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Abstract
Given a set X, we provide the algebraic counterpart of the (mixed) Reidemeister moves for

virtual knots and links, with semi-arcs labeled by X: we define (commutative and noncommu-
tative) invariants with values in groups, using “2-cocycles”, and we also introduce a universal
group U fg

nc (X) and functions π f , πg : X×X → U fg
nc (X) governing all 2-cocycles in X. We exhibit

examples of computations -of the group and their invariants- achieved using GAP [7].

Introduction and preliminaries

In [6] we constructed an invariant for knots and links using noncommutative 2-cocycles,
that is, for (X, σ) a special solution of the Yang-Baxter equation (see definitions of biquan-
dle below) and a map f : X × X → G, where G is a (eventually) non-abelian group, and f
satisfies certain equations that we call noncommutative 2-cocycle conditions. In this way
a noncommutative version of the state-sum invariant can be defined. In this work we gen-
eralize this construction for virtual knots and links. Since a (diagram of a) virtual link has
two types of crossings, for a given set X of possible labels for the semi arcs, we need two
rules for coloring semi arcs in a crossing, say (X, S ) and (X, β), and also we need two types
of weights. We consider pairs f , g : X × X → G that we call “noncommutative 2-cocycle
pairs”. The strategy consists in three steps:

• Ask invariance under generalized (i.e. classical, virtual or mixed) Reidemeister
moves for colorings using some label set X: this step was already done in [2], we
recall the notion in Definition 6.
• Ask invariance under generalized Reidemeister moves for products of weights in a

given order, for a given pair of weight functions f , g : X × X → G, where G is some
(maybe non commutative) group, the map f determines the weights for classical
crossings and g for the virtual ones.
• Find a target group G and 2-cocycles f , g with values in G. We solve this problem

in a universal way.

Remark 1. If the group is abelian and the map β in Definition 6 is of the form β(x, y) =
(a−1y, ax), this construction -assuming 2 is invertible- gives the “state-sum” considered
also in [2], but there are much more general solutions for “β” , and also there are gen-
uine non-commutative examples, in Section 3 we provide an example of a non-trivial non-
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commutative 2-cocycle whose abelianization is trivial.

Remark 2. After defining the group U fg
nc (X) (see Definition 31 in Section 2) that has the

property of being the universal target of noncomutative 2-cocycle pairs for a given (X, S , β),
one can see that there is a canonical choice of 2-cocycles, so the invariant that a priori
depends on the set of colorings and a choice of a non-commutative 2-cocycle pair, it is
actually determined by intrinsic properties of the set of colorings.

Considering virtual pairs of the form (X,flip,β) we produce non-trivial and different ways
to generalize the linking number to virtual links or knots (see Example 24 and Remark 26),
including the “self linking number” introduced by Kauffman in [11].

The contents of this work are as follows: after recalling the combinatorial definition of
a virtual link or knot, we introduce, in Section 1, the notion of non-abelian 2-cocycle pair.
Using this notion we propose the noncommutative invariant in Definition 20, proving that
it is actually an invariant. In Section 2 we define a group together with a noncommutative
2-cocycle pair that has the universal property as target of noncommutative 2-cocycles. This
group is defined in terms of generators and relations, and it is actually computable for virtual
pairs of small cardinality. We end by computing invariants of some virtual knots and links
using this universal group.

Definition 3. A set theoretical solution of the Yang-Baxter equation is a pair (X, σ) where
σ : X × X → X × X is a bijection satisfying

(Id × σ)(σ × Id)(Id × σ) = (σ × Id)(Id × σ)(σ × Id)

Notation: σ(x, y) = (σ1(x, y), σ2(x, y)) and σ−1(x, y) = σ(x, y).
A solution (X, σ) is called non degenerated, or birack if in addition:

1. (left invertibility) for any x, z ∈ X there exists a unique y such that σ1(x, y) = z,
2. (right invertibility) for any y, t ∈ X there exists a unique x such that σ2(x, y) = t.

A birack is called biquandle if, given x0 ∈ X, there exists a unique y0 ∈ X such that
σ(x0, y0) = (x0, y0). In other words, if there exists a bijective map s : X → X such that

{(x, y) : σ(x, y) = (x, y)} = {(x, s(x)) : x ∈ X}
Remark 4. The biquandle condition, from the perspective of knots and links, is intro-

duced in order to have compatibility with first Reidemeister move when coloring with (X, σ).
From the algebraic point of view, it can be proven that (X, σ) is a biquandle if and only if its
derived rack is a quandle (see Lemma 0.3 in [6] for biquandle equivalent conditions).

Following Kauffman [10], a virtual link or knot can be defined using diagrams with two
types of crossings: classical and virtual ones; a virtual crossings will be a 4-valent ver-
tex with a small circle around it. Virtual links/knots may be considered to be equivalence
classes of planar virtual knot diagrams under the equivalence relation generated by the three
(classical) Reidemeister moves, the virtual moves and a mixed Reidemeister move.

All links and knots considered in this work will be oriented ones. A useful reduction is
proved in [2]:
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Classical Reidemeister moves:
RI, RII and RIII.

Virtual Reidemeister moves:
vRI, vRII, vRIII

Mixed Reidemeister move: mixed RIII

Lemma 5 (Lemma 2.4, [2]). The classical and virtual II moves, together with one ori-
ented mixed RIII or vRIII move, imply the other oriented mixed RIII and vRIII moves. That
is, we can reverse the direction of any strand in type mixed RIII or vRIII move using a
sequence of RII and vRII moves.

Definition 6. A pair of biquandles (X, S ), (X, β), (shortly (X, S , β)) is called a virtual pair
if β2 = 1 and (1 × β)(S × 1)(1 × β) = (β × 1)(1 × S )(β × 1). This notion is also called virtual
invariant in [1].

Example 7. If (X, S ) is a biquandle and a ∈ Aut(X, S ), that is, a : X → X is a bijection
satisfying (a × a)S (a−1 × a−1) = S , then one can consider β(x, y) = (a−1y, ax). It is easy to
check that we get a virtual pair in that way.

