TOROIDAL SURGERIES AND THE GENUS OF A KNOT

Mario EUDAVE-MUÑOZ and Araceli GUZMÁN-TRISTÁN

(Received September 25, 2017, revised March 1, 2018)

Abstract

In this paper we give an upper bound for the slopes yielding an incompressible torus by surgery on a hyperbolic knot in the 3 -sphere in terms of its genus.

1. Introduction

One way to get closed 3-manifolds from a knot in S^{3} is the so-called Dehn surgery, which consists of removing a regular neighborhood $\mathcal{N}(K)$ of the knot K and fill it with a solid torus glued differently.

The different ways of doing surgery on a knot K are parametrized by slopes, that is, isotopy classes of essential closed simple curves in $\partial \mathcal{N}(K)$, which can be identified with $\mathbb{Q} \cup\{1 / 0\}([25])$. Given a slope r on $\partial \mathcal{N}(K)$, we use $K(r)$ to denote the result of r-Dehn surgery on K, that is, the 3-manifold obtained by gluing a solid torus J to the exterior of K, $E(K)=S^{3}-\operatorname{int} \mathcal{N}(K)$, in such a way that a meridian of J is identified with a curve of slope r.

It is known that any closed and orientable 3-manifold can be obtained by means of Dehn surgery in a link in S^{3} ([33]) and ([18]).

By Thurston [32], a knot K in S^{3} is either hyperbolic (i.e. its complement admits a complete Riemannian metric of constant sectional curvature -1), satellite (i.e. its exterior contains an incompressible and not ∂-parallel 2-torus), or it is a torus knot (i.e. its exterior is Seifert fibered). By Thurston [32], if K is hyperbolic then $K(r)$ will be hyperbolic for all but finitely many slopes r. The slopes that produce non-hyperbolic manifolds, whereas K is hyperbolic, are called exceptional slopes. According to Perelman [22, 23, 24] and Thurston [32], if a closed orientable 3-manifold is non-hyperbolic then it is either reducible (i.e. it contains an essential 2-sphere), toroidal (i.e. it contains an incompressible 2-torus), or it is Seifert fibered.

Many works in low dimensional topology are focused on exceptional slopes; see [6, 7, 8, 9]. In particular, if K is a hyperbolic knot, then $K(r)$ contains an incompressible torus for only finitely many slopes r ([10] or [32]). Such slopes r and the corresponding surgeries are said to be toroidal. Gordon and Luecke [11] proved that any toroidal slope $r=p / q$ is either
integral or half-integral, that is, either $|q|=1$ or 2 . On the other hand, Eudave-Muñoz [2] constructed an infinite family of hyperbolic knots $K(l, m, n, p)$ having half-integral toroidal surgeries. Surprisingly, Gordon and Luecke proved that if K admits a half-integral toroidal surgery, then K is one of Eudave-Muñoz knots $K(l, m, n, p)$ [12].

Teragaito obtained several results concerning integral toroidal surgeries. He showed that every integer is a toroidal surgery slope for some hyperbolic knot [26]. He also showed that any two integral toroidal slopes r and s for a hyperbolic knot satisfy $|r-s| \leq 4$ unless K is the figure eight knot [28]. Furthermore, Gordon and Wu have determined all hyperbolic knots which have integral toroidal slopes r, s, with $|r-s|=4$.

The hitting number of a toroidal surgery $K(r)$, denoted by t, is the minimal intersection number between a core of the attached solid torus and all incompressible tori in $K(r)$. For half-integral surgery, it is known that always $t=2$. For integral surgery many examples have been constructed such that $t=4$; see [3], [5], [29], [30]. It is also known that there are infinitely many knots with $t \geq 6$; indeed in [21], Osoinach gave an infinite family of hyperbolic knots, with a toroidal surgery, for which there is no upper bound for the hitting number t. A precise determination of the hitting number t for these examples is given in [31]

Let $g(K)$ denote the genus of the knot K. In 2003 Teragaito proposed the following conjecture in [27].

Conjecture 1. If a hyperbolic knot K in S^{3} has a toroidal slope r, then $|r| \leq 4 g(K)$.
It follows from the work of Ichihara [15] that $|r| \leq 3 \cdot 2^{7 / 4} g(K)$. Teragaito proved that his conjecture is true for genus one knots and alternating knots. On the other hand, S. Lee [17] proved that this conjecture is also true for genus two knots. For the case when K is hyperbolic and $K(r)$ contains a Klein bottle, which in many cases is toroidal, Ichihara and Teragaito [16] proved that $|r| \leq 4 g(K)$.

The goal of this paper is to give upper bounds for toroidal slopes close to the conjectured by Teragaito, we prove the following

Theorem 1. If a hyperbolic knot K in S^{3} has a toroidal slope r, then $|r| \leq 4 g(K)-\frac{3}{2}$ if r is half-integral, $|r| \leq 4 g(K)$ if r is integral and $t \geq 6,|r| \leq 6 g(K)-3$ if r is integral and $t=4$ and $|r| \leq 4 g(K)+8$ if r is integral and $t=2$.

Examples. The pretzel knot $K(-2,3,7)$ has genus five and its set of toroidal slopes is $\{16,37 / 2,20\}$. For $r=37 / 2$, we may note that the upper bound is reached in this case.

If K is the figure eight knot, its genus is one and its set of toroidal-slopes is $\{-4,0,4\}$. But -4 and 4 are also the slopes yielding Klein bottles, and the complement of K contains a once-punctured Klein bottle.

To prove Theorem 1 we proceed as follows. By [11] we know that the toroidal slope r is integral or half-integral. In section 2 we prove the Theorem when the slope is half-integral; in this case we know all the knots with a toroidal surgery, and furthermore the genus and toroidal slopes of such knots can be calculated, so this gives a way to verify the given bound. In section 3 we develop the case when the toroidal slope is integral, this is done by means of graphs of intersection.

2. Half-integral slope.

Let K be a hyperbolic knot with a half-integral toroidal slope r. By [12], K is an EudaveMuñoz knot $K(l, m, n, p)$, a family of knots parametrized by four integers l, m, n, p (where at least one of p and n is zero). Excluding the cases when $l=0, \pm 1, m=0,(l, m)=$ $\{(2,1),(-2,-1)\},(m, n)=\{(1,0),(-1,1)\}$ and $(l, m, p)=(2,2,1)$, the knots result to be hyperbolic with only one half-integral toroidal slope. By [4], this slope is given by

$$
r= \begin{cases}l(2 m-1)(1-l m)+n(2 l m-1)^{2}-1 / 2, & \text { for } K(l, m, n, 0) \text { knots } \\ l(2 m-1)(1-l m)+p(2 l m-l-1)^{2}-1 / 2, & \text { for } K(l, m, 0, p) \text { knots }\end{cases}
$$

The mirror image of the $\operatorname{knot} K(l, m, n, 0)$ is the knot $K(-l,-m, 1-n, 0)$, and the mirror image of $K(l, m, 0, p)$ is the $\operatorname{knot} K(-l, 1-m, 0,1-p)$ [4]. So, in what follows there is no loss of generality in assuming that $l>0$.

In Figures 12, 13 of [4], an explicit presentation of the knots $K(l, m, n, p)$ as closed braids is given. However, Yi Ni observed that there is a discrepancy in the parameters in Figure 13 of [4]. Correct presentations of the knots are given in Figure 2 of [20]. In Fig. 1 we give a presentation of the knots in the case $l>0, n \leq 0, p \leq 0$ (which is Figure 2 of [20]), and in Fig. 2 we give a presentation of the knots in the case $l>0, n>0, p>0$.

$$
p=0, m>0, n \leq 0 \quad p=0, m<0, n \leq 0 \quad n=0, m>0, p \leq 0 \quad n=0, m<0, p \leq 0
$$

Fig. 1
It follows from this presentation that $K(l, m, n, p)$ is the closure of a positive or negative braid, hence it is fibered, and the genus can be computed by the formula $(C-N+1) / 2$, where C is the crossing number in the positive or negative braid and N is the index [4].

