D_{1}\right) \times \operatorname{Aut}\left(D_{2}\right)$; proving the opposite inclusion. Therefore we have shown the assertion in Step 1.

Step 2. Every element f in $\operatorname{Aut}\left(D_{1} \times D_{2}\right)$ can be written in the form $f=L \circ g$, where $g \in \operatorname{Aut}^{\circ}\left(D_{1} \times D_{2}\right)$ and L is a linear automorphism of $D_{1} \times D_{2}$, that is, it is the restriction to $D_{1} \times D_{2}$ of some non-singular linear transformation of \mathbb{C}^{N} : First of all, notice that the automorphism group $\operatorname{Aut}\left(D_{1} \times D_{2}\right)$ has the structure of a Lie group with respect to the compact-open topology, because its identity component $\operatorname{Aut}^{o}\left(D_{1} \times D_{2}\right)$ is a Lie group by Step 1. Now, let $T\left(D_{1} \times D_{2}\right) \cong T^{N}$ be the subgroup of $\operatorname{Aut}\left(D_{1} \times D_{2}\right)$ introduced in Section 2 for the Reinhardt domain $D_{1} \times D_{2}$ in \mathbb{C}^{N}. Then, for the given element $f \in \operatorname{Aut}\left(D_{1} \times D_{2}\right)$, $f^{-1} T\left(D_{1} \times D_{2}\right) f$ as well as $T\left(D_{1} \times D_{2}\right)$ is a maximal torus in $\operatorname{Aut}^{\circ}\left(D_{1} \times D_{2}\right)$ (cf. [13; Section 4]). Hence, by the well-known conjugacy theorem for maximal tori in a connected Lie group, there exists an element g in $\operatorname{Aut}^{\circ}\left(D_{1} \times D_{2}\right)$ such that

$$
g f^{-1} T\left(D_{1} \times D_{2}\right){f g^{-1}}^{-1}=T\left(D_{1} \times D_{2}\right)
$$

Consequently, by Fact B in Section 2, $L:=f \circ g^{-1}$ is an algebraic automorphism of $D_{1} \times D_{2}$ and $f=L \circ g$. Moreover, since $D_{1} \times D_{2}$ containes the origin 0 of \mathbb{C}^{N}, L has to be of the form

$$
\begin{equation*}
L(\zeta)=\left(\alpha_{1} \zeta_{\sigma(1)}, \ldots, \alpha_{N} \zeta_{\sigma(N)}\right) \quad \text { for } \zeta=\left(\zeta_{i}\right) \in D_{1} \times D_{2} \tag{4.2}
\end{equation*}
$$

by (2.2), where $\left(\alpha_{i}\right) \in\left(\mathbb{C}^{*}\right)^{N}$ and σ is a permutation of $\{1, \ldots, N\}$; proving the assertion in

Step 2.

Step 3. Analysis of L : In order to prove Theorem 2, we would like to investigate the linear automorphism L of $D_{1} \times D_{2}$ in Step 2 more closely. To this end, represent L as

$$
L(\zeta)=\left(L^{1}(\zeta), L^{2}(\zeta), L^{3}(\zeta), L^{4}(\zeta)\right) \quad \text { for } \zeta \in D_{1} \times D_{2}
$$

with respect to the coordinate system $\zeta=\left(\zeta^{1}, \zeta^{2}, \zeta^{3}, \zeta^{4}\right)$ in \mathbb{C}^{N}. Note that the coordinate subspace $\mathbb{C}^{n_{1}} \times\{0\} \times \mathbb{C}^{n_{2}} \times\{0\}$ is contained in $D_{1} \times D_{2}$; while $D_{1} \times D_{2}$ is bounded in the $\left(w_{1}, w_{2}\right)$-direction. Hence

$$
L^{j}\left(z_{1}, 0, z_{2}, 0\right)=0 \quad \text { for all }\left(z_{1}, z_{2}\right) \in \mathbb{C}^{n_{1}} \times \mathbb{C}^{n_{2}}, j=2,4 ;
$$

which implies that L can be expressed as

$$
L(\zeta)=\left(\begin{array}{cccc}
M_{11} & M_{12} & M_{13} & M_{14} \tag{4.3}\\
0 & M_{22} & 0 & M_{24} \\
M_{31} & M_{32} & M_{33} & M_{34} \\
0 & M_{42} & 0 & M_{44}
\end{array}\right)\left(\begin{array}{l}
z_{1} \\
w_{1} \\
z_{2} \\
w_{2}
\end{array}\right) \quad \text { on } \mathbb{C}^{N},
$$

