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Abstract
We will give a criterion to assure that an extremal contraction of a K3 surface which is not a

Mori Dream Space produces a singular surface which is a Mori Dream Space. We list the pos-
sible Néron–Severi groups of K3 surfaces with this property and an extra geometric condition
such that the Picard number is greater than or equal to 10. We give a detailed description of
two geometric examples for which the Picard number of the K3 surface is 3, i.e. the minimal
possible in order to have the required property. Moreover we observe that there are infinitely
many examples of K3 surfaces with the required property and Picard number equal to 3.

1. Introduction

1. Introduction
The Mori Dream Spaces are projective varieties for which the Minimal Model Program

can be applied successfully, i.e. the necessary flops and contractions exist and the program
terminates. They were introduced in [4] where it is also proved that the property of being
a Mori Dream Space is essentially equivalent to the finite generation of the Cox ring of the
variety.

In this paper we discuss the following situation: let us consider a variety which is not a
Mori Dream Space and let us contract exactly one extremal ray of its effective cone. Is it
possible to obtain in such a way a Mori Dream Space? The answer to this question is known
to be yes, so the property ”to be a Mori Dream Space” is yet not preserved by resolution
of simple singularities, even if the resolution is a crepant resolution. The examples which
allow one to give a positive answer to this question are provided in [7, Theorem 5.2]. These
examples are constructed as follows: let S be a K3 surface which is a Mori Dream Space.
Then the singular variety V := (S × S )/S2, where S2 is the symmetric group, is known
to be a Mori Dream Space. The variety V is singular along the diagonal and there exists
an extremal crepant resolution of V which is the Hyperkähler variety H := Hilb2(S ). The
variety V is obtained from H by contracting the exceptional divisor over the diagonal, so V
is an extremal contraction of H. In [7] Oguiso gives examples of K3 surfaces S such that S
and V are Mori Dream Spaces but H is not. The proof of the fact that S and V are a Mori
Dream Space and H is not is based on the computation of the automorphism groups of these
varieties. Indeed, it is possible to construct K3 surfaces S such that S and V have a finite
automorphism groups, but the automorphism group of H is not finite.
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The relation among the finiteness of the automorphism group and the finite generation of
the Cox ring (so the property of being a Mori Dream Space), is deep as shown for example
by the following result, by Artebani, Hausen and Laface, [1], which will be be fundamental
in this paper: a K3 surface is a Mori Dream Space if and only if its automorphism group is
finite.

In view of the result by Oguiso on the varieties H and V , it is quite natural to ask if there
exist similar results in lower dimension, in particular for K3 surfaces. So the aim of this note
is to positively answer to the following question:

Question 1.1. Are there K3 surfaces X which are not Mori Dream Spaces and such that
the surface X′ obtained by contracting exactly one extremal ray of X is a Mori Dream Space?

We will answer to the question 1.1 both by providing an abstract algorithm which pro-
duces the Néron Severi groups of admissible examples and describing the geometry of some
of them.

Since X is a K3 surface, it is by definition smooth and minimal and so the extremal
contraction of X produces a singular surface X′. From this point of view, X is a crepant
extremal resolution of the singular surface X′, and we are constructing a crepant extremal
resolution of a Mori Dream Space which is not a Mori Dream Space. The same is true for
the Oguiso’s examples, indeed the variety H is crepant extremal resolution on V .

In Section 2 we prove that under a geometrical condition on the smooth rational curves
on X, the singular surface X′ is a Mori Dream Space if and only if the K3 surface Y whose
Néron–Severi group is isometric to the one of X′ is a Mori Dream Space. In Section 3 we
give a criterion to find the Néron–Severi group of the K3 surfaces X such that there exists an
extremal contraction producing a singular surface X′ which is a Mori Dream Space. Here
we use the results of [1] on K3 surfaces which are Mori Dream Spaces and the results of [5]
on K3 surfaces with finite automorphism group. The main result of the Section 3 is Theorem
3.4 where we prove that, under a geometric condition on the rational curves on X, if X is
a K3 surface which is not a Mori Dream Space, but which admits an extremal contraction
producing a singular surface which is a Mori Dream Space, then ρ(X) ≥ 3 and ρ(X) � 19.
Moreover, we classify all the admissible Néron–Severi groups of X if ρ(X) ≥ 10 (the reason
of this bound is only computational, and is essentially due to the fact that in [5] the same
bound is considered). Section 4 is the geometric heart of this paper. Here we give two
examples of K3 surfaces X which are not Mori Dream Spaces, but which admit an extremal
contraction producing a singular surface which is a Mori Dream Space. In both the cases
ρ(X) = 3 and the Néron–Severi groups of the surfaces obtained after the contraction are the
same. We will show that the automorphism group of the K3 surface X is infinite and we
show that some automorphisms do not descend to automorphisms of the singular model. In
Section 5 we provide other examples, giving some geometric details. In particular we will
show that there exists an infinite number of K3 surfaces of Picard number 3 which are not
Mori Dream Spaces but such that the singular surface obtained by one extremal contraction
is a Mori Dream Space, see Proposition 5.2 for a more precise statement.
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2. A criterion to conclude that the contraction of an extremal ray of a K3 surface
produces a Mori Dream Space