The value of N is given by

$$
N= \begin{cases}2 l m-1, & \text { if } l>0, m>0 \text { and } p=0 . \\ -2 l m+1, & \text { if } l>0, m<0 \text { and } p=0 . \\ 2 l m-l-1, & \text { if } l>0, m>0 \text { and } n=0 . \\ -2 l m+l+1, & \text { if } l>0, m<0 \text { and } n=0 .\end{cases}
$$

Fig. 2
The explicit value of C is given in the following table (" $>$ " means >0, and the analogous for $<, \leq, \geq$).

l	m	n	p	Crossing number C
$>$	$>$	\leq	0	$2 l^{2} m^{2}-l^{2} m-3 l m+2 l-n(2 l m-1)(2 l m-2)$
$>$	$>$	$>$	0	$2 l^{2} m^{2}+l^{2} m-3 l m-2 l+2+(n-1)(2 l m-1)(2 l m-2)$
$>$	$<$	\leq	0	$2 l^{2} m^{2}-l^{2} m-l m-n(2 l m)(2 l m-1)$
$>$	$<$	$>$	0	$2 l^{2} m^{2}+l^{2} m-l m+(n-1)(2 l m)(2 l m-1)$
$>$	$>$	0	\leq	$2 l^{2} m^{2}-l^{2} m-3 l m+l-p(2 l m-l-1)(2 l m-l-2)$
$>$	$>$	0	$>$	$2 l^{2} m^{2}-3 l^{2} m-3 l m+l^{2}+2 l+2+(p-1)(2 l m-l-1)(2 l m-l-2)$
$>$	$<$	0	\leq	$2 l^{2} m^{2}-l^{2} m-l m+l-p(2 l m-l-1)(2 l m-l)$
$>$	$<$	0	$>$	$2 l^{2} m^{2}-3 l^{2} m-l m+l^{2}+(p-1)(2 l m-l-1)(2 l m-l)$

Computing the genus g of $K(l, m, n, p)$ by the formula $(C-N+1) / 2$ we have,

l	m	n	p	Genus g
$>$	$>$	\leq	0	$1 / 2\left[2 l^{2} m^{2}-l^{2} m-5 l m+2 l+2-n(2 l m-1)(2 l m-2)\right]$
$>$	$>$	$>$	0	$1 / 2\left[2 l^{2} m^{2}+l^{2} m-5 l m-2 l+4+(n-1)(2 l m-1)(2 l m-2)\right]$
$>$	$<$	\leq	0	$1 / 2\left[2 l^{2} m^{2}-l^{2} m+l m-n(2 l m)(2 l m-1)\right]$
$>$	$<$	$>$	0	$1 / 2\left[2 l^{2} m^{2}+l^{2} m+l m+(n-1)(2 l m)(2 l m-1)\right]$
$>$	$>$	0	\leq	$1 / 2\left[2 l^{2} m^{2}-l^{2} m-5 l m+2 l+2-p(2 l m-l-1)(2 l m-l-2)\right]$
$>$	$>$	0	$>$	$\frac{1}{2}\left[2 l^{2} m^{2}-3 l^{2} m-5 l m+l^{2}+3 l+4+(p-1)(2 l m-l-1)(2 l m-l-2)\right]$
$>$	$<$	0	\leq	$1 / 2\left[2 l^{2} m^{2}-l^{2} m+l m-p(2 l m-l-1)(2 l m-l)\right]$
$>$	$<$	0	$>$	$1 / 2\left[2 l^{2} m^{2}-3 l^{2} m+l m+l^{2}-l+(p-1)(2 l m-l-1)(2 l m-l)\right]$

We will see that $4 g-|r| \geq 3 / 2$ for each case.

Case 1. $l, m>0, n \leq 0$ and $p=0$.

Note that if $l, m>0$ and $n \leq 0$ then $|r|=-r$.

Therefore $4 g-|r|=l m(l(2 m-1)-8)+3 l+n\left(-4 l^{2} m^{2}+8 l m-3\right)+7 / 2$.

Suposse $n=0$, then $4 g-|r|=\operatorname{lm}(l(2 m-1)-8)+3 l+7 / 2$. Since $(m, n) \neq(1,0)$ and $l \neq \pm 1$, then $l, m \geq 2$. If $l=m=2$, then $4 g-|r|=\operatorname{lm}(l(2 m-1)-8)+3 l+7 / 2=2 l(3 l-8)+3 l+7 / 2=$ $3 / 2$. When $l \geq 3$ and $m \geq 2,4 g-|r|=\operatorname{lm}(l(2 m-1)-8)+3 l+7 / 2 \geq l m+3 l+7 / 2 \geq 37 / 2$. When $m \geq 3$ and $l \geq 2,4 g-|r|=l m(l(2 m-1)-8)+3 l+7 / 2 \geq 2 l m+3 l+7 / 2 \geq 43 / 2$.

Now we can assume that $n \leq-1$ and $l \geq 2$. Then $4 g-|r|=\operatorname{lm}(l(2 m-1)-8)+$ $3 l+n\left(-4 l^{2} m^{2}+8 l m-3\right)+7 / 2 \geq l m(l(2 m-1)-8)+3 l+4 l^{2} m^{2}-8 l m+3+7 / 2=$ $6 l^{2} m^{2}-l^{2} m-16 l m+3 l+13 / 2=\operatorname{lm}(l(6 m-1)-16)+3 l+13 / 2$. If $m=1$, then $l \geq 3$ (since $(l, m) \neq(2,1))$, then $4 g-|r| \geq \operatorname{lm}(l(6 m-1)-16)+3 l+13 / 2 \geq-l+3 l+13 / 2 \geq 25 / 2$. If $m \geq 2$, then $4 g-|r| \geq l m(l(6 m-1)-16)+3 l+13 / 2 \geq 12 l+3 l+13 / 2 \geq 43 / 2$.

In both cases, $4 g-|r| \geq 3 / 2$.
CASE 2. $l, m, n>0$ and $p=0$.
Here $|r|=r$. Also, we have $4 g-|r|=2 l^{2} m^{2}+l^{2} m-8 l m-3 l+15 / 2+(n-1)\left(4 l^{2} m^{2}-8 l m+3\right)$. Note that $l m \geq 3$ since $l \neq \pm 1$ and $(l, m) \neq(2,1)$.

If $n=1$, then $4 g-|r|=2 l^{2} m^{2}+l^{2} m-8 l m-3 l+15 / 2=2(l m-2)^{2}+l(l m-3)-1 / 2 \geq 3 / 2$.
Now suposse that $n \geq 2$ and $l \geq 2$. Then $4 g-|r|=2 l^{2} m^{2}+l^{2} m-8 l m-3 l+15 / 2+(n-$ 1) $\left(4 l^{2} m^{2}-8 l m+3\right) \geq 2 l^{2} m^{2}+l^{2} m-8 l m-3 l+15 / 2+4 l^{2} m^{2}-8 l m+3=6 l^{2} m^{2}+l^{2} m-$ $16 l m-3 l+21 / 2=2 l^{2} m^{2}+4(l m-2)^{2}+l(l m-3)-11 / 2 \geq 18+4-11 / 2=33 / 2$.

In both cases, $4 g-|r| \geq 3 / 2$.

Case 3. $l>0, m<0, n \leq 0$ and $p=0$.
Here $|r|=-r$. Also we have, $4 g-|r|=2 l^{2} m^{2}-l^{2} m+4 l m-l-n\left(4 l^{2} m^{2}-1\right)-1 / 2$. Note that $l m \leq-2$ since $l \geq 2$ and $m \leq-1$.

Suposse $n=0$, then $4 g-|r|=2 l^{2} m^{2}-l^{2} m+4 l m-l-1 / 2=2(l m+1)^{2}+l(-l m-1)-5 / 2 \geq$ $2+2-5 / 2=3 / 2$.

Now we can assume that $n \leq-1$, then $4 g-|r| \geq 2 l^{2} m^{2}-l^{2} m+4 l m-l+4 l^{2} m^{2}-1-1 / 2=$ $6 l^{2} m^{2}-l^{2} m+4 l m-l-3 / 2=4 l^{2} m^{2}+2(l m+1)^{2}+l(-l m-1)-7 / 2 \geq 16+2+2-7 / 2=33 / 2>3 / 2$.

In both cases, $4 g-|r| \geq 3 / 2$.

Case 4. $l>0, m<0, n>0$ and $p=0$.
Since $n \geq 1$, then $r \geq l(l m-1)(2 m+1)+1 / 2 \geq 0$, so $|r|=r$. Therefore $4 g-|r|=$ $2 l^{2} m^{2}+l^{2} m+4 l m+l-1 / 2+(n-1)\left(4 l^{2} m^{2}-1\right)$.

Suposse $n=1$, then $m \leq-2($ since $(m, n) \neq(-1,1))$ and $4 g-|r|=2 l^{2} m^{2}+l^{2} m+4 l m+$ $l-1 / 2 \geq(3 l-4)(2 l)+l-1 / 2 \geq 19 / 2$.

Now, if $n \geq 2$, then $4 g-|r| \geq 2 l^{2} m^{2}+l^{2} m+4 l m+l-1 / 2+4 l^{2} m^{2}-1=\operatorname{lm}(l(6 m+1)+$ 4) $+l-3 / 2 \geq 25 / 2$.

In both cases, $4 g-|r| \geq 3 / 2$.

Case 5. $l>0, m>0, n=0$ and $p \leq 0$.

Here $|r|=-r$, then $4 g-|r|=2 l^{2} m^{2}-l^{2} m-8 l m+3 l+7 / 2-p(2 l m-l-1)(2 l m-l-3)$. Note that $l, m \geq 2$ since $l \neq 1$ and $(m, n) \neq(1,0)$.