where $M_{i j}$ is a certain $k_{i} \times k_{j}$ matrix for $1 \leq i, j \leq 4$. Moreover, by (4.2) the $N \times N$ matrix $M:=\left(M_{i j}\right)_{1 \leq i, j \leq 4}$ has the following property (like as a permutation matrix):
(\star) Every row and every column of M contain exactly one nonzero entry.
Take now an arbitrary point $\zeta\left(w_{1}^{o}\right)=\left(0, w_{1}^{o}, 0,0\right) \in D_{1} \times D_{2}$ with $w_{1}^{o} \neq 0$. Then, by (4.3), we have

$$
L\left(\zeta\left(w_{1}^{o}\right)\right)=\left(M_{12} w_{1}^{o}, M_{22} w_{1}^{o}, M_{32} w_{1}^{o}, M_{42} w_{1}^{o}\right)
$$

Assume that $M_{22} w_{1}^{o} \neq 0$ and $M_{42} w_{1}^{o} \neq 0$. It then follows from Step 1 and (2.1) that

$$
\begin{array}{rl}
\operatorname{dim}_{\mathbb{R}} & \operatorname{Aut}^{o}\left(D_{1} \times D_{2}\right) \cdot L\left(\zeta\left(w_{1}^{o}\right)\right) \\
& =\operatorname{dim}_{\mathbb{R}}\left[\operatorname{Aut}\left(D_{1}\right) \cdot\left(M_{12} w_{1}^{o}, M_{22} w_{1}^{o}\right) \times \operatorname{Aut}\left(D_{2}\right) \cdot\left(M_{32} w_{1}^{o}, M_{42} w_{1}^{o}\right)\right] \\
& =\left(2 N_{1}-1\right)+\left(2 N_{2}-1\right)=2(N-1) ; \text { and } \\
\operatorname{dim}_{\mathbb{R}} & L\left(\operatorname{Aut}^{o}\left(D_{1} \times D_{2}\right) \cdot \zeta\left(w_{1}^{o}\right)\right) \\
& =\operatorname{dim}_{\mathbb{R}} \operatorname{Aut}^{o}\left(D_{1} \times D_{2}\right) \cdot \zeta\left(w_{1}^{o}\right)=2\left(N_{1}+n_{2}\right)-1,
\end{array}
$$

since $L \in \operatorname{Aut}\left(D_{1} \times D_{2}\right)$. Consequently, we arrive at a contradiction:

$$
2(N-1)=2\left(N_{1}+n_{2}\right)-1 \quad \text { or } 2 m_{2}=1,
$$

since $L^{-1} \operatorname{Aut}^{o}\left(D_{1} \times D_{2}\right) L=\operatorname{Aut}^{o}\left(D_{1} \times D_{2}\right)$. Thus $\left\|M_{22} w_{1}^{o}\right\|\left\|M_{42} w_{1}^{o}\right\|=0$ for all $w_{1}^{o} \in \mathbb{C}^{m_{1}}$ with $0<\left\|w_{1}^{o}\right\|<1$; and hence, $M_{22}=0$ or $M_{42}=0$. Replacing $\zeta\left(w_{1}^{o}\right)$ by a point $\zeta\left(w_{2}^{o}\right)=$ $\left(0,0,0, w_{2}^{o}\right) \in D_{1} \times D_{2}$ with $w_{2}^{o} \neq 0$ and repeating the same argument as above, we obtain that $M_{24}=0$ or $M_{44}=0$. Therefore, since M is non-singular, we now have two possibilities as follows:

$$
\text { Case (a): } M_{22}=0, M_{44}=0 ; \quad \text { Case (b): } M_{24}=0, M_{42}=0 .
$$

In Case (a), we wish to prove that $\left(k_{1}, k_{2}\right)=\left(k_{3}, k_{4}\right)$ and M has the form

$$
M=\left(\begin{array}{cccc}
0 & 0 & \sqrt{\mu_{2} / \mu_{1}} \widetilde{M}_{13} & 0 \\
0 & 0 & 0 & M_{24} \\
\sqrt{\mu_{1} / \mu_{2}} \widetilde{M}_{31} & 0 & 0 & 0 \\
0 & M_{42} & 0 & 0
\end{array}\right),
$$

where $\widetilde{M}_{13}, \widetilde{M}_{31} \in U\left(k_{1}\right)$ and $M_{24}, M_{42} \in U\left(k_{2}\right)$. For this, recall that M is a non-singular $N \times N$ matrix having the property (\star). Then, in Case (a) one can check that $k_{2}=k_{4}$ and

$$
\operatorname{det} M_{24} \neq 0, \operatorname{det} M_{42} \neq 0 \quad \text { and } \quad M_{14}=0, M_{34}=0, M_{12}=0, M_{32}=0
$$