2. A criterion to conclude that the contraction of an extremal ray of a K3 surface
produces a Mori Dream Space

2.1. The K3 surfaces X and Y and the singular surface X′.
2.1. The K3 surfaces X and Y and the singular surface X′.

Definition 2.1. A K3 surface is a complex compact surface with trivial canonical bundle
and trivial irregularity.

We denote by ΛK3 the unique even unimodular lattice with signature (3, 19) and we ob-
serve that if S is a K3 surface, then H2(S ,Z) � ΛK3.

In the following for each lattice L and each element l ∈ L we denote by l⊥L the sublattice
of L whose elements are orthogonal to l, i.e. l⊥L := {k ∈ L such that kl = 0}.

Let X be an algebraic K3 surface (i.e. a K3 surface with an ample line bundle). The
Néron–Severi group of X is a sublattice of ΛK3 and it is hyperbolic (i.e. its signature is
(1, ρ(X)−1)). We assume that ρ(X) := rank(NS (X)) ≥ 2. We denote by L the abstract lattice
such that L � NS (X). Let us assume that there exists a smooth rational curve N on X. We
denote by N also the class of the curve N in NS (X) � L and we recall that N2 = −2. We
denote by M the sublattice of NS (X) � L which is orthogonal to N, i.e. M := N⊥L . Since
L is a hyperbolic lattice and 〈N〉 is a negative definite lattice, the lattice M is a hyperbolic
lattice. Moreover, the lattice M is primitively embedded in L, by definition. Since there
exists a primitive embedding of L in ΛK3, there exists a primitive embedding of M in ΛK3.
As a consequence of the surjectivity of the period map for K3 surfaces, there exists at least
a K3 surface (and in fact infinitely many) whose Néron–Severi group is isometric to M. Let
Y be a K3 surface such that NS (Y) � M. We observe that ρ(Y) = ρ(X) − 1.

The curve N is a smooth irreducible curves on X, so it determines a wall of the chamber
of the positive cone which coincides with the ample cone of X. Since the set of Q-divisors
is dense in the positive cone, there exists at least one pseudoample divisor which is on the
wall determined by N, i.e. there exists a pseudoample divisor orthogonal to N. Since the
set of wall is locally finite, there exists at least one pseudoample divisor which is on the
wall determined by N, but not on other walls, i.e. there exists a pseudoample divisor, say
HX , which is orthogonal to N, but not to any other smooth rational curve on X. Since the
divisor HX is orthogonal to N, it is represented by a vector in M ⊂ L � NS (X). The same
vector represent a divisor HY ∈ M � NS (Y) on Y , which is a divisor with a positive self
intersection and with a non zero-intersection with all the irreducible classes on M with self
intersection −2. Hence we can chose the ample cone of Y to be the chamber of the positive
cone of Y which contains HY . To recap we have a K3 surface X on which we fixed a smooth
rational curve N and a pseudoample divisor HX (which is orthogonal to N and not to other
irreducible smooth rational curves on X). We associate to (X,N,HX) a K3 surface Y such
that NS (Y) � M � N⊥NS (X) and HY (the divisor represented in M by the same vector which
represents HX) is ample.

Let us denote by M = {B1, . . . Brank(M)} a Z-basis of the abstract lattice M. The set
L = {B1, . . . Brank(M),N} is a Q-basis of the lattice L, i.e. every element in L is a linear
combination with rational coefficients of {B1, . . . Brank(M),N}. For certain specific lattice
L the set L is also a Z-basis for L, but this can not be guarantee in a general context.
However, every element in L which has a trivial intersection with N is a linear combination
with integer coefficients of {B1, . . . Brank(M)}.



412 A. Garbagnati

Let φ : X → X′ be the map which contracts the curve N to a point. Then X′ is a singular
variety with exactly one singular point, of type A1, which is the point φ(N).

The surface X′ is a normal surface and its Néron–Severi group is isometric to M. So,
the Néron–Severi group NS (X′) and the Néron–Severi group NS (Y) are isometric, and both
isometric to M.