Not every virtual pair arise as in the above construction, if S is involutive (i.e. S 2 = Id)
with S (x, y) � (a−1y, ax), then (X, S , S ) is a virtual pair. But there are also different examples
with non-involutive S , already with |X| = 3. The following is an example with cardinal 4:

Example 8. X = Z/4Z, S (x, y) = (−y, x + 2y)

β(x, y) =
{

(y, x) if x or y is odd
(y + 2, x + 2) if x and y are even
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1. Non-abelian 2-cocycle pair

1. Non-abelian 2-cocycle pair1.1. Cocycle equations.
1.1. Cocycle equations. We begin this section by introducing the notion of noncommu-

tative 2-cocycle pair. If one analyzes the properties that a general weight (see subsection
1.2) must satisfy in order to generalize the construction given in [6] to the virtual case, then
one ends with the following definition:

Definition 9. Let H be a (not necessarily abelian) group and (X, S , β) a virtual pair. A
pair of functions f , g : X × X → H is a noncommutative 2-cocycle pair if:

• the pair f , S satisfies:
f1) f

(
x, y
)
f
(
S 2(x, y), z

)
= f
(
x, S 1(y, z)

)
f
(
S 2(x, S 1(y, z)), S 2(y, z)

)
,

f2) f
(
S 1(x, y), S 1(S 2(x, y), z)

)
= f
(
y, z
)
,

f3) f (x, s(x)) = 1 (recall the map s : X → X from Definition 3),
• the pair g, β satisfies:

g1) g(x, sβ(x)) = 1 (notice that β involutive implies that (X, β) is a biquandle, hence,
there is an associated map sβ : X → X),

g2) g(x, y)g
(
β(x, y)

)
= 1,

g3) g
(
x, y
)
g
(
β2(x, y), z

)
= g
(
x, β1(y, z)

)
g
(
β2(x, β1(y, z)), β2(y, z)

)
,

g4) g
(
y, z
)
g
(
β2(x, β1(y, z)), β2(y, z)

)
= g
(
x, y
)
g
(
β1(x, y), β1(β2(x, y), z)

)
,

g5) g
(
y, z
)
g
(
x, β1(y, z)

)
= g
(
β2(x, y), z

)
g
(
β1(x, y), β1(β2(x, y), z)

)
,

• and compatibility conditions between f , g, β, S :
m1) g

(
y, z
)
= g
(
S 1(x, y), β1(S 2(x, y), z)

)
,

m2) g(y, z)g
(
x, β1(y, z)

)
= g
(
S 2(x, y), z

)
g
(
S 1(x, y), β1(S 2(x, y), z

)
,

m3) g
(
x, β1(y, z)

)
f
(
β2(x, β1(y, z)), β2(y, z)

)
= f (x, y)g

(
S 2(x, y), z

)
are satisfied for any x, y, z ∈ X.

Example 10. Let (X, S , β) be as in Example 8, let H be the group with generators {a, b, c, d,
h} and relations

bc = cb, c2 = 1, [h, a] = [h, b] = [h, c] = [h, d] = 1,

define f , g : X × X → H by the tables

f 0 1 2 3

0 1 a 1 a
1 b c bc 1
2 1 d 1 d
3 b 1 bc c

g 0 1 2 3

0 1 h 1 h
1 h−1 1 h−1 1
2 1 h 1 h
3 h−1 1 h−1 1

One can check by hand that the pair ( f , g) is a 2-cocycle pair, and after Theorem 32 we will
see that any other 2-cocycle pair ( f̃ , g̃) : X × X → H̃ necessarily factorizes through this pair
and a group homomorphism ρ : H → H̃.

Example 11. If X = {1, 2} and S=β=flip, then the cocycle conditions f3, g1 and g2 are

f (1, 1) = f (2, 2) = g(1, 1) = g(2, 2) = 1

g(1, 2) =: h, g(2, 1) = h−1
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Call a = f (1, 2) and b = f (2, 1), conditions f1, f2, g3-g5 and m1 m2 are trivially satisfied
and condition m3 is

ah = ha, bh = hb.

So, if one takes H the group freely generated by {a, b, h} with relations ah = ha and bh = hb,
then the pair f , g defined by g(1, 2) = h = g(2, 1)−1, f (1, 2) = a, f (2, 1) = b and f (1, 1) =
f (2, 2) = g(1, 1) = g(2, 2) = 1 is a 2-cocycle pair.

Next we consider some special cases and analyze the general equations for each case.

Some special cases
If (X, S ) is a biquandle, a ∈ Aut(X, S ) and β(x, y) = (a−1y, ax), then equations f1,f2,f3

remain the same. An easy computation shows that g3 together with the choice of y =
ax gives g(x, z) = g(ax, az) for all x, z. Using this condition, the other equations may be
simplified giving the following (equivalent) set:

g0) g(x, z) = g(ax, az)
g1) g(x, ax) = 1,
g2) g(x, y)g

(
a−1y, ax

)
= 1,

g3) g
(
x, y
)
g
(
x, z
)
= g
(
x, z
)
g
(
x, y
)
,

g4) g
(
y, z
)
g
(
x, y
)
= g
(
x, y
)
g
(
y, z
)
,

g5) g
(
y, z
)
g
(
x, z
)
= g
(
x, z
)
g
(
y, z
)
,

m1) g
(
y, z
)
= g
(
S 1(x, y), a−1z

)
,

m2) g
(
S 2(x, y), z

)
g
(
y, z
)
= g(y, z)g

(
x, a−1z

)
,

m3) g
(
x, a−1z

)
f
(
ax, ay

)
= f (x, y)g

(
S 2(x, y), z

)
.

Notice that g3, g4, g5 are automatic if the group is abelian. Actually, when the group is
abelian, the equations m1, m2 and m3 can be replaced by

m1)’ g
(
y, z
)
= g
(
S 1(x, y), a−1z

)
,

m2)’ g
(
x, z
)
= g
(
S 2(x, y), az

)
,

m3)’ f
(
ax, ay

)
= f (x, y).