Suposse $p=0$, then $4 g-|r|=2 l^{2} m^{2}-l^{2} m-8 l m+3 l+7 / 2$. If $m=2$, then $4 g-|r|=$ $(3 l-2)(2 l-3)-5 / 2 \geq 4-5 / 2=3 / 2$. If $m \geq 3$, then $4 g-|r|=\operatorname{lm}(l(2 m-1)-8)+3 l+7 / 2 \geq$ $12+6+7 / 2=43 / 2$.

Now we can assume that $p \leq-1$. Then $4 g-|r|=2 l^{2} m^{2}-l^{2} m-8 l m+3 l+7 / 2-$ $p(2 l m-l-1)(2 l m-l-3) \geq 2 l^{2} m^{2}-l^{2} m-8 l m+3 l+7 / 2+4 l^{2} m^{2}-2 l^{2} m-6 l m-$ $2 l^{2} m+l^{2}+3 l-2 l m+l+3=\operatorname{lm}(l(6 m-5)-16)+l^{2}+7 l+13 / 2$. If $m=2$, then $4 g-|r| \geq 2 l(7 l-16)+l^{2}+7 l+13 / 2=15 l^{2}-25 l+13 / 2=5 l(3 l-5)+13 / 2 \geq 33 / 2$. If $m \geq 3$, then $4 g-|r| \geq \operatorname{lm}(l(6 m-5)-16)+l^{2}+7 l+13 / 2 \geq 60+4+14+13 / 2>3 / 2$.

In both cases, $4 g-|r| \geq 3 / 2$.
CASE 6. $l>0, m>0, n=0$ and $p>0$.
In this case $|r|=r$, then $4 g-|r|=2 l^{2} m^{2}-3 l^{2} m-8 l m+l^{2}+5 l+15 / 2+(p-1)(2 l m-l-$ $1)(2 l m-l-3)$. Note also that $l, m \geq 2$ since $l \neq 1$ and $(m, n) \neq(1,0)$.

Suposse $p=1$. Since $(l, m, p) \neq(2,2,1)$, then $l \geq 3$ or $m \geq 3$. If $m=2$, then $l \geq 3$ and $4 g-|r|=(3 l-2)(l-3)+3 / 2 \geq 3 / 2$. If $l=2$, then $m \geq 3$ and $4 g-|r|=4 m(2 m-7)+14+15 / 2 \geq$ $2+15 / 2>3 / 2$. Now, if $l \geq 3$ and $m \geq 3$, then $4 g-|r|=\operatorname{lm}(l(2 m-3)-8)+l^{2}+5 l+15 / 2 \geq$ $9+9+15+15 / 2>3 / 2$.

Now if $p \geq 2$, then $4 g-|r| \geq 2 l^{2} m^{2}-3 l^{2} m-8 l m+l^{2}+5 l+15 / 2+(2 l m-l-1)(2 l m-l-3)=$ $6 l^{2} m^{2}-7 l^{2} m-16 l m+2 l^{2}+9 l+21 / 2$. If $m=2$, then $4 g-|r| \geq(3 l-2)(4 l-5)+1 / 2 \geq 12+1 / 2>$ $3 / 2$. If $m \geq 3$, then $4 g-|r| \geq \operatorname{lm}(l(6 m-7)-16)+2 l^{2}+9 l+21 / 2 \geq 36+8+18+21 / 2>3 / 2$.

In both cases, $4 g-|r| \geq 3 / 2$.

Case 7. $l>0, m<0, n=0$ and $p \leq 0$.
Here $|r|=-r$ and $4 g-|r|=2 l^{2} m^{2}-l^{2} m+4 l m-l-1 / 2-p(2 l m-l-1)(2 l m-l+1)$.
Suposse that $p=0$, then $4 g-|r|=2 l^{2} m^{2}-l^{2} m+4 l m-l-1 / 2=l(m(l(2 m-1)+4)-1)-1 / 2$. If $l=2$ and $m=-1$, then $4 g-|r|=3 / 2$. If $l \geq 2$ and $m \leq-2$ then $l(2 m-1)+4 \leq-6$ implies that $l(m(l(2 m-1)+4)-1) \geq 22$, so $4 g-|r| \geq 43 / 2$. If $l \geq 3$ and $m \leq-1$ then $l(2 m-1)+4 \leq-5$ implies that $l(m(l(2 m-1)+4)-1) \geq 12$, so $4 g-|r| \geq 23 / 2$.

Now if $p \leq-1$, since $l \geq 2$ and $m \leq-1$, then $4 g-|r| \geq 6 l^{2} m^{2}-5 l^{2} m+4 l m-l+l^{2}-3 / 2=$ $6(l m+1 / 3)^{2}+(l-1 / 2)^{2}-5 l^{2} m-29 / 12 \geq 26 / 3+9 / 4+20-29 / 12>3 / 2$.

In both cases, $4 g-|r| \geq 3 / 2$.

Case 8. $l>0, m<0, n=0$ and $p>0$.
Here $|r|=r$ and $4 g-|r|=2 l^{2} m^{2}-3 l^{2} m+4 l m+l^{2}-3 l-1 / 2+(p-1)(2 l m-l-1)(2 l m-l+1)$.
First suposse that $p=1$, then $4 g-|r|=2 l^{2} m^{2}-3 l^{2} m+4 l m+l^{2}-3 l-1 / 2=2(l m+1)^{2}-$ $3 l^{2} m+(l-3 / 2)^{2}-1 / 2-9 / 4-2 \geq 2+12+1 / 4-1 / 2-9 / 4-2=19 / 2>3 / 2$.

Now assume that $p \geq 2$, then $4 g-|r| \geq 2 l^{2} m^{2}-3 l^{2} m+4 l m+l^{2}-3 l-1 / 2+(2 l m-l-1)(2 l m-$ $l+1)=6 l^{2} m^{2}-7 l^{2} m+4 l m+2 l^{2}-3 l-3 / 2=4 l^{2} m^{2}-7 l^{2} m+2(l m+1)^{2}+(2 l-1)(l-1)-9 / 2 \geq$ $16+28+2+3-9 / 2>3 / 2$.

In all cases, $4 g-|r| \geq 3 / 2$.

3. Integral slope.

Let r be an integral slope and \widehat{T} an incompressible torus in $K(r)$ that intersects the attached solid torus J in a disjoint union of meridional disks $v_{1}, v_{2}, \ldots, v_{t}$ numbered successively along J. We assume that \widehat{T} is chosen so that t is minimal among all incompressible tori in $K(r)$. We also assume that r is not the longitudinal slope, then \widehat{T} must be separating in $K(r)$ and hence t is even.

Let S be a minimal genus $g(K)$, Seifert surface for K. By shrinking S suitably, we may assume that S is properly embedded in $E(K)=S^{3}-\operatorname{int} \mathcal{N}(K)$. We cap off ∂S with a disk u to obtain a closed surface \widehat{S}. Let $T=\widehat{T} \cap E(K)$. We isotope T so that $S \cap T$ consists of circles and arcs that are essential in both S and T.

The intersection $S \cap T$ defines two labeled graphs G_{S} on \widehat{S} and G_{T} on \widehat{T} as follows. The graph G_{S} has only one (fat) vertex u, while the graph G_{T} has t (fat) vertices $v_{1}, v_{2}, \ldots, v_{t}$. For each graph G_{S} and G_{T}, the edges are the arc components of $S \cap T$. For each $x=1,2, \ldots, t$, there are r points in $\partial u \cap \partial v_{x}$, which are endpoints of some edges in $G_{S}\left(G_{T}\right)$. We label these r points by x in G_{S}. Then labels $1,2, \ldots, t$ appear in order around the vertex of G_{S}
repeatedly r times. We number consecutively each of these r blocks of labels according to the orientation of ∂u, starting at some block (see Fig. 3). For each edge endpoint in G_{S}, we will make use of another label which is the number of the block that it belongs. Each edge of G_{S} has some labels x and y at its endpoints, and this edge connects v_{x} and v_{y} in G_{T} with labels i and j, where i and j are the labels of the blocks to which the edge endpoints belongs in G_{S}. Here x and y have opposite parities by the parity rule [1] and then $x \neq y$. Note that the number of the edges in G_{S} (or G_{T}) is $|r| t / 2$.

Fig. 3
Let \widehat{B}, \widehat{W} be the two sides of \widehat{T} in $K(r)$, also let $B=\widehat{B} \cap E(K)$ and $W=\widehat{W} \cap E(K)$. For each face f of G_{S}, we color f black or white according to whether a collar of ∂f lies in B or W.

An edge of G_{S} is called x-edge if it has label x at one endpoint, and it is called an (x, y) $e d g e$ if it has label y at the other endpoint. Note that the number of x-edges in G_{S} is $|r|$ for each $x=1,2, \ldots, t$.

If the subgraph of G_{S} consisting of all x-edges contains disk faces, we call them x-faces. We frequently regard an x-face as a configuration in G_{S}. If an x-face is a disk face of G_{S}, then all the edges in the boundary of the x-face have the same label pair $\{x, y\}$, where $|x-y|=1$. The cycle of the edges of such an x-face is called a Scharlemann cycle. A Scharlemann cycle with only two edges is called an S-cycle. A cycle of G_{S} inmediatly surrounding a Scharlemann cycle is called an extended Scharlemann cycle.