Therefore, L has the form

$$
L\left(z_{1}, w_{1}, z_{2}, w_{2}\right)=\left(M_{11} z_{1}+M_{13} z_{2}, M_{24} w_{2}, M_{31} z_{1}+M_{33} z_{2}, M_{42} w_{1}\right)
$$

for $\left(z_{1}, w_{1}, z_{2}, w_{2}\right) \in \mathbb{C}^{N}$.
Notice that $\partial D_{1} \times \partial D_{2}$ is the subset of $\partial\left(D_{1} \times D_{2}\right)$ consisting of all non-smooth boundary points of $D_{1} \times D_{2}$. Then the linear automorphism L of $D_{1} \times D_{2}$ maps $\partial D_{1} \times \partial D_{2}$ onto itself. Thus

$$
\begin{equation*}
\left\|M_{24} w_{2}\right\|^{2}=e^{-\mu_{1}\left\|M_{1 \mid} z_{1}+M_{132} z_{2}\right\|^{2}},\left\|M_{42} w_{1}\right\|^{2}=e^{-\mu_{2} \mid M_{31} z_{1}+M_{33} z_{2} \|^{2}} \tag{4.4}
\end{equation*}
$$

whenever $\left\|w_{1}\right\|^{2}=e^{-\mu_{1}\left\|z_{1}\right\|^{2}},\left\|w_{2}\right\|^{2}=e^{-\mu_{2}\left\|z_{2}\right\|^{2}}$. Taking the points $\left(0, w_{1}, 0, w_{2}\right)$ with $\left\|w_{1}\right\|=$ $\left\|w_{2}\right\|=1$, we therefore have

$$
\left\|M_{24} w_{2}\right\|=1,\left\|M_{42} w_{1}\right\|=1 ; \text { and hence, } M_{24}, M_{42} \in U\left(m_{1}\right) .
$$

Together with (4.4), this implies that

$$
\begin{equation*}
\mu_{2}\left\|z_{2}\right\|^{2}=\mu_{1}\left\|M_{11} z_{1}+M_{13} z_{2}\right\|^{2}, \quad \mu_{1}\left\|z_{1}\right\|^{2}=\mu_{2}\left\|M_{31} z_{1}+M_{33} z_{2}\right\|^{2} \tag{4.5}
\end{equation*}
$$

for any boundary point $\left(z_{1}, w_{1}, z_{2}, w_{2}\right) \in \partial D_{1} \times \partial D_{2}$. Notice that these equations hold for arbitrary elements $\left(z_{1}, z_{2}\right) \in \mathbb{C}^{n_{1}} \times \mathbb{C}^{n_{2}}$ because one can always find elements $\left(w_{1}, w_{2}\right) \in$ $\mathbb{C}^{m_{1}} \times \mathbb{C}^{m_{2}}$ in such a way that $\left(z_{1}, w_{1}\right) \in \partial D_{1}$ and $\left(z_{2}, w_{2}\right) \in \partial D_{2}$. Thus, considering the special case where

$$
\left(z_{1}, z_{2}\right)=\left(z_{1}, 0\right) \in \mathbb{C}^{n_{1}} \times \mathbb{C}^{n_{2}}\left(\text { resp. }\left(z_{1}, z_{2}\right)=\left(0, z_{2}\right) \in \mathbb{C}^{n_{1}} \times \mathbb{C}^{n_{2}}\right)
$$

in (4.5), we obtain that $M_{11}=0$ (resp. $M_{33}=0$). In particular, since M is a non-singular $N \times N$ matrix and since $k_{2}=k_{4}$ as shown above, it follows that $k_{1}=k_{3}$. Moreover, we now have by (4.5) that

$$
\mu_{2}\left\|z_{2}\right\|^{2}=\mu_{1}\left\|M_{13} z_{2}\right\|^{2}, \mu_{1}\left\|z_{1}\right\|^{2}=\mu_{2}\left\|M_{31} z_{1}\right\|^{2} \quad \text { for all }\left(z_{1}, z_{2}\right) \in \mathbb{C}_{1}^{n_{1}} \times \mathbb{C}^{n_{2}} .
$$