Another interesting situation is when the biquandle is given by a quandle, that is S (x, y) =
(y, x � y). In this case f2 is automatic, and one can make explicit S 1 and S 2 giving the
following:

Proposition 12. If X = (Q, �) is a quandle and a ∈ Aut(Q), then ( f , g) is a non-abelian
2-cocycle pair for β(x, y) = (a−1y, ax) and S (x, y) = (y, x � y) if and only if they verify the
following equations

f1) f
(
x, y
)
f
(
x � y, z

)
= f
(
x, z
)
f
(
x � z, y � z

)
,

f3) f (x, x) = 1,

g0-m1-m2) g(x, z) = g(ax, z) = g(x, az) = g(x � y, z),
g1) g(x, x) = 1,
g2) g(x, y)g

(
y, x
)
= 1,

g3) g
(
x, y
)
g
(
x, z
)
= g
(
x, z
)
g
(
x, y
)
,

g4) g
(
y, z
)
g
(
x, y
)
= g
(
x, y
)
g
(
y, z
)
,

g5) g
(
y, z
)
g
(
x, z
)
= g
(
x, z
)
g
(
y, z
)
,

m3) g
(
x, z
)
f
(
ax, ay

)
= f (x, y)g

(
x � y, z

)
.
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Proof. All of them are simple specializations to this particular case, except

g(x, z) = g(x � y, z),

(We thank the referee for pointing out this part.) that is the combination of
g5) g

(
x, z
)
g
(
y, z
)
= g
(
y, z
)
g
(
x, z
)
,

m2) g
(
x � y, z

)
g
(
y, z
)
= g(y, z)g

(
x, a−1z

)
, and

m1) g
(
x, z
)
= g
(
x, a−1z

)
.

�

Corollary 13. Let (Q, �) be a quandle, a ∈ Aut(Q, �), denote Inn(Q) the subgroup gen-
erated by maps of the form − � y, and consider G = 〈Inn(Q), a〉 the subgroup generated by
Inn(Q) and a. If G acts transitively on X then g ≡ 1.

Proof. Given x, z ∈ X, the equality

g(x � y, z) = g(x, z) = g(ax, z)

says that

g(τ(x), z) = g(x, z) ∀τ ∈ G,

but if G acts transitively on X, then there exist τ such that τ(x) = z, and so

g(x, z) = g(τ(x), z) = g(z, z) = 1, ∀x, z ∈ X.

�

Notice that in Proposition 12, condition m3 is nontrivial even if g ≡ 1. We mention
another special case:

Corollary 14. Let X = {1, . . . , n} and a(x) = x + 1 Mod n, then ( f , g) is a non-abelian
2-cocycle pair for S=flip and β(x, y) = (a−1y, ax) if and only if g ≡ 1,

f (x, y) = f (ax, ay), f (x, x) = 1

and

f
(
x, y
)
f
(
x, z
)
= f
(
x, z
)
f
(
x, y
)
.

In particular, for n = 2, f is fully (and freely) determined by f (1, 2).

Particular case β=flip and H an abelian group
The specialization in this case gives the equations f1, f2, f3 together with
g1) g(x, x) = 1,
g2) g(x, y)g

(
y, x
)
= 1.

m1) g
(
y, z
)
= g
(
S 1(x, y), z

)
,

m2) g
(
x, z
)
= g
(
S 2(x, y), z

)
.

Connected components
Let (Q, �) be a quandle and consider the equivalence relation generated by x � y ∼

x, ∀x, y ∈ Q. Recall that Q is called connected if there is only one equivalence class.
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Generalizing this definition, one can consider, for a biquandle (X, S ), the equivalence
relation generated by

∀x, y ∈ X, x ∼ S 1(x, y) and y ∼ S 2(x, y),

that is, if S (x, y) = (y′, x′) then x ∼ x′ and y ∼ y′. The equivalence classes are called
connected components, and the biquandle (X, S ) is called connected if there is only one
class. Clearly if S is given by a quandle then this definition agrees with the previous one.

For a virtual pair (X, S , β) there is also a natural equivalence relation, the one generated
by

∀x, y ∈ X, x ∼ S 1(x, y) ∼ β1(x, y)

and

y ∼ S 2(x, y) ∼ β2(x, y).

That is, if S (x, y) = (y′, x′) and β(x, y) = (y′′, x′′) we are setting x ∼ x′ ∼ x′′, y ∼ y′ ∼ y′′.
Definition 15. For a virtual pair (X, S , β), equivalent classes of elements of X are called

connected components. The virtual pair (X, S , β) is called connected if there is only one
class.

Remark 16. If one is interested in knots, then it is clear that one can restrict the attention
to connected virtual pairs, because a coloring of a knot only uses elements of the same
connected component of X.

Example 17. If the biquandle (X, S ) is already connected then (X, S , β) is obviously con-
nected, the same for the biquandle (X, β). With the help of a computer one can check that
for cardinal 2,3,5 these are the only cases. For cardinal 4 there are examples of connected
virtual pairs (X, S , β) with nonconnected (X, S ) and nonconnected (X, β). More precisely,
there are 167 (isomorphism classes of) connected virtual pairs of size 4, and 10 of them
have disconnected S and β. Similar thing happens in cardinal 6, see table in subsection 2.2.

A straightforward consequence of m1 and m2, in the same spirit of Corollary 13, is:

Corollary 18. If (X, S ) is a connected biquandle and β=flip then g ≡ 1.

On the opposite side, if the biquandle is trivial (i.e. S (x, y) = (y, x)) then m1) and m2) are
trivial, the conditions for g are only g(x, x) = 1 and g(x, y) = g(y, x)−1, as in Example 11.

Next we will construct an invariant for oriented knots or links from a virtual pair (X, S , β)
and a 2-cocycle pair ( f , g).

1.2. Weights.
1.2. Weights. Let (X, S , β) be a virtual pair, H a group and f , g : X×X → H a non-abelian

2-cocycle pair. Let L = K1 ∪ · · · ∪ Kr be a virtual oriented link diagram on the plane, where
K1, . . . ,Kr are connected components, for some positive integer r. A coloring of L by X is a
rule that assigns an element of X to each semi-arc of L, in such a way that for every regular
crossing (figure on the left corresponds to a positive crossing and figure on the right to a
negative one):
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where (z, t) = S (x, y) and in case of a virtual crossing:

x ⊗���
���

��

y

����
��

��
��

z t

where (z, t) = β(x, y).

Remark 19. The conditions for (X, S , β) to be a virtual pair are precisely the compatibility
of the set of colorings with the Reidemeister moves (RI, RII, RIII, vRI, vRII, vRIII and
mixed RIII), so given (X, S , β) a virtual pair, the number of colorings of a link (or a knot)
using (X, S , β) is an invariant of that link (or knot).