Lemma 1. If $|r|>4 g(K), K(r)$ does not contain a Klein bottle.
Proof. This follows from [16], Corollary 1.3.
Lemma 2. If $|r|>2 g(K)-1, K(r)$ is irreducible.

Proof. Lemma 2.3 of [17] or Theorem 1.3 of [19].

Lemma 3. G_{S} cannot contain an extended Scharlemann cycle if $t \geq 4$.
Proof. This is Theorem 3.2 of [11].

Lemma 4. No two edges are parallel in both graphs G_{S} and G_{T}.
Proof. Lemma 2.1 of [10].

Lemma 5. If $|r|>4 g(K)$ and $t \geq 4$, then G_{S} cannot contain two S-cycles on disjoint label pairs.

Proof. Lemma 2.6 of [17].

Lemma 6. There are at most four labels of Scharlemann cycles in G_{S}.
Proof. This is Lemma 2.3(4) of [14].
Lemma 7. The edges of a Scharlemann cycle of G_{S} cannot lie in a disk in \hat{T}.
Proof. This is Lemma 3.1 of [11].

Let x be a label of G_{S}. Define Γ_{x} be the subgraph of G_{S} consisting of all x-edges and \bar{F}_{x} be the number of disk faces of Γ_{x}. Thus Γ_{x} has exactly $|r|$ edges.

Lemma 8. If $|r| \geq 4 g(K)-1$, then Γ_{x} contains a disk face of length at most 3 for any label x.

Proof. Assume that Γ_{x} has no disk face of lenght at most 3. Then $4 \bar{F}_{x} \leq 2|r|$. By an Euler characteristic count in \hat{S} we have

$$
\frac{|r|}{2} \geq \bar{F}_{x} \geq 1-2 g(K)+|r|
$$

Thus $|r| \leq 4 g(K)-2$, a contradiction.
3.1. $t \geq$ 6. Suposse $|r|>4 g(K)$. By Lemma $1, K(r)$ does not contain a Klein bottle. We mainly follow the argument in [[11], Section 5]. Let $C_{ \pm}(i)$ be the configuration in G_{S} as illustrated in Fig. 4.

Let S denote the set of labels of Scharlemann cycles of lenght at most 3 in G_{S}, and let $\mathcal{L}_{0}=\{1,2, \ldots, t\} \backslash S$. Recall that Γ_{x} contains a disk face of lenght at most three for any label x by Lemma 8 .

Lemma 9. G_{S} contains a configuration $C_{ \pm}(i)$ for just one label i.
Proof. Let x be a label in \mathcal{L}_{0}. Then Γ_{x} contains a bigon or a trigon face f by Lemma 8 . Since there is no extended Scharlemann cycle, Γ_{x} has a disk face as shown in Figure 5.1 of [11] (see Lemma 5.1 of [11]), and hence has a configuration $C_{ \pm}(i)$. The uniqueness of such a configuration follows from [[11], Lemma 5.4].

Lemma 10. $|S| \leq 4$ and $\left|\mathcal{L}_{0}\right| \leq 4$.

$C_{+}(i)$

$C_{-}(i)$

Fig. 4
Proof. The first part follows from Lemma 6, and the second is Theorem 5.8 of [11].

Corollary 1. $t \leq 8$.
Proof. By Lemma 10, $t=|S|+\left|\mathcal{L}_{0}\right| \leq 8$.
Proposition 1. $t=6$ is impossible.
Proof. By Lemma 9, we may assume that G_{S} contain an S-cycle with label pair $\{1,2\}$, and $\mathcal{L}_{0} \subset\{3,4,5,6\}$. By the argument of [[11], page 626], we see that $\mathcal{L}_{0}=\{3,6\}$ and $\mathcal{S}=\{1,2,4,5\}$. Hence G_{S} contains 12 - and $45-$ Scharlemann cycles of lenght 2 or 3 . This is impossible by [[11], Theorem 3.9].

Proposition 2. $t=8$ is impossible.
Proof. If $t=8$, then $|S|=\left|\mathcal{L}_{0}\right|=4$. By Lemma $9, G_{S}$ contains an S-cycle ρ with label pair $\{i, i+1\}$ for some i, and $\mathcal{L}_{0}=\{i-2, i-1, i+2, i+3\}$ by [[11], Lemma 5.3(2)]. Since $|S|>2$, there is another $(j, j+1)$-Scharlemann cycle σ of length at most 3 with $j \neq i$, and with $j, j+1 \notin \mathcal{L}_{0}$. Hence $j, j+1 \notin\{i-2, i-1, i, i+1, i+2, i+3\}$. The rest of the proof is the same as those of [[11], pages 625-626].
3.2.t $=$ 4. Suposse that $|r| \geq 6 g(K)-2$. By Lemmas 5 and 6 , we can take a label x of G_{S} which is not a label of any S-cycle. Every disk face of Γ_{x} has at least 3 sides, since otherwise G_{S} would contain an extended Scharlemann cycle. An Euler characteristic count for Γ_{x} gives $\bar{F}_{x} \geq 1-2 g(K)+|r|$. Also $2|r| \geq 3 \bar{F}_{x}$, then $|r| \leq 6 g(K)-3$, a contradiction.
3.3. $\mathbf{t}=$ 2. Suposse that $|r| \geq 4 g(K)+1$. Since $t=2, G_{T}$ has exactly two vertices, then has at most four edge classes as shown in Fig. 5.

We label each edge e of G_{S} by the label of its class on G_{T} and we denote this label by $\mathcal{L}(e)$.

Note that when $t=2$, all disk faces of G_{S} are Scharlemann cycles.

Fig. 5
Let f be a disk face of G_{S} and suposse that χ_{1}, χ_{2} are two distinct edge classes in G_{T}. We say that f is a $\left(\chi_{1}, \chi_{2}\right)$-face if the edges of f belong to $\chi_{1} \cup \chi_{2}$. When f is a $\left(\chi_{1}, \chi_{2}\right)$-face, f is said to be $\chi_{i}-\operatorname{good}(i=1,2)$ if no two consecutive edges of f belong to class χ_{i}. If f is χ_{i}-good for some $i=1,2$, then f is said to be $\left(\chi_{1}, \chi_{2}\right)$-good. We denote by $|f|$ the number of edges of f.

Lemma 11. For any two edge class labels $\chi_{1}, \chi_{2}, G_{S}$ cannot have $\left(\chi_{1}, \chi_{2}\right)$-good faces on both sides of \widehat{T}.

Proof. This is Lemma 4.2 of [17].
In what follows, let $H_{i, i+1}$ be the part of J between consecutive components i and $i+1$ of ∂T.

Lemma 12. If a disk face of G_{S} have at most 3 edges, the edges are contained in an essential annulus on \widehat{T}.

Proof. Let σ be a disk face of G_{S}, then σ is a Scharlemann cycle.
If $|\sigma|=2$, the result is a direct consequence of Lemma 7 .
If $|\sigma|=3$. Let a, b, c be the edges of σ and suppose $\mathcal{L}(a) \neq \mathcal{L}(b) \neq \mathcal{L}(c)$ (otherwise we would have finished). Extending the edges a, b, c to the corners of σ in $T \cup H_{1,2}$, they look like Figure 6. According to such a figure, to complete the cycle σ we need to connect the ends of the arcs a, b, c in $H_{1,2}$. We have two options: (i) to connect an end of a with an end of c, an end of b with an end of a and an end of c with an end of b; or (ii) to connect an end of a with an end of b, an end of b with an end of c and an end of c with an end of a. However, it is not difficult to see that is not possible to realize such connections in $H_{1,2}$ without obtaining autointersections.

Note that by Lemma 12, the disk faces of G_{S} of length at most three are good faces.
Lemma 13. G_{S} does not contain two bigons of the same color on distinct edge class pairs.

Proof. Otherwise, $K(r)$ would contain a Klein bottle. See the proof of Lemma 5.2 [13].

Lemma 14. If a bigon and a trigon of G_{S} have the same color, then they have disjoint pairs of edge class labels.

Fig. 6
Proof. This is Lemma 4.5 of [17].
Lemma 15. (1) If two trigons of G_{S} of the same color have different pairs of class labels, then the pairs are disjoint.
(2) Suppose that two trigons of G_{S} of the same color have the same pair of edge class labels, say, $\left\{\chi_{1}, \chi_{2}\right\}$. If one has an edge in class χ_{1} and two edges in class χ_{2}, then the other also has one edge in class χ_{1} and two edges in class χ_{2}.
(3) If two trigons of G_{S} have opposite colors, then they cannot have the same pair of edge class labels.