By construction, we fixed a specific primitive embedding of M in NS (X), which is in fact
a marking. Let us denote this embedding by fX : M → NS (X). So NS (X′) and NS (Y)
are identified with N⊥L , and the marking fX induces the isometries fX′ : M → NS (X′) by
fY : M → NS (Y). For each vector v ∈ M we denote by DX := fX(v), DX′ := fX′(v) and
DY := fY(v). We say that the divisors DX , DX′ and DY are associated if they are the images
(for the map fX , fX′ and fY respectively) of the same vector v ∈ M. Let DX be a divisor on X
such that DX = fX(v) for a certain v ∈ M. Then DXN = 0 and so the associated vectors are
DX′ = fX′( f −1

X (DX)) and DY = fY( f −1
X (DX)).

2.2. The Nef cones of Y and X′.
2.2. The Nef cones of Y and X′.

Lemma 2.2. Let DX be a divisor on X such that DX is nef and DXN = 0. The divisor
DX′ ∈ NS (X′) associated to DX is nef.

Proof. The Lemma follows directly by [3, Example 1.4.4,ii)], but here we give a direct
proof. We denote by vD the vector in M such that fX(vD) = DX , and we recall that DX′ =

fX′(vD). Since DX is nef, for every curve CX ⊂ X, DXCX ≥ 0. Let us now consider a curve
CX′ ⊂ X′. The strict transform of CX′ on X is a curve, CX , whose class is αvC + ηN, where
vC ∈ fX(M) and α, η ∈ Q. Hence the class of CX′ is the Q-divisor α fX′(vC). So we have

DX′CX′ = vD (αvC) = vD (αvC + ηN) = DXCX ≥ 0,

where we used that fX and fX′ are isometries and the fact that vDN = 0. Hence DX′ has a
non negative intersection with all the curves in X′. We conclude that DX′ is nef. �

Lemma 2.3. Let DX be a divisor on X such that DX is nef and DXN = 0. The divisor
DY ∈ NS (Y) associated to DX is nef.

Proof. We consider a divisor DX which is nef. Let us consider the associated divisor
DY ∈ NS (Y). It suffices to show that for every effective (−2)-class RY ∈ NS (Y), RY DY ≥ 0.
Let RY be an effective (−2)-class in NS (Y). It is associated to a divisor RX ∈ NS (X). Clearly
R2

X = R2
Y = −2. Since X is a K3 surface, by the Riemann-Roch theorem there are only the

following two possibilities: either RX is effective or −RX is effective. If RX is effective, then
RXDX ≥ 0. By definition, RXN = 0 and DXN = 0 so RXDX = RY DY . Hence, RY DY ≥ 0 and
DY is nef. So it now suffices to exclude that −RX is effective. Let us consider the intersection
RXHX , since both RX and HX are contained in M ⊂ NS (X), we have RXHX = RY HY , which
is non negative, since HY is ample and RY is effective. So RXHX > 0 and HX is pseudoample,
this implies that −RX can not be effective. �

Lemma 2.4. Let DX′ ∈ NS (X′) be a nef divisor. Let DX be the divisor associated to DX′ .
Then DX ∈ NS (X) is nef (and DXN = 0).

Proof. The Lemma follows directly by [3, Example 1.4.4,i)], but here we give a direct



MDS Extremal Contractions of K3 Surfaces 413

proof.
In order to show that DX is nef we show that for every curve CX ∈ NS (X), DXCX ≥ 0.

If CX = N, then DXCX = 0. We now assume that CX � N. So φ(CX) ⊂ X′ is a curve in
X′ and CX is the strict transform of φ(CX) with respect to the blow up φ. The class of CX is
represented in NS (X) by the class α fX(vC) + ηN for a certain vC ∈ M and α, η ∈ Q. Then
φ(CX) is represented by α fX′(vC). Let us denote by vD ∈ M the vector such that DX = fX(vD).
Thus,

DXCX = fX(vD)(α fX(vC) + ηN) = αvDvC = fX′(vD) (α fX′(vC)) = DX′φ(CX)

where we used that fX(vD)N = 0 and that fX and fX′ are isometries. Since DX′ is nef,
DX′φ(CX) ≥ 0, so DXCX ≥ 0 for every curve CX in X. �

Lemma 2.5. Let DY ∈ NS (Y) be a nef divisor on Y. Let DX ∈ NS (X) be the associated
divisor on X. If there exists no a curve BX ⊂ X with self intersection −2 such that BXN = 1,
then DX is nef (and DXN = 0).