Let  ∈ ColX(L) be a coloring of L by X and (b1, . . . , br) a set of base points on the
components (K1, . . . ,Kr). Let τ(i) = {τ(i)

1 , . . . , τ
(i)
k(i)
}, for i = 1, . . . , r, be the ordered set of

regular crossings such that the under-arc belongs to component i or it is virtual crossing
involving component i. The order of the set τ(i) is given by the orientation of the component
starting at the base point.

At a positive crossing τ, let xτ, yτ be the color on the incoming arcs. The Boltzmann
weight at a positive crossing τ is Bf ,g(τ,) = f (xτ, yτ). At a negative crossing τ, de-
note S (xτ, yτ) the colors on the incoming arcs. The Boltzmann weight at τ is Bf ,g(τ,) =
f (xτ, yτ)−1

At a virtual crossing τ, let xτ, yτ be the color on the incoming arcs. The Boltzmann weight
at τ is Bf ,g(τ,) = g(xτ, yτ).

xτ

⊗����
��

����
��

�

yτ

����
��

��
��

��
��

�

� g(xτ, yτ)

β1(xτ, yτ) β2(xτ, yτ)

We will show that a convenient product of these weights is invariant under Reidemeister
moves. More precisely, take an oriented component, start at a base point, take the product
of Boltzmann weights associated to the crossing whenever it is a virtual crossing, or the
crossing is classical but one is going through the under arc.

For a group element h ∈ H, denote [h] the conjugacy class to which h belongs.
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Definition 20. The set of conjugacy classes
−→
Ψ(L, f , g) =

−→
Ψ(X, f .g)(L) = {[Ψi(L,, f , g)]} 1≤i≤r

∈ColX (L)

whereΨi(L,, f , g) =
∏k(i)

j=1 Bfg(τ
(i)
j ,) (the order in this product is following the orientation

of the component) is called the conjugacy biquandle cocycle invariant of the link.

The following is our main theorem:

Theorem 21. The conjugacy biquandle cocycle Ψ is well defined and then define a
knot/link invariant.

Remark 22. This invariant clearly generalizes the one constructed in [6] by simply taking
β = flip and g ≡ 1. On the opposite side, if one chooses f ≡ 1 and general g, this invariant
will be trivial on classical links or knots, so a nontrivial g may detect virtuality.

Example 23. Take the group H = 〈h〉, X = {1, 2}, S = β = flip, f ≡ 1, g(1, 1) = g(2, 2) =
1, g(1, 2) = g(2, 1)−1 = h. Here we show all possible colorings and the corresponding
invariants.

1

��

1

��
1

⊗
��

1

		

� {1, 1}

1





1

�� 1

��

2

��
2

⊗
��

1

��

� {h−1, h−1}

1



2

��

2

��

1

��
1

⊗
��

2

		

� {h, h}

2





1

�� 2

��

2

��
2

⊗
��

2

		

� {1, 1}

2





2

��

In particular, this link is nontrivial and non classical.

Proof of Theorem 21. We will check the product of weights is invariant under Reide-
meister moves. In [6] calculations due to regular crossings can be found, remains to consider
virtual and mixed Reidemeister moves. Following Lemma 5 we will check only one orien-
tation of arcs in each Reidemeister move (the rest will be equivalent).

• Virtual Reidemeister type I move:
β(x, sβ(x)) = (x, sβ(x))

x�� ��⊕ �� sβ(x)�	
��

x

x x
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the condition (g1) g(x, sβ(x)) = 1, assures that the factor due to this crossing will not
change the product.
• Virtual Reidemeister type II move:

Take, for example, the following diagram:

Condition (g2) assures the product of weights due to these crossings will not
change the product.
• Virtual Reidemeister type III move:

Start by naming the incoming arcs x, y, z, then the outcoming arcs are respectively
equal as β is a solution of YBeq.

The product of the weights following the horizontal arc, in the first diagram, is:

A1 = g(x, y) g(β2(x, y), z)

and in the second diagram is:

B1 = g(x, β1(y, z)) g(β2(x, β1(y, z)), β2(y, z))

A1 = B1 is item (g3) in Definition 9.
The product of the weights following the arc labeled by y, in the first diagram, is:
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A2 = g(x, y) g(β1(x, y), β1(β2(x, y), z))

and in the second, is:

B2 = g(y, z) g(β2(x, β1(y, z)), β2(y, z))

A2 = B2 is item (g4) in Definition 9.
The product of the weights following the arc labeled by z, in the first diagram, is:

A3 = g(β2(x, y), z) g(β1(x, y), β1(β2(x, y), z))

and in the second, is:

B3 = g(y, z) g(x, β1(y, z))

A3 = B3 is item (g5) in Definition 9.
• Mixed virtual Reidemeister type III move:

Start by naming, in both diagrams, x, y, z the incoming arcs. The outcoming arcs
are respectively equal as (X, S , β) is a virtual pair.

y

⊗���
��

��
��

��
��

���
��

��
��

��
��

�

z

����
��

��
��

��
��

��
��

��
��

��
��

��
�

x
⊗ �� β2(S 2(x,y),z)

β1(S 1(x,y),β1(S 2(x,y),z)) β2(S 1(x,y),β1(S 2(x,y),z))

The product of the weights following the arc labeled by x in the first diagram is:

A1 = f (x, y) g
(
S 2(x, y), z

)
and in the second diagram is:

B1 = g
(
x, β1(y, z)

)
f
(
β2(x, β1(y, z)), β2(y, z)

)
A1 = B1 is item (m3) in Definition 9.
The product of the weights following the arc labeled by y in the first diagram is:

A1 = g
(
S 1(x, y), β1(S 2(x, y), z)

)
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and in the second diagram is:

B1 = g(y, z)

A1 = B1 is item (m1) in Definition 9.
The product of the weights following the arc labeled by z in the first diagram is:

A1 = g
(
S 2(x, y), z

)
g
(
S 1(x, y), β1(S 2(x, y), z)

)
and in the second diagram is:

B1 = g(y, z) g
(
x, β1(y, z)

)
A1 = B1 is item (m2) in Definition 9.

This shows that the product of the weights does not change under generalized Reidemeis-
ter moves. A change of base points causes cyclic permutations of Boltzmann weights, and
hence the invariant is defined up to conjugacy. �

Example 24. In [8] the authors mention that there are several ways to generalize the no-
tion of linking number to the virtual case. For 2-component links, they give two independent
versions of the linking number: the invariant lk 1

2
may be computed as a sum of signs of real

crossings where the first component passes over the second one. Similarly, lk 2
1

is defined by
exchanging the components in the definition of lk 1

2
.