Proof. This is Lemma 4.6 of [17]
Recall that u is the unique vertex of G_{S}. Let a, b be some two intersection points of ∂u and $\partial v_{x}(x=1,2)$. Then both points have label x in G_{S}. Since r is an integral slope, the points a and b are consecutive on ∂v_{x} of G_{T} if and only if there is exactly one edge endpoint in G_{S} between the points. See Fig. 7, where $x=1$.

Fig. 7

We orient ∂v_{1} counterclockwise around $v_{1}, \partial v_{2}$ clockwise around v_{2} and ∂u counterclockwise around u. We may assume that the three curves $\partial v_{1}, \partial v_{2}$ and ∂u proceed in the same direction along the knot K when they proceed along their orientations.

Let $\chi \in\{\alpha, \beta, \gamma, \delta\}$. For two edges e, e^{\prime} in class χ, we write $e<e^{\prime}$ if the point $e \cap \partial v_{1}$ precedes the point $e^{\prime} \cap \partial v_{1}$ with respect to the orientation of ∂v_{1}. Note that $e<e^{\prime}$ if and only
if the point $e \cap \partial v_{2}$ precedes the point $e^{\prime} \cap \partial v_{2}$ with respect to the orientation of ∂v_{2}. We say that e is the first edge in the class χ if $e<e^{\prime}$ for any other edge e^{\prime} in class χ. Similarly, the last edge is defined.

Lemma 16. Let a_{1}, a_{2} be two edge endpoints of G_{S} such that there is exactly one endpoint betweeen them as in Fig. 8. Let e_{i} be the edge of G_{S} incident to $a_{i}(i=1,2)$. Let $\chi_{i}=\mathcal{L}\left(e_{i}\right)$ and assume $\chi_{1} \neq \chi_{2}$. Then on G_{T}, e_{1} is the last edge in class χ_{1}, while e_{2} is the first edge in class χ_{2}. Also, a_{1}, a_{2} appear consecutively and in order on a vertex of G_{T}.

Fig. 8
Proof. This is Lemma 4.7 of [17].
Lemma 17. Any two bigons of G_{S} cannot be adjacent.
Proof. Lemma 4.8 of [17].
Lemma 18. If a bigon and a trigon of G_{S} are adjacent, then G_{S} contains only one bigon.
Proof. It follows from the first part of the proof of Lemma 4.9 of [17].
Recall that the graph G_{S} have $|r|$ edges. Let F be the number of disk faces on G_{S}.
An Euler characteristic calculus gives $1-|r|+F \geq 2-2 g$, then

$$
\begin{equation*}
F \geq|r|-2 g(K)+1 \tag{1}
\end{equation*}
$$

Lemma 19. If $|r| \geq 6 g(K)-2$, then G_{S} cannot have a bigon and a trigon which are adjacent.

Proof. Suposse there is a bigon adjacent to a trigon in G_{S}. By Lemma 18, G_{S} contains only one bigon. Applying (1), $2|r| \geq 3(F-1)+2=3 F-1 \geq 3(|r|+1-2 g(K))-1=$ $3|r|-6 g(K)+2$, hence $|r| \leq 6 g(K)-2$. Also $|r| \geq 6 g(K)-2$ by assumption, then $|r|=6 g(K)-2$.

Let F^{b}, F^{w} be the number of black and white disk faces of G_{S}, respectively. Suposse that the unique bigon on G_{S} is black. Then $|r| \geq 3\left(F^{b}-1\right)+2=3 F^{b}-1$, so $F^{b} \leq(|r|+1) / 3$. Hence $(|r|+1) / 3+F^{w} \geq F^{b}+F^{w}=F \geq|r|+1-2 g(K)$, wich yields $F^{w} \geq(2|r|+2) / 3-2 g(K)=$ $2 g(K)-2 / 3$ and hence, $F^{w} \geq 2 g$. Also $|r| \geq 3 F^{w}$, then $|r| \geq 3 F^{w} \geq 6 g(K)$, contradicting that $|r|=6 g(K)-2$.

Lemma 20. Let f be a disk face of G_{S} with $|f| \geq 4$. Then the following hold.

- f cannot be surrounded by bigons.
- If $|f|$ is odd, then f is adjacent to at most $|f|-2$ bigons.

Proof. Lemma 4.10 of [17].
Lemma 21. Gs cannot contain a bigon, a trigon and a tetragon of the same color.
Proof. Lemma 4.11 of [17].

Definition. We say that two disk faces in G_{S} are of the same type if they have the same color, the same length, the same set of class edges labels and the same number of edges in each edge class. This is an equivalence relation in the set of disk faces of G_{S}, and we call as a type of n-faces an equivalence class of a disk face with n sides.

Note that by Lemmas 12 and 13, there are at most two types of bigons in G_{S} (one for each color). Also, by Lemma 15, there are at most four types of trigons in G_{S} (two for each color).

Convention on the Figures. From now on, the same number and shape of big dots on the edges in the graph G_{S} will indicate that the edges are the same.

Definition. Two disk faces of the same type in G_{S}, are consecutive with respect to one corner if the corresponding labels of one of their corners are consecutive in G_{T}.

Remark. Note that if two disk faces are consecutive with respect to one corner and if in addition the corresponding edges that form the corners are parallel edges in G_{T}, then the faces are consecutive with respect to the other corners at the ends of the edges.

Defintion. A finite set of disk faces in $G_{S},\left\{\sigma_{i}\right\}_{I}$ is consecutive if the faces are of the same type and we can enumerate them as $\left\{\sigma_{j}\right\}_{j=1}^{m}$ for some $m \geq 1$, in such a way that for all $1 \leq j \leq m, \sigma_{j}$ and σ_{j+1} are consecutive faces with respect to one corner (and then with respect to all their corners by the remark above).

Fig. 9 shows an example of a consecutive set of faces $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$ in G_{S}. The blue labels are the labels that they have in G_{T} and which are supossed to be consecutive.

We denote by F_{i} the set of faces with i sides in G_{S} and by $\left|F_{i}\right|$ its cardinality. In the same way, we denote by F_{i}^{w} and F_{i}^{b} be the set of white and black disk faces with i sides in G_{S}, respectively.

Lemma 22. The set of bigons of the same color in G_{S}, is consecutive.
Proof. Fix a color, say white. By Lemma 13, the bigons in F_{2}^{w} have the same two edge classes, say $\left\{\chi_{1}, \chi_{2}\right\}$, then they are all of the same type. In fact, the edges of the bigons in F_{2}^{w} lie in an annulus A on \widehat{T}. Let a_{i}^{f} and b_{i}^{l} be the first and last edge, respectively of class χ_{i}, $i=1,2$ for bigons in F_{2}^{w}. Suppose we have an edge c on a white face σ such that $a_{1}^{f}<c<b_{1}^{l}$ or $a_{2}^{f}<c<b_{2}^{l}$. Note that when going along the edges of σ on $\widehat{T} \cup H_{1,2}$ they cannot get out

Fig. 9
of A and also they cannot give more than one lap around A because if not σ would not close. Then σ is a bigon inside A with edge classes $\left\{\chi_{1}, \chi_{2}\right\}$. Therefore the edges of the bigons in F_{2}^{w} of the same class, are consecutive on G_{T} and hence the set of white bigons is consecutive in G_{S}.

Lemma 23. The bigons of the same color are adjacent to at most two faces in G_{S}, each one having the same number of edges belonging to bigons.

Proof. Fix a color, say black. By Lemma $22, F_{2}^{b}$ is a consecutive set in G_{S}. Then we can enumerate its elements according to the order they appear on the vertex u of G_{S}. Suppose that in such an order, the bigons are $b_{m}, m \in\{1,2, \ldots n\}$ and have labels $i+(m-1), j+(m-1)$, respectively on its corners on G_{T} for some fixed $i, j \in\{1,2, \ldots,|r|\}$. Start with the first bigon, it its adjacent to at most two faces, f_{1}, f_{2} (not necessarily different). By following the labels of the blocks in ∂u from i to $i+1$, we note that the second bigon must be adjacent to the face f_{2} on one side and adjacent to the face f_{1} on the other side (if we follow the labels from j to $j+1$), so they appear in G_{S} as in Fig. 10 .

The third bigon has labels $i+2, j+2$ on its corners, then it must be adjacent to the face f_{2} by one side (if we follow the labels from $j+1$ to $j+2$), and adjacent to the face f_{1} on the other side (if we follow the labels from $i+1$ to $i+2$), as in Fig. 11. Continuing with this process, we get that all bigons are adjacent to the same two faces, and in fact f_{1} and f_{2} have the same number of edges belonging to bigons.

We have similar properties for the trigons.
Lemma 24. The set of trigons of the same type is consecutive in G_{S}.