Therefore, $\sqrt{\mu_{1} / \mu_{2}} M_{13}$ and $\sqrt{\mu_{2} / \mu_{1}} M_{31}$ are unitary matrices, as desired.
In Case (b), we assert that M has the form

$$
M=\left(\begin{array}{cccc}
M_{11} & 0 & 0 & 0 \\
0 & M_{22} & 0 & 0 \\
0 & 0 & M_{33} & 0 \\
0 & 0 & 0 & M_{44}
\end{array}\right),
$$

where $M_{i i}(1 \leq i \leq 4)$ are all unitary matrices. Indeed, in Case (b) we have det $M_{22} \neq 0$ and $\operatorname{det} M_{44} \neq 0$, since M is non-singular. Then $M_{12}=0, M_{32}=0$ and $M_{14}=0, M_{34}=0$ by
(\star). Hence, L has the form

$$
L\left(z_{1}, w_{1}, z_{2}, w_{2}\right)=\left(M_{11} z_{1}+M_{13} z_{2}, M_{22} w_{1}, M_{31} z_{1}+M_{33} z_{2}, M_{44} w_{2}\right)
$$

for $\left(z_{1}, w_{1}, z_{2}, w_{2}\right) \in \mathbb{C}^{N}$. So, by the same reasoning as in Case (a), we have

$$
\left\|M_{22} w_{1}\right\|^{2}=e^{-\mu_{1}\left\|M_{1 z} z_{1}+M_{13 z 2}\right\|^{2}},\left\|M_{44} w_{2}\right\|^{2}=e^{-\mu_{2}\left\|M_{31} z_{1}+M_{33} z\right\|^{2}}
$$

whenever $\left\|w_{1}\right\|^{2}=e^{-\mu_{1}\|z\|_{1} \|^{2}},\left\|w_{2}\right\|^{2}=e^{-\mu_{2}\left\|z_{2}\right\|^{2}}$. Therefore, M_{22} and M_{44} are unitary matrices; and hence,

$$
\left\|z_{1}\right\|^{2}=\left\|M_{11} z_{1}+M_{13} z_{2}\right\|^{2}, \quad\left\|z_{2}\right\|^{2}=\left\|M_{31} z_{1}+M_{33} z_{2}\right\|^{2}
$$

for all $\left(z_{1}, z_{2}\right) \in \mathbb{C}^{n_{1}} \times \mathbb{C}^{n_{2}}$ as in Case (a). Accordingly, we conclude that

$$
M_{13}=0, M_{11} \in U\left(n_{1}\right) \quad \text { and } \quad M_{31}=0, M_{33} \in U\left(n_{2}\right) ;
$$

as asserted.
STEP 4. Completion of the proof: Using the result obtained above, we shall complete the proof of Theorem 2. For this purpose, choose an element f of $\operatorname{Aut}\left(D_{1} \times D_{2}\right)$ arbitrarily. Then, by Step 2, f can be written in the form

$$
f=L \circ g \quad \text { with some element } g \in \operatorname{Aut}^{\circ}\left(D_{1} \times D_{2}\right)
$$

Consider the case where $\left(n_{1}, m_{1}\right)=\left(n_{2}, m_{2}\right)$. We then have two Cases (a) and (b) as in Step 3. In Case (a), let us define the linear transformation T of \mathbb{C}^{N} by setting

$$
T\left(z_{1}, w_{1}, z_{2}, w_{2}\right)=\left(\widetilde{M}_{31} z_{1}, M_{42} w_{1}, \widetilde{M}_{13} z_{2}, M_{24} w_{2}\right) \quad \text { on } \mathbb{C}^{N}
$$

where $\widetilde{M}_{31}, M_{42}, \widetilde{M}_{13}$ and M_{24} are the unitary matrices appearing in Case (a) of Step 3. Then T can be regarded as an element of $\operatorname{Aut}\left(D_{1}\right) \times \operatorname{Aut}\left(D_{2}\right)$ by Fact A and the linear automorphism L of $D_{1} \times D_{2}$ can be expressed as $L=I \circ T$, where I is the involutive automorphism of $D_{1} \times D_{2}$ defined in the statement of Theorem 2. Therefore we have

$$
f=I \circ(T \circ g) \quad \text { with } T \circ g \in \operatorname{Aut}\left(D_{1}\right) \times \operatorname{Aut}\left(D_{2}\right)
$$

by Step 1 .
In Case (b), the linear automorphism L of $D_{1} \times D_{2}$ has the form

$$
L\left(z_{1}, w_{1}, z_{2}, w_{2}\right)=\left(M_{11} z_{1}, M_{22} w_{1}, M_{13} z_{2}, M_{24} w_{2}\right) \quad \text { on } D_{1} \times D_{2} .
$$