In our context, previous definitions can be achieved in the following way: take a two
component (virtual) link. Take (X, S , β) the virtual pair with S = β = flip and f , g a 2-cocycle
pair with g = 1. Take two different elements 1, 2 ∈ X. Color “the first” component with color
1 and “the second” component with color 2. The invariant for the second component will
be f

lk 1
2 (2, 1). The invariant for the first component will be f

lk 2
1 (1, 2). Recall (see Example

11) that for X={1, 2}, S=β=flip , cocycle pairs can be obtained considering G = Free{a, b}×
Free{h} and f , g : X × X → G defined by

f (1, 1) = f (2, 2) = g(1, 1) = g(2, 2) = 1

g(1, 2) = h, g(2, 1) = h−1

f (1, 2) = a, f (2, 1) = b

Example 25. Take X = {0, 1} = Z/2Z, S = flip and β given by

β(0, 0) = (1, 1), β(1, 1) = (0, 0),

β(0, 1) = (0, 1), β(1, 0) = (1, 0)

One can check that this rule can be written as β(x, y) = (y − 1, x + 1) so it is an involutive
biquandle, and also one can easily check that the coloring rule for (X, S , β) is the rule of
“changing the color when going trough a virtual crossing and not changing the color when
the crossing is classical”, just as in [11]. If one considers the 2-cocycle equations then (see
Corollary 14) we are lead to g ≡ 1 and a group H = 〈a〉 with f : X × X → H satisfying
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f (1, 0) = f (0, 1) = a, f (0, 0) = 1, f (1, 1) = 1.

If one uses this cocycle pair for a classical 2-component link, then exponent of a is the
linking number. So, if one uses this cocycle pair for virtual knots or links, one gets a different
generalization of the linking number to the virtual case (see [11] for the notion of “self-
linking number”).

Remark 26. Given (X, S = flip), the condition for an involutive β to be compatible with
S , in the sense that (X, S , β) is a virtual pair, is non-trivial. Nevertheless, there are plenty
of examples; for instance, if |X| = 7, there are 3456 involutive solutions, 1959 of them are
compatible with S = flip.

1.3. Cohomologous pairs.
1.3. Cohomologous pairs. From the following lemma we propose the notion of coho-

mologous 2-cocycle pair:

Lemma 27. Let f , g : X × X → G be a 2-cocycle pair and λ : X → G be a map. If one
defines

fλ(x, y) := λ(x) f (x, y)λ(S 2(x, y))−1

gλ(x, y) := λ(x)g(x, y)λ(β2(x, y))−1

then

• fλ always satisfies f1,
• fλ satisfies f2 ⇐⇒ λ(y) = λ(S 1(x, y)) for all x, y,
• fλ satisfies f3 ⇐⇒ λ(x) = λ(sS (x)) for all x,
• gλ satisfies g1 ⇐⇒ λ(y) = λ(sβ(y)) for all y,
• gλ always satisfies g3,
• λ(y) = λ(β1(x, y)) for all x, y ⇐⇒ λ(β2(x, y)) = λ(x) for all x, y.
• If g(x, y) ≡ 1, then 1λ verifies g2 ⇐⇒ λ(x)λ(β2(x, y))−1λ(β1(x, y))λ(y)−1 = 1 ∀x, y.
• If λ(y) = λ(β1(x, y)) ∀x, y, then gλ satisfies g2 ⇐⇒ [λ(x), g(x, y)][g(x, y), λ(y)] = 1

for all x, y, where the brackets denote the commutator. If also λ(x) commutes with
g(x, y) for all y then gλ = g.

Definition 28. Let H be a group, (X, S , β) be a virtual pair. Two 2-cocycle pairs ( f , g)
and ( f̃ , g̃) are called cohomologous if g = g̃ and there exists λ : X → H such that

f̃ (x, y) = λ(x) f (x, y)[λ(S 2(x, y))]−1

with λ satisfying
• λ(x) = λ(sS (x)),
• λ(y) = λ(S 1(x, y)),
• λ(y) = λ(β1(x, y)),
• for all x, and y, λ(x) commutes with g(x, y).

From Lemma 27 above one can easily prove the following:

Proposition 29. If ( f , g) is a 2-cocycle pair and a map λ : X → H satisfies the four
conditions given in Definition 28, then the pair ( fλ, g) is a two cocycle pair which is coho-
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mologous to ( f , g).

And one can also prove the expected result:

Proposition 30. If ( f , g), ( f̃ , g) are two cohomologous noncommutative 2-cocycle pairs
then

[Ψi(L,, f , g)] = [Ψi(L,, f̃ , g)].

Proof. Let us suppose f̃ (x, y) = γ(x) f (x, y)[γ(S 2(x, y))]−1. Take a link L, pick a connected
component K and a base point. If every crossing in K is virtual it is obvious. If every
crossing in K is classical see [6]. If K has both, virtual and classical crossings:

the product of weights for the horizontal line is:

f̃ (x, y)g(S 2(x, y), z) = λ(x) f (x, y)[λ(S 2(x, y))]−1g(S 2(x, y), z) =

λ(x) f (x, y)g(S 2(x, y), z)
[
λ((S 2(x, y))

]−1
= λ(x) f (x, y)g(S 2(x, y), z)

[
λ(β2(S 2(x, y), z))

]−1

the product of weights for the horizontal line is:

g(x, y) f̃ (β2(x, y), z) = g(x, y)λ(β2(x, y)) f (β2(x, y), z)
[
λ
(
S 2(β2(x, y), z)

)]−1

hence

g(x, y)λ(x) f (β2(x, y), z)
[
λ
(
S 2(β2(x, y), z)

)]−1

= λ(x)g(x, y) f (β2(x, y), z)
[
λ
(
S 2(β2(x, y), z)

)]−1

�
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2. Universal noncommutative 2-cocycle pair

2. Universal noncommutative 2-cocycle pair2.1. Universal construction.
2.1. Universal construction. Given a virtual pair (X, S , β) we shall define a group to-

gether with a universal 2-cocycle pair in the following way:

Definition 31. Let U fg
nc = U fg

nc (X, S , β) be the group freely generated by symbols (x, y) f

and (x, y)g with relations
f1)
(
x, y
)

f
(
S 2(x, y), z

)
f =
(
x, S 1(y, z)

)
f
(
S 2(x, S 1(y, z)), S 2(y, z)

)
f

f2)
(
S 1(x, y), S 1(S 2(x, y), z)

)
f =
(
y, z
)

f
f3)
(
x, s(x)

)
f = 1

g1)
(
x, sβ(x)

)
g = 1

g2)
(
x, y
)
g

(
β(x, y)

)
g = 1

g3)
(
x, y
)
g

(
β2(x, y), z

)
g =
(
x, β1(y, z)

)
g

(
β2(x, β1(y, z)), β2(y, z)

)
g

g4)
(
y, z
)
g

(
β2(x, β1(y, z)), β2(y, z)

)
g =
(
x, y
)
g

(
β1(x, y), β1(β2(x, y), z)

)
g

g5)
(
y, z
)
g

(
x, β1(y, z)

)
g =
(
β2(x, y), z

)
g

(
β1(x, y), β1(β2(x, y), z)

)
g

m1)
(
y, z
)
g =
(
S 1(x, y), β1(S 2(x, y), z)

)
g

m2)
(
y, z
)
g

(
x, β1(y, z)

)
g =
(
S 2(x, y), z

)
g

(
S 1(x, y), β1(S 2(x, y), z

)
g

m3)
(
x, β1(y, z)

)
g

(
β2(x, β1(y, z)), β2(y, z)

)
f =
(
x, y
)

f
(
S 2(x, y), z

)
g.

Denote fxy and gxy the class in U fg
nc of (x, y) f and (x, y)g respectively. We also define

π f , πg : X × X → U fg
nc by

π f , πg : X × X → U fg
nc

π f (x, y) := fxy,

πg(x, y) := gxy

The following is immediate from the definitions:

Theorem 32. Let (X, S , β) be virtual pair:

• The pair of maps π f , πg : X × X → U fg
nc is a noncommutative 2-cocycle pair.

• Let H be a group and f , g : X × X → H a noncommutative 2-cocycle pair, then
there exists a unique group homomorphism ρ : U fg

nc → H such that f = ρ ◦ π f and
g = ρ ◦ πg

X × X

π f

��

f �� H

U fg
nc

ρ

���
�

�
�

X × X

πg
��

g �� H

U fg
nc

ρ

���
�

�
�

Remark 33. U fg
nc is functorial. That is, if φ : (X, S , β) → (Y, S ′, β′) is a morphism of

virtual pairs, namely φ satisfy

(φ × φ)S (x1, x2) = S ′(φx1, φx2), (φ × φ)β(x1, x2) = β′(φx1, φx2)

then, φ induces a (unique) group homomorphism U fg
nc (X)→ U fg

nc (Y) satisfying
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fx1 x2 �→ fφx1φx2 gx1 x2 �→ gφx1φx2

Proof. One needs to prove that the assignment fx1 x2 �→ fφx1φx2 and gx1 x2 �→ gφx1φx2 are
compatible with the relations defining U fg

nc (X) and U fg
nc (Y) respectively, and this is clear

since (φ × φ) ◦ S = S ◦ (φ × φ) and (φ × φ) ◦ β = β ◦ (φ × φ). �

Remark 34. In order to produce an invariant of a knot or link, given a solution (X, S , β),
we need to produce a coloring of the knot/link by X, and then find a noncommutative 2-
cocycle, but since U fg

nc is functorial, given X we always have the universal 2-cocycle pair
f , g : X × X → U fg

nc (X), and hence, the information given by the invariant was already
included in the combinatorics of the colorings.

Also, if φ : X → X is a bijection commuting with S and β, then, given a coloring and
its invariant calculated with the universal cocycle, we may apply φ to each color and get
another coloring, and this will produce the same invariant pushed by φ in U fg

nc .

Example 35. Computations of Example 11 show that for X = {1, 2} and S = β = flip,
U fg

nc (X) � Free(a, b) × Free(h) where (1, 1) f = (2, 2) f = (1, 1)g = (2, 2)g = 1, (1, 2) f = a,
(2, 1) f = b, (1, 2)g = h, (2, 1)g = h−1.

Example 36. If X = {1, 2}, S (x, y) = (y + 1, x + 1) (mod 2) and β = flip, then

U fg
nc (X) � Free(c)

where c = (1, 1) f = (2, 2) f , 1 = (1, 2) f = (2, 1) f , and (x, y)g = 1 for all x, y ∈ X. This virtual
pair does not give the same information as the previous example (since for instance g ≡ 1),
but it gives a different way to generalize the linking number to virtual links.

2.2. Some examples of virtual pairs of small cardinality.
2.2. Some examples of virtual pairs of small cardinality. Using GAP, the list of bi-

quandles and involutive solutions, one can easily compute the list of (isomorphism classes
of) virtual pairs of small cardinality. We show the total amount of them in the following
table. The amount grows very fast, for cardinal 6 the computer takes too long to compute
all virtual pairs, so we put on the table only partial cases for n = 6. The notation (S , ia)
is for virtual pairs with biquandle S and involutive β of the form β(x, y) = (a−1y, ax), with
a ∈ Aut(X, S ). Notice that for each S there are as many isomorphism classes of pairs (S , ia)
as conjugacy classes of Aut(X, S ).

n 2 3 4 5 6
all virtual pairs 4 90 3517 46658

virtual pairs (S , ia) 4 38 325 41278 111151
connected virtual pairs 3 26 167 138 836
conn. virtual pairs with

non conn. S and non conn β 0 0 10 0 84

The complete list in each case can be found in http://mate.dm.uba.ar/˜mfarinat/
papers/GAP/virtual.
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3. Some virtual knots/links and their n.c. invariants

3. Some virtual knots/links and their n.c. invariants3.1. Kishino’s knots.
3.1. Kishino’s knots. We begin with an example of colorings:

Example 37. Let S be the dihedral quandle, that is X = {1, 2, 3} and S (x, y) = (y, x � y)
where x � y = 2y − x (mod 3). Aut(X, S ) can be identified with the dihedral group D3 =

S 3. There are three conjugacy classes in D3, a set of representatives is {Id, (2, 3), (1, 2, 3)}.
For a ∈ Aut(X, S ) denote ia the involutive biquandle given by ia(x, y) = (a−1(y), a(x)).
In the following table we write the number of colorings of the Kishino’s knots using the
corresponding virtual pair, so we see that they are all different.