Fig. 10

Fig. 11
Proof. Let \mathcal{C} be the set of trigons of the same type in G_{S}. Without loss of generality, suppose that the trigons in \mathcal{C} are white and have one edge of class χ_{1} and two edges of class χ_{2}. By the remark above, we just need to prove that the trigons of the same type are consecutive with respect to the corner which contain the edge of class χ_{1} on each trigon. By Lemma 12, the edges of the trigons of the same type lie in an essential annulus A on \widehat{T}. Let a^{f} and b^{l} be the first and last edge of class χ_{1} for trigons in \mathcal{C}, respectively. Suppose we have an edge c on a white face σ such that $a^{f}<c<b^{l}$. Note that when going along the edges of σ on $\widehat{T} \cup H_{1,2}$ they cannot get out of A and also they cannot take more than one lap around A because if not σ would not close (see Fig. 12). Then σ is a trigon inside A with edge classes $\left\{\chi_{1}, \chi_{2}\right\}$. Therefore the edges of the trigons must be consecutive on G_{T} and then the set of trigons is consecutive in G_{S}.

Lemma 25. The trigons of the same type are adjacent to at most three faces on G_{S}, each one having the same number of edges belonging to trigons.

Proof. Let \mathcal{C} be the set of trigons of the same type in G_{S}. By Lemma 24, the set \mathcal{C} is consecutive. Suppose that the trigons in \mathcal{C} have one edge of class χ_{1} and two edges of class χ_{2}. We can enumerate the trigons in \mathcal{C} according to the order that the edges of class χ_{1} of the trigons appear on the vertex u. Suppose that in such an order, the trigons are c_{m},

Fig. 12
$m \in\{1,2, \ldots, n\}$ and have edge labels in $G_{T}, i+(m-1), j+(m-1), l+(m-1)(\bmod |r|)$, respectively for some fixed numbers $i, j, l \in\{1,2, \ldots,|r|\}$. Start with the first trigon, it is adjacent to at most three faces f_{1}, f_{2}, f_{3} (not necessarily different). By following the labels from i to $i+1$ on the vertex u, we note that the second trigon is adjacent to the face f_{2} by one side, adjacent to the face f_{1} by other side and adjacent to f_{3} on the third side (if we follow the labels from j to $j+1$ and also from l to $l+1$), so they appear in G_{S} like in Fig. 13.

Fig. 13
The third trigon has edge labels $i+2, j+2, l+2$ in G_{T}. Hence it must be adjacent to f_{2} by one side (if we follow the labels from $l+1$ to $l+2$), and adjacent to f_{1} (if we follow the labels from $j+1$ to $j+2$) and f_{3} (if we follow the labels from $i+1$ to $i+2$) on its other sides, like in Fig. 14. Continuing with this process, we get that all trigons of the same type must glue to the same faces and in fact, f_{1}, f_{2} and f_{3} have the same number of edges belonging to trigons.

Lemma 26. If on G_{S} there are two adjacent trigons, they are unique with respect to their type.

Proof. Suppose that we have two adjacent trigons c_{1} and c_{2} on G_{S} (say c_{1} black and c_{2} white). Without loss of generality, we can assume that c_{1} is a $\left\{\chi_{1}, \chi_{2}\right\}$-good face and c_{2} is a $\left\{\chi_{2}, \chi_{3}\right\}$-good face. By Lemma $25, c_{1}$ is adjacent to all white trigons of type $\left\{\chi_{2}, \chi_{3}\right\}$, and in the same way c_{2} is adjacent to all black trigons of type $\left\{\chi_{1}, \chi_{2}\right\}$. Since c_{1} and c_{2}

Fig. 14
are adjacent then there are at most two black trigons of type $\left\{\chi_{1}, \chi_{2}\right\}$ and two white trigons of type $\left\{\chi_{2}, \chi_{3}\right\}$. Suppose c_{1} is adjacent to two white trigons of type $\left\{\chi_{2}, \chi_{3}\right\}$ (otherwise we would have finished). It means that c_{1} have two edges of class χ_{2} and one of class χ_{1}. Applying Lemma 16 on the corners of c_{1} containing the edge of class χ_{1}, we can see that this is the only edge of its class. This implies that there are no more black trigons of type $\left\{\chi_{1}, \chi_{2}\right\}$.

Let a, b, c, d be the rest of edges of the trigons according to Fig. 15.

Fig. 15
Applying Lemma 16, we see that c is the first edge on its class, while b is the last edge on its class. For the edges a, b, c, d we have the following classes options. The superscripts f and l indicate that the edge is the first or the last of its class, respectively.
(1) $\mathcal{L}(a)=\chi_{2} ; \mathcal{L}(b)=\chi_{3}^{l} ; \mathcal{L}(c)=\chi_{2}^{f} ; \mathcal{L}(d)=\chi_{3}$
(2) $\mathcal{L}(a)=\chi_{2} ; \mathcal{L}(b)=\chi_{3}^{l} ; \mathcal{L}(c)=\chi_{3}^{f} ; \mathcal{L}(d)=\chi_{2}$
(3) $\mathcal{L}(a)=\chi_{3} ; \mathcal{L}(b)=\chi_{2}^{l} ; \mathcal{L}(c)=\chi_{2}^{f} ; \mathcal{L}(d)=\chi_{3}$
(4) $\mathcal{L}(a)=\chi_{3} ; \mathcal{L}(b)=\chi_{2}^{l} ; \mathcal{L}(c)=\chi_{3}^{f} ; \mathcal{L}(d)=\chi_{2}$
(5) $\mathcal{L}(a)=\chi_{3} ; \mathcal{L}(b)=\chi_{3}^{l} ; \mathcal{L}(c)=\chi_{3}^{f} ; \mathcal{L}(d)=\chi_{3}$

Applying Lemma 16 on the first case, we have that d is the last edge of the class χ_{3}, which contradicts the fact that b is such an edge.

On the second case, since the edges of the class χ_{2} are consecutive, we can label them with i, j, like in Fig. 16. However such configuration implies that b and c are the same, which is not possible since we are assuming that they lie in different faces.

Fig. 16
Applying Lemma 16 on the third case, we have that the edges of class χ_{2} in the black trigon are the first and the last edges of its class, contradicting that b and c are such edges.

Applying Lemma 16 on the fourth case, we see that one of the edges of class χ_{2} is the last edge of this class, contradicting that b is such an edge.

Finally, applying Lemma 16 on the last case, we see that a and d are the first and last edge of class χ_{3}, respectively, contradicting that c and b are such edges.

Note that Lemmas 15 and 26 imply that on G_{S} there are at most two pairs of adjacent trigons and in such case the trigons are unique.

Denote by n the number of faces to which the bigons (of both colors) in G_{S} are adjacent and denote by m the number of faces to which the trigons (of both colors) in G_{S} are adjacent. By Lemmas 23 and 25, $n \leq 4$ and $m \leq 12$, respectively.

We use Lemmas from 11 to 26 to separate the proof of the theorem on eleven cases. In Fig. 17 we see the tree of cases and the bound obtained for $|r|$ on each case.

I. Without bigons or trigons.

By counting the edges on G_{S} we have that $2|r| \geq 2\left|F_{2}\right|+3\left|F_{3}\right|+4\left(F-\left|F_{2}\right|-\left|F_{3}\right|\right)=$ $4 F-2\left|F_{2}\right|-\left|F_{3}\right|$. By (1), $2|r| \geq 4(|r|-2 g(K)+1)-2\left|F_{2}\right|-\left|F_{3}\right|$. Since $\left|F_{2}\right|=\left|F_{3}\right|=0$, then $|r| \leq 4 g(K)-2$, which finishes this case.

II. Without trigons.

Since any two bigons cannot be adjacent by Lemma 17 and G_{S} does not have any trigon, then the faces to which the bigons are adjacent have at least four sides. On the other hand, a

Fig. 17
disk face σ in G_{S} is adjacent to at most $|\sigma|-1$ bigons by Lemma 20. By counting the edges on G_{S} and applying (1), we have

$$
\begin{aligned}
2|r| & \geq 2\left|F_{2}\right|+3\left|F_{3}\right|+4\left(F-\left|F_{2}\right|-\left|F_{3}\right|-n\right)+2\left|F_{2}\right|+n \\
& =-\left|F_{3}\right|+4 F-3 n \\
& \geq 4(|r|-2 g(K)+1)-12
\end{aligned}
$$

Then, $|r| \leq 4 g(K)+4$.

III. Without adjacent trigons and without bigons.

Since any two trigons are not adjacent and there is no bigons, the faces to which the trigons are adjacent have at least four sides. By counting the number of edges on G_{S} and applying (1), we have

$$
\begin{aligned}
2|r| & \geq 3\left|F_{3}\right|+4\left(F-\left|F_{3}\right|-m\right)+3\left|F_{3}\right| \\
& =2\left|F_{3}\right|+4 F-4 m \\
& \geq 2\left|F_{3}\right|+4(|r|-2 g(K)+1)-48
\end{aligned}
$$

Then
(2)

$$
\left|F_{3}\right| \leq 4 g(K)+22-|r|
$$

Also we have

$$
\begin{aligned}
2|r| & \geq 3\left|F_{3}\right|+4\left(F-\left|F_{3}\right|\right) \\
& =4 F-\left|F_{3}\right| \\
& \geq 4(|r|-2 g(K)+1)-\left|F_{3}\right|
\end{aligned}
$$

Then

$$
\begin{equation*}
\left|F_{3}\right| \geq-8 g(K)+4+2|r| \tag{3}
\end{equation*}
$$

Comparing (2) and (3) gives $|r| \leq 4 g(K)+6$.
IV. Without bigons, with a couple of adjacent trigons.