Thus, $L \in \operatorname{Aut}\left(D_{1}\right) \times \operatorname{Aut}\left(D_{2}\right)$ and $f=L \circ g \in \operatorname{Aut}\left(D_{1}\right) \times \operatorname{Aut}\left(D_{2}\right)$ by Step 1 .
As a result, we have shown that

$$
\operatorname{Aut}\left(D_{1} \times D_{2}\right) \subset\left(\operatorname{Aut}\left(D_{1}\right) \times \operatorname{Aut}\left(D_{2}\right)\right) \cup\left\{I \circ f ; f \in \operatorname{Aut}\left(D_{1}\right) \times \operatorname{Aut}\left(D_{2}\right)\right\}
$$

in any case. The opposite inclusion is now obvious; thereby we have completed the proof of the assertion (I) of Theorem 2.

Finally, consider the case where $\left(n_{1}, m_{1}\right) \neq\left(n_{2}, m_{2}\right)$. Then, only the Case (b) occurs in Step 3. Hence

$$
\operatorname{Aut}\left(D_{1} \times D_{2}\right)=\operatorname{Aut}\left(D_{1}\right) \times \operatorname{Aut}\left(D_{2}\right) ;
$$

proving the assertion (II) of Theorem 2.
Therefore the proof of Theorem 2 is now completed.

References

[1] H. Alexander: Holomorphic mappings from the ball and polydisc, Math. Ann. 209 (1974), 249-256.
[2] S. Bell: Analytic hypoellipticity of the $\bar{\partial}$-Neumann problem and extendability of holomorphic mappings, Acta Math. 147 (1981), 109-116.
[3] H. Cartan: Sur les fonctions de plusieurs variables complexes: L'itération des transformations intérieures d'un domaine borné, Math. Z. 35 (1932), 760-773.
[4] H. Cartan: Sur les fonctions de n variables complexes: les transformations du produit topologique de deux domaines bornés, Bull. Soc. Math. France 64 (1936), 37-48.
[5] R.C. Gunning and H. Rossi: Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N.J., 1965.
[6] H. Kim, V.T. Ninh and A. Yamamori: The automorphism group of a certain unbounded non-hyperbolic domain, J. Math. Anal. Appl. 409 (2014), 637-642.
[7] S. Kobayashi: Hyperbolic Complex Spaces, Springer-Verlag, Berlin Heidelberg New York, 1998.
[8] A. Kodama: On generalized Siegel domains, Osaka J. Math. 14 (1977), 227-252.
[9] A. Kodama: A localization principle for biholomorphic mappings between the Fock-Bargmann-Hartogs domains, Hiroshima Math. J. 48 (2018), 171-187.
[10] S. Murakami: On Automorphisms of Siegel Domains, Lecture Notes in Math., Vol. 286, Springer-Verlag, Berlin Heidelberg New York, 1972.
[11] K. Peters: Starrheitsistze für Produkte normierter Vektorräume endlicher Dimension und für Produkte hyperbolischer komplexer Räume, Math. Ann. 208 (1974), 343-354.
[12] S.I. Pinchuk: On the analytic continuation of holomorphic mappings, Math. USSR Sb. 27 (1975), 375-392.
[13] S. Shimizu: Automorphisms and equivalence of bounded Reinhardt domains not containing the origin, Tohoku Math. J. 40 (1988), 119-152.
[14] N. Sibony: A class of hyperbolic manifolds, Ann. Math. Stud. 100 (1981), 357-372.
[15] Z. Tu and L. Wang: Rigidity of proper holomorphic mappings between certain unbounded non-hyperbolic domains, J. Math. Anal. Appl. 419 (2014), 703-714.
[16] A. Yamamori: The Bergman kernel of the Fock-Bargmann-Hartogs domain and the polylogarithm function, Complex Var. Elliptic Equ. 58 (2013), 783-793.

Akio Kodama
Faculty of Mathematics and Physics Institute of Science and Engineering Kanazawa University Kanazawa, 920-1192 Japan
e-mail: kodama@staff.kanazawa-u.ac.jp
Satoru Shimizu
Mathematical Institute
Tohoku University
Sendai, 980-8578
Japan
e-mail: shimizu@math.tohoku.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 32A07; Secondary 32M05.

 * The second author is supported by Grant-in-aid for Science Research (C) 15K04913, Japan Society for the Promotion of Science.