#colorings (S , iid) (S , i(2,3)) (S , i(1,2,3))

K1 9 3 9
K2 3 9 3
K3 3 3 3

Moreover, for X = {1, 2, 3, 4} with S given by

S (1, 1) = (1, 1) S (1, 2) = (2, 4) S (1, 3) = (4, 2) S (1, 4) = (3, 3)
S (2, 1) = (3, 4) S (2, 2) = (4, 1) S (2, 3) = (2, 3) S (2, 4) = (1, 2)
S (3, 1) = (4, 3) S (3, 2) = (3, 2) S (3, 3) = (1, 4) S (3, 4) = (2, 1)
S (4, 1) = (2, 2) S (4, 2) = (1, 3) S (4, 3) = (3, 1) S (4, 4) = (4, 4)

and β = flip, then the number of colorings of K3 is 16, so K3 is also nontrivial.

3.2. Links.
3.2. Links. It is worth to notice that [1] computes virtual pairs of small cardinality. In

that work, some classes of virtual pairs are considered, the so called essential pairs, and the
welded pairs. Recall that there are “forbidden” Reidemeister moves:

These moves are not allowed in virtual knots, and if one uses both forbidden moves, then
one can “unknot” every knot/link. Essential virtual pairs are pairs that do not satisfy those
forbidden moves, in welded pairs a forbidden move is allowed (see [1] for details). In this
work we consider all virtual pairs, that’s why we have more virtual pairs that in [1]. in
particular, for n=2, the trivial example (flip, flip) is not considered in [1], and one can easily
see that the number of colorings doesn’t give any interesting information, just if the link is
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connected or not, but the 2-cocycle invariant is highly nontrivial, as we show next.
From the list of 51 virtual links provided by A. Bartholomew (these are 2-component

links with 4, 5 or 6 crossings), coloring with (X = {1, 2}, S = β = flip) (see Example 35)
and computing the invariant (coloring will not distinguish these links), leaves 18 classes. To
refine this, color with (X = {1, 2}, S = antiflip, β = flip) (i.e. Example 36) and compute the
invariant. Using both invariants leaves 38 classes. Furthermore, color with X = {1, 2, 3, 4}
and all possible virtual pairs (without computing the invariant) and get 47 classes.

We exhibit three examples of links from this list, and their invariants:

Example 38.

(X, S , β) U fg
nc v2.2 v2.3 v3.4

({1, 2},flip,flip) 〈a, b〉 × 〈h〉 4{1, 1} 2{a−1, b−1}, 2{a−1, b−1},
2{1, 1} 2{1, 1}

({1, 2},a-flip,flip) 〈c〉 4{1, 1} 2{c−2, 1}, 2{c−1, c−1},
2{1, 1} 2{1, 1}

The content of the above table is the following:
Using X = {1, 2} with S = β = flip (see Example 35) and computing the invariant gives 4

colorings to each v2.2, v2.3 and v3.4. For every coloring the invariant of v2.3 and v3.4 gives
{a−1, b−1} twice and {1, 1} twice, but the same computation for v2.2 gives always {1, 1}.

To be able to distinguish v2.3 from v3.4, consider same set X but S = antiflip and β = flip
(see Example 36), again there are 4 possible colorings for each link. The invariant gives:
{c−1, c−1} twice and {1, 1} twice for v2.3 and {c−2, 1} twice and {c−1, c−1} twice for v3.4, and
always {1, 1} for v2.2.

Remark 39. The exponent of a (or b) is the first generalization of linking number to the
virtual case (in the sense that if the link is classical then it gives the linking number). Using
the second virtual pair, the exponent of c is a different generalization of the linking number.

A non-commutative example
Consider S given by the quandle {1, 2, 3, 4} with operation

− � 1 = − � 2 = (3, 4),

− � 3 = − � 4 = (1, 2)

that is, S (x, y) = (y, x � y), and β the involutive solution
β(x, y) = (lx(y), ry(x)) where
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l1 = l2 = (1, 2),

l3 = l4 = (1, 2)(3, 4),

and ri = li (i = 1, 2, 3, 4). This is the pair number 248 in the list vp4 in [5].
Using the relations of U fg

nc = U fg
nc (X, S , β) one can easily see that

1 = (1, 1) f = (2, 2) f = (3, 3) f = (4, 4) f = (1, 1)g = (1, 2)g
= (2, 1)g = (2, 2)g = (3, 3)g = (3, 4)g = (4, 3)g = (4, 4)g

a := (1, 2) f = (2, 1) f , b := (1, 3) f = (2, 3) f

c := (1, 4) f = (2, 4) f , d := (3, 1) f = (4, 2) f

e := (3, 2) f = (4, 1) f , f := (3, 4) f = (4, 3) f

h := (1, 3)g = (1, 4)g = (2, 3)g = (2, 4)g
h−1 = (3, 1)g = (3, 2)g = (4, 1)g = (4, 2)g

So, we have 7 generators, and if one (or a computer) writes the list of all relations in terms
of a, b, c, d, e, f , h, one gets

b = ac, b = ca, c = ab, c = ba,

ab = ba, ac = ca, ah = ha, bc = cb,

bh = hc, ch = hb,

d = e f , d = f e, e = d f , e = f d, dd = ee,

d f = f d, dh = he, e f = f e,

eh = hd, f h = h f .

If one solves b, and d in terms of a, c, e, f , h, equations above translate into

b = ac, d = e f ,

ac = ca, c = aac, c = aca, aac = aca,

ah = ha, acc = cac, ach = hc,

ch = hac, ch−1 = h−1ac,

e f = f e, e = e f f , e = f e f , e f e f = ee,

e f f = f e f , e f h = he,

eh = he f , f h = h f .

One can easily see that a2 = 1, f 2 = 1, a = [h, c] (=hch−1c−1), f = [e−1, h].

Remark 40. Let G be a group, a, c, h ∈ G and assume

a2 = 1, a = [h, c], [h, a] = [c, a] = 1,

then [h, c] = [c, h] = [c−1, h−1] = [c−1, h] = [c, h−1].