By Lemma 26, if on G_{S} there is a couple of adjacent trigons, they are unique with respect to its type. Then G_{S} have this two trigons and other trigons of at most two types. Denote by F_{3}^{\prime} the set of trigons that are not adjacent to any other trigon. Then $\left|F_{3}\right|=\left|F_{3}^{\prime}\right|+2$.

Let m^{\prime} be the number of faces to which the trigons on F_{3}^{\prime} are adjacent. By Lemmas 25 and $20, m^{\prime} \leq 6$ and such faces have at least four sides. By counting the number of edges on G_{S} and applying (1), we have

$$
\begin{aligned}
2|r| & \geq 3\left|F_{3}\right|+4\left(F-\left|F_{3}\right|-m^{\prime}\right)+3\left|F_{3}^{\prime}\right| \\
& =2\left|F_{3}\right|+4 F-4 m^{\prime}-6 \\
& \geq 2\left|F_{3}\right|+4(|r|-2 g(K)+1)-30
\end{aligned}
$$

Then,

$$
\begin{equation*}
\left|F_{3}\right| \leq 4 g(K)+13-|r| \tag{4}
\end{equation*}
$$

Comparing (3) and (4) we get $|r| \leq 4 g(K)+3$.
V. Without bigons, with two couples of adjacent trigons.

By Lemma 26, G_{S} have only four trigons, i.e. $\left|F_{3}\right|=4$. By counting the number of edges on G_{S} and applying (1), we get

$$
\begin{aligned}
2|r| & \geq 3\left|F_{3}\right|+4\left(F-\left|F_{3}\right|\right) \\
& =4 F-4 \\
& \geq 4(|r|-2 g(K)+1)-4
\end{aligned}
$$

Then, $|r| \leq 4 g(K)$.
VI. One type of bigons, without bigons adjacent to trigons and with a couple of adjacent trigons.
By Lemma 14, G_{S} has at most three types of trigons. Since we do not have any bigon adjacent to any trigon, the faces to which the bigons are adjacent are at most two (Lemma 23) and have at least four sides.

On the other hand, we have a couple of adjacent trigons, then by Lemma 26, such trigons are the unique of its type. Since G_{S} has at most three types of trigons, then it has at most one type of trigons not adjacent to any trigon. Then we have $n \leq 2$ and $m \leq 3$. By counting the number of edges on G_{S} and applying (1), we have

$$
\begin{aligned}
2|r| & \geq 2\left|F_{2}\right|+3\left|F_{3}\right|+4\left(F-\left|F_{2}\right|-\left|F_{3}\right|-n-m\right)+2\left|F_{2}\right|+n+3\left|F_{3}\right|-6 \\
& =2\left|F_{3}\right|+4 F-3 n-4 m-6 \\
& \geq 2\left|F_{3}\right|+4(|r|-2 g(K)+1)-24
\end{aligned}
$$

Then

$$
\begin{equation*}
\left|F_{3}\right| \leq 4 g(K)+10-|r| \tag{5}
\end{equation*}
$$

Also

$$
\begin{aligned}
2|r| & \geq 2\left|F_{2}\right|+3\left|F_{3}\right|+4\left(F-\left|F_{2}\right|-\left|F_{3}\right|-n\right)+2\left|F_{2}\right|+n \\
& =4 F-3 n-\left|F_{3}\right| \\
& \geq 4(|r|-2 g(K)+1)-6-\left|F_{3}\right|
\end{aligned}
$$

Then

$$
\begin{equation*}
\left|F_{3}\right| \geq-8 g(K)-2+2|r| \tag{6}
\end{equation*}
$$

Comparing (5) and (6) we get $|r| \leq 4 g(K)+4$.
VII. Two types of bigons, one couple of adjacent trigons and without bigons adjacent to trigons.
Since any two bigons cannot be adjacent by Lemma 17, and we are assuming that any bigon is not adjacent to any trigon, then the faces to which the bigons are adjacent have at least four sides. On the other hand G_{S} has two types of bigons, then by Lemma 14 there are at most two types of trigons. We have also a couple of adjacent trigons, then by Lemma 26, they are the unique of its type and then $\left|F_{3}\right|=2$. By counting the number of edges on G_{S} and applying (1), we have

$$
\begin{aligned}
2|r| & \geq 2\left|F_{2}\right|+3\left|F_{3}\right|+4\left(F-\left|F_{2}\right|-\left|F_{3}\right|-n\right)+2\left|F_{2}\right|+n \\
& =-\left|F_{3}\right|+4 F-3 n \\
& \geq 4(|r|-2 g(K)+1)-14
\end{aligned}
$$

Then

$$
|r| \leq 4 g(K)+5 .
$$

VIII. One type of bigons, without bigons adjacent to trigons and without trigons adjacent between them.
By Lemma 14, G_{S} has at most three types of trigons. We are assuming that any bigon is not adjacent to any trigon, then the faces to which the bigons are adjacent have at least four sides.

Then $n \leq 2$ and $m \leq 9$. By counting the number of edges on G_{S} and applying (1), we have

$$
\begin{aligned}
2|r| & \geq 2\left|F_{2}\right|+3\left|F_{3}\right|+4\left(F-\left|F_{2}\right|-\left|F_{3}\right|-n-m\right)+2\left|F_{2}\right|+n+3\left|F_{3}\right| \\
& =2\left|F_{3}\right|+4 F-3 n-4 m \\
& \geq 2\left|F_{3}\right|+4(|r|-2 g(K)+1)-42
\end{aligned}
$$

Then

$$
\begin{equation*}
\left|F_{3}\right| \leq 4 g(K)+19-|r| \tag{7}
\end{equation*}
$$

Also

$$
\begin{aligned}
2|r| & \geq 2\left|F_{2}\right|+3\left|F_{3}\right|+4\left(F-\left|F_{2}\right|-\left|F_{3}\right|-n\right)+2\left|F_{2}\right|+n \\
& =4 F-3 n-\left|F_{3}\right| \\
& \geq 4(|r|-2 g(K)+1)-6-\left|F_{3}\right|
\end{aligned}
$$

Then

$$
\begin{equation*}
\left|F_{3}\right| \geq-8 g(K)-2+2|r| \tag{8}
\end{equation*}
$$

Comparing (7) and (8) we get that $|r| \leq 4 g(K)+7$.
IX. Two types of bigons, without bigons adjacent to trigons and without trigons adjacent between them.
By Lemma 14, on G_{S} there are at most two types of trigons. Then we have that $n \leq 4$ and $m \leq 6$.

Since any bigon is not adjacent to any bigon or trigon, the faces to which the bigons are adjacent have at least four sides. The same happens to the trigons since they are not adjacent to any trigon. We also apply Lemma 20 to obtain

$$
\begin{aligned}
2|r| & \geq 2\left|F_{2}\right|+3\left|F_{3}\right|+4\left(F-\left|F_{2}\right|-\left|F_{3}\right|-n-m\right)+2\left|F_{2}\right|+n+3\left|F_{3}\right| \\
& =2\left|F_{3}\right|+4 F-3 n-4 m \\
& \geq 2\left|F_{3}\right|+4(|r|-2 g(K)+1)-12-24
\end{aligned}
$$

Then

$$
\begin{equation*}
2\left|F_{3}\right| \leq 8 g(K)+32-2|r| \tag{9}
\end{equation*}
$$

Also

$$
\begin{aligned}
2|r| & \geq 2\left|F_{2}\right|+3\left|F_{3}\right|+4\left(F-\left|F_{2}\right|-\left|F_{3}\right|-n\right)+2\left|F_{2}\right|+n \\
& =4 F-3 n-\left|F_{3}\right| \\
& \geq 4(|r|-2 g(K)+1)-12-\left|F_{3}\right|
\end{aligned}
$$

Then

$$
\begin{equation*}
\left|F_{3}\right| \geq-8 g(K)-8+2|r| \tag{10}
\end{equation*}
$$

Comparing (9) and (10) we get $|r| \leq 4 g(K)+8$.

X. With a bigon adjacent to a trigon and a couple of adjacent trigons.

By Lemma 18, there is only one bigon on G_{S}, i.e. $\left|F_{2}\right|=1$. Also by Lemma 24, the trigon adjacent to the only bigon is the only one on its class, let t_{1} be such a trigon. We will see that $\left|F_{3}\right| \leq 3$.

Let t_{2} and t_{3} be two adjacent trigons on G_{S}. By Lemma $26, t_{2}$ and t_{3} are the unique with respect to its type. By Lemma $14, G_{S}$ has at most three types of trigons.

If t_{1}, t_{2} and t_{3} were all different, they would be the only trigons on G_{S} and then $\left|F_{3}\right|=3$.
Now suppose that two of $\left\{t_{1}, t_{2}, t_{3}\right\}$ were equal, say $t_{1}=t_{3}$. Let b be the only bigon on G_{S}. Suppose that b is black and it has class edges $\left\{\chi_{1}, \chi_{2}\right\}$. Then t_{1} is a $\left\{\chi_{2}, \chi_{3}\right\}$-white trigon and t_{2} is a $\left\{\chi_{3}, \chi_{4}\right\}$-black trigon (b and t_{1} are adjacent on an edge of class χ_{2}, while t_{1} and t_{2} are adjacent on an edge of class χ_{3}). Applying repeatedly Lemma 16 , we get a subgraph on G_{S} like Fig. 18.

Fig. 18
If G_{S} had another type of trigons different than those already mentioned, it must be of type $\left\{\chi_{1}, \chi_{4}\right\}$-white trigon. But there is only one edge of class χ_{1} on G_{S}, then there could be only one of such trigons. It follows that $\left|F_{3}\right| \leq 3$.

Therefore

$$
\begin{aligned}
2|r| & \geq 2\left|F_{2}\right|+3\left|F_{3}\right|+4\left(F-\left|F_{2}\right|-\left|F_{3}\right|\right) \\
& =4 F-\left|F_{3}\right|-2\left|F_{2}\right| \geq 4(|r|-2 g(K)+1)-2-3=4|r|-8 g(K)-1
\end{aligned}
$$

Then

$$
|r| \leq 4 g(K)
$$

XI. With a bigon adjacent to a trigon and without trigons adjacent between them.

Let b and t_{1} be a bigon and a trigon adjacent on G_{S}, respectively. By Lemmas 18 and $24, b$ is the only bigon on G_{S} and t_{1} is the only trigon of its type. By Lemma $14, G_{S}$ has at most three types of trigons. Then there is at most two types of trigons such that they are not adjacent to any trigon or bigon. Therefore $m \leq 6$. By counting the number of edges in G_{S} and applying (1) we have

$$
\begin{aligned}
2|r| & \geq 2\left|F_{2}\right|+3\left|F_{3}\right|+4\left(F-\left|F_{2}\right|-\left|F_{3}\right|-m\right)+3\left|F_{3}\right|-3 \\
& =2\left|F_{3}\right|+4 F-4 m-5 \\
& \geq 2\left|F_{3}\right|+4(|r|-2 g(K)+1)-29
\end{aligned}
$$

Then

$$
\begin{equation*}
\left|F_{3}\right| \leq 4 g(K)+12-|r| \tag{11}
\end{equation*}
$$

Also

$$
\begin{aligned}
2|r| & \geq 2\left|F_{2}\right|+3\left|F_{3}\right|+4\left(F-\left|F_{2}\right|-\left|F_{3}\right|\right) \\
& =4 F-2\left|F_{2}\right|-\left|F_{3}\right| \\
& \geq 4(|r|-2 g(K)+1)-2-\left|F_{3}\right|
\end{aligned}
$$

Then

$$
\begin{equation*}
\left|F_{3}\right| \geq-8 g(K)+2+2|r| \tag{12}
\end{equation*}
$$

Comparing (11) and (12) we get that $|r| \leq 4 g(K)+3$.
This concludes the proof.
Acknowledgements. We are grateful to M. Teragaito for sharing with us the proof of his conjecture in the case of integral slope and $t \geq 6$, and to the referee for useful comments.

The first author is partially supported by grant PAPIIT-UNAM IN101317.

References

[1] M. Culler, C.McA. Gordon, J. Luecke and P.B. Shalen: Dehn surgery on knots, Ann. of Math. 125 (1987), 237-300.
[2] M. Eudave-Muñoz: Non-hyperbolic manifolds obtained by Dehn surgery on hyperbolic knots; in Geometric Topology, Studies in Advanced Mathematics 2 part 1, 1996, 35-61.
[3] M. Eudave-Muñoz: 4-punctured tori in the exteriors of knots, J. Knot Theory Ramifications 6 (1997), 659-676.
[4] M. Eudave-Muñoz: On hyperbolic knots with Seifert fibered Dehn surgeries, Topology Appl. 121 (2002), 119-141.
[5] M. Eudave-Muñoz and E. Ramírez-Losada: Toroidal Dehn Surgeries; in A Mathematical Tribute to Professor José María Montesinos Amilibia on the Occasion of His Seventieth Birthday, Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, Departamento de Geometría y Topología, 317-336, Madrid, 2016.
[6] C.McA. Gordon: Combinatorial methods in Dehn surgery; in Lectures at Knots 96, World Sci. Pub, 1997, 163-290.
[7] C.McA. Gordon: Small surfaces and Dehn filling; in Proceedings of the Kirby Fest, Geom. Topol. Monog. 2 (1999), 177-199.
[8] C.McA. Gordon: Exceptional Dehn filling; in Introductory Lectures on Knot Theory, Ser. Knots Everything 46, World Sci. Publ., Hackensack, NJ, 2012, 124-134.
[9] C.McA. Gordon: Dehn surgery and 3-manifolds; in Low dimensional topology, IAS/Park City Math. Ser. 15, Amer. Math. Soc., Providence, RI, 2009, 21-71.
[10] C.McA. Gordon: Boundary slopes of punctured tori in 3-manifolds, Trans. Amer. Math. Soc. 350 (1998), 1713-1790.
[11] C.McA. Gordon and J. Luecke: Dehn surgeries on knots creating essential tori, I, Comm. Anal. Geom. 3 (1995), 597-644.
[12] C.McA. Gordon and J. Luecke: Non-integral toroidal Dehn surgeries, Comm. Anal. Geom. 12 (2004), 417-485.
[13] C.McA. Gordon and J. Luecke: Toroidal and boundary-reducing Dehn fillings, Topology Appl. 93 (1999), 77-90.
[14] C.McA. Gordon and Y.-Q. Wu: Toroidal Dehn fillings on hyperbolic 3-manifolds, Mem. Amer. Math. Soc. 194 (2008) 140 pp.
[15] K. Ichihara: Exceptional surgeries and genera of knots, Proc. Japan Acad., Ser. A 77 (2001), 66-67.
[16] K. Ichihara and M. Teragaito: Klein bottle surgery and genera of knots, Pacific J. Math. 210 (2003), 317333.
[17] S. Lee: Toroidal surgeries on genus two knots, J. Knot Theory Ramifications 18 (2009), 1205-1225.
[18] W.B.R. Lickorish: A representation of orientable combinatorial 3-manifolds, Ann. of Math. 76 (1962), 531-540.
[19] D. Matignon and N. Sayari: Longitudinal slope and Dehn fillings, Hiroshima Math. J. 33 (2003), 127-136.
[20] Y. Ni and X. Zhang: Detection of knots and a cabling formula for A-polynomials, Algebr. Geom. Topol. 17 (2017), 65-109.
[21] J. Osoinach: Manifolds obtained by surgery on an infinite number of knots in S^{3}, Topology 45 (2006), 725-733.
[22] G. Perelman: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, arXiv:math/0307245 (2003).
[23] G. Perelman: Ricci flow with surgery on three-manifolds, arXiv:math/0303109 (2003).
[24] G. Perelman: The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159 (2002).
[25] D. Rolfsen: Knots and Links, Mathematics Lecture Series, 7, Publish ot Perish, Inc., Berkeley, Calif., 1976.
[26] M. Teragaito: Toroidal surgeries on hyperbolic knots, Proc. Amer. Math. Soc. 130 (2002), 2803-2808.
[27] M. Teragaito: Toroidal surgeries on hyperbolic knots II, Asian J. Math. 7 (2003), 139-146.
[28] M. Teragaito: Distance between toroidal surgeries on hyperbolic knots in the 3-sphere, Trans. Amer. Math. Soc. 358 (2006), 1051-1075.
[29] M. Teragaito: Non-invertible knots having toroidal Dehn surgery of hitting number four, Hiroshima Math. J. 38 (2008), 447-454.
[30] M. Teragaito: Hyperbolic knots with three toroidal Dehn surgeries, J. Knot Theory Ramifications 17 (2008), 1051-1061.
[31] M. Teragaito: Toroidal Dehn surgery on hyperbolic knots and hitting number, Topology Appl. 157 (2010), 269-273.
[32] W. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381.
[33] A.H. Wallace: Modifications and cobounding manifolds, Canad. J. Math. 12 (1960), 503-528.

Mario Eudave-Muñoz
Instituto de Matemáticas
Universidad Nacional Autónoma de México
Ciudad Universitaria
Ciudad de México 04510
México
and
CIMAT, A.P. 402, 36000 Guanajuato, Gto.
México
e-mail: mario@ matem.unam.mx
Araceli Guzmán-Tristán
Facultad de Ciencias
Universidad Nacional Autónoma de México
Ciudad Universitaria
Ciudad de México 04510
México
e-mail: guzman@matem.unam.mx