Using this remark, it is an easy exercise to check the following characterization:
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Corollary 41. Denote a := [h, c] and f := [h, e], then

U fg
nc (S , β) �

Free(h, c, e)〈
a2 = [a, c] = [a, h] = 1,
f 2 = [ f , e] = [ f , h] = 1

〉 .

Remark 42. The element a is nontrivial in U fg
nc .

Proof. If one adds the relation e = 1 then (recall a := [h, c])

G := U fg
nc /〈e = 1〉 � Free(h, c)〈

a2 = [a, c] = [a, h] = 1,
〉

G can be described as a central extension of Z2 � Free(h, c)/〈[h, c]〉 over Z/2Z � 〈a : a2 =

1〉, more precisely, consider the set of monomials

M := {hic jaε : i, j ∈ Z, ε = 0, 1}
then M is a group with multiplication given by

(hic jaε)(hkclaσ) = hi+kc j+la jk+ε+σMod 2

and clearly S � M, so a � 1 in G. �

Remark 43. A famous quotient of U fg
nc is the quaternion group H = {±1,±i,± j,±k}where

e �→ 1, h �→ i, c �→ j. One can see that relations go to 1, so we have a well-defined group
homomorphism, and a �→ −1.

Remark 44. If one uses the abelianization of U fg
nc , then one gets essentially a (Laurent)

polynomial in the variables h, c, e, and clearly the element a is trivial in (U fg
nc )ab, since

a = [h, c]. But there are examples where the full non-commutative invariant gives a as
answer (see next example), so this non-commutative invariant refines the 2-cocycle one with
values only in commutative groups.

Example 45. If one uses this virtual pair and the universal 2-cocycle, then the invariant
for the virtual link v2.3 is (a, a) twice, ( f , f ) twice, and 4 times (1, 1).

3.3. State sum.
3.3. State sum. If the target group (A, ·) is abelian, then one can perform the state-sum

for a pair of maps f , g : X × X → A, defining Boltzmann Weights in the same way. For a
given coloring, consider the product over all crossings of the corresponding weights, and
then sum over all colorings. If one asks for Reidemeister invariance in this construction, the
set of equations are:
ss-f1) f (x, s(x)) = 1,
ss-f2) f

(
x, y
)
f
(
S 2(x, y), z

)
f
(
S 1(x, y), S 1(S 2(x, y), z)

)
= f
(
x, S 1(y, z)

)
f
(
S 2(x, S 1(y, z)), S 2(y, z)

)
f
(
y, z
)
,

ss-g1) g(x, sβ(x)) = 1,
ss-g2) g(x, y) g

(
β(x, y)

)
= 1,

ss-g3) g
(
x, y
)
g
(
β2(x, y), z

)
g
(
β1(x, y), β1(β2(x, y), z)

)
= g
(
x, β1(y, z)

)
g
(
β2(x, β1(y, z)), β2(y, z)

)
g
(
y, z
)
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ss-m) g(y, z) g
(
x, β1(y, z)

)
f
(
β2(x, β1(y, z)), β2(y, z)

)
= g
(
S 1(x, y), β1(S 2(x, y), z)

)
g
(
S 2(x, y), z

)
f (x, y).

Conditions ss-f1 and ss-f2 are a consequence of f1, f3, f3. Also ss-m follows from m1, m2,
m3. We have ss-g1 and ss-g2 are the same as g1 and g2. But g3, g4, and g5 imply (ss-g3)2,
that is, assuming g3 g4 and g5 one can conclude

g
(
x, y
)2
g
(
β2(x, y), z

)2
g
(
β1(x, y), β1(β2(x, y), z)

)2
= g
(
x, β1(y, z)

)2
g
(
β2(x, β1(y, z)), β2(y, z)

)2
g
(
y, z
)2

If the abelian group A has no elements of order 2, then a non-commutative 2-cocycle pair
is also a commutative 2-cocycle. One can think of the group (U fg

nc )ab as a nontrivial way of
producing cocycles for virtual state-sum invariants, at least when (U fg

nc )ab has no elements
of order 2.

4. Final questions

4. Final questions
We end with some open questions:

1. When S = flip, the compatibility condition for (an involutive) β is non-trivial, but
nevertheless there are many solutions (see Remark 26). Is there a characterization in
“involutive” terms? e.g. in terms of the dot operation (cyclic set structure), or brace,
associated to involutive solutions as considered by Rump [12]?

2. Is it possible to classify connected virtual pairs in group theoretical terms, or at least,
the indecomposable ones? The situation is well-known for quandles: recall that if
G is a group, s ∈ Aut(G), H ⊆ G a subgroup such that s(h) = h for all h ∈ H, then

Hy � Hx := Hs(yx−1)x

is a quandle structure on the homogeneous set G/H. This family of quandles contain
all indecomposable quandles because of the following characterization:

Theorem 3.1 [13] (see also [4] and [9]). Let X be an indecomposable quandle of
n elements, x0 ∈ X, z := − � x0, G = Inn(X), H = {g ∈ G : g(x0) = x0}, then
• G is a transitive group of degree n,
• z is central in H,
• X is isomorphic to G/H as quandle with s= conjugation by z.

An analogous characterization for (indecomposable) biquandles is not known, nei-
ther for (indecomposable) virtual pairs. For a given virtual pair (X, S , β), it would be
interesting to discover properties of the action of the group generated by the permu-
tations {S 1(x,−), S 2(−, y), lx, ry : x, y ∈ X}.

3. Given a finite virtual pair (X, S , β), it is easy to produce an algorithm computing
generators and relations of U fg

nc (X), but one needs to do case by case. Is there a
way to compute U fg

nc (X) in general at least for a family of virtual pairs? e.g. for
S=biAlexander switch and β affine?

4. When β=flip and g ≡ 1, then the conditions on f are the same as the 2-cocycle
condition considered in [6], which is a generalization of the quandle case considered
in [3]. Also, in [3], the authors prove that the noncommutative 2-cocycle invariant
(in the quandle case, for classical knots/links) is a quantum invariant. It seems that
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the fact that this noncommutative invariant is a quantum one may be generalized to
the biquandle case (and still classical knots or links), but it is not clear at all how
to proceed when there are virtual crossings. It would be interesting to see what
should be the “quantum algebraic” categorical data corresponding to virtual pairs
and 2-cocycle pairs.
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