Proof. It suffices to prove that DXCX ≥ 0 for every irreducible CX curve on X with self
intersection −2. If CX = N, then DXCX = DXN = 0. So we assume that CX � N and
thus CXN ≥ 0. Let us denote by c := CXN. By the hypothesis we know that c � 1, hence
either c = 0, or c ≥ 2. The divisor CX can be written in NS (X) ⊗ Q as CX = AX − c

2 N,
where AX ∈ NS (X) ⊗ Q is a Q-divisor orthogonal to N. Since DXN = 0, DXCX = DXAX .
If c ≥ 2, then A2

X =
(
CX +

c
2 N

)2
= −2 − c2

2 + c2 ≥ 0. So any positive multiple of AX has
a positive self intersection, in particular there exists a multiple mAX , m ∈ N of AX which
is a divisor in NS (X). By Riemann–Roch theorem either mAX or −mAX is effective. Since
CX is a curve, CXHX > 0 for the pseudoample divisor HX , and thus mAXHX > 0, so mAX

is an effective divisor in X. Thus the Q-divisor AY(= fY( f −1
X (AX)) is an effective Q-divisor

on Y (since A2
Y ≥ 0 and AY HY > 0). The divisor DY is nef on Y , so DY AY ≥ 0. By

DXCX = DXAX = DY AY ≥ 0 we conclude the proof in case c ≥ 2.
If c = 0, i.e. CXN = 0, CX is by definition an effective divisor on X and the associated

divisor CY is an effective divisor on Y . So DYCY ≥ 0 and we conclude by DXCX = DYCY ≥
0. �

Remark 2.6. In Lemma 2.5, the assumption that there exists no a (−2)-curve BX such that
BXN = 1 is essential. Indeed if the curve BX exists, then the divisor DX in the statement can
not be nef. Because of the duality between the effective cone and the nef cone of a surface,
to prove that DX can not be nef, it suffices to produce an effective class EX on X such that
EXN = 0, but EY(= f −1

Y ( fX(EX))) is not effective on Y .
So we consider the curve EX = 2BX +N, which is clearly an effective class in X such that

EXN = 0.
Since EX is an effective divisor such that EX BX < 0 and EXN = 0, we conclude that any

multiple of EX is supported on BX ∪ N. Thus no positive multiples of EX can be linearly
equivalent to a positive sum of (−2) curves orthogonal to N and hence no multiples of EY

can be in the effective cone of Y .

Proposition 2.7. Let us denote by Nef(X′) and Nef(Y) the nef cones of X′ and Y respec-
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tively. Then

Nef(X′) ⊆ Nef(Y)

and the equality holds if and only if there exists no a (−2)-curve BX on X such that BXN = 1.

Proof. We first recall that the lattices NS (X′), NS (Y) and M are all isometric.
Let DX′ be a nef divisor on X′. Then the associated divisor DX is a nef divisor on X and

DXN = 0, by Lemma 2.4. This implies, by Lemma 2.3, that the corresponding divisor DY

on Y is nef. So Nef(X′) ⊆ Nef(Y).
Let DY be a nef divisor on Y . If there exists no a (−2)-curve BX on X such that BXN = 1,

then the associated divisor DX is nef on X and DXN = 0 by Lemma 2.5. This implies, by
Lemma 2.2 that the corresponding divisor DX′ on X′ is nef.

If there exists a (−2)-curve BX on X such that BXN = 1, then Nef(X′) � Nef(Y), by
Remark 2.6. �

Lemma 2.8. Let DX ∈ NS (X) be a semi-ample divisor (i.e. there exists a positive integer
m > 0 such that |mDX | is without base points) such that DXN = 0. Then the associated
divisor DX′ ∈ NS (X′) is semi-ample.

Proof. Since DX is semi-ample, there exists an integer m ∈ N such that |mDX | is base
points free. In particular |mDX | does not have fixed component. Since DXN = 0, mDXN = 0
and thus H0(X,mDX) contains sections which do not pass through any point of N. The
images of these sections under the map φ do not pass through the point φ(N) := P.

The map φ : X → X′ is an isomorphism outside N. Let us consider the sections of
H0(X,mDX), we call them s j, j = 1, . . . , 1 + (mDX)2/2. The curves φ(s j) are sections of
H0(X′,mDX′) and form a basis of this space. Viceversa, let us consider a section s′ in
H0(X,mDX′). It is the image of a curve in X which is in fact the strict transform of s′ and
which is clearly a section of mDX . Since (mDX)2 = (mDX′)2, h0(X,mDX) = h0(X,mDX′) and
so a basis of one of these two spaces induces a basis of the other. Let us assume that |mDX′ |
has a fixed point Q, i.e. all the sections in H0(X′,mDX′) passes through Q. We already
observed that Q � P = φ(N), since P is not a base point for |mDX′ |. This would imply that
φ−1(Q) is a base point for |mDX |, which is impossible since |mDX | is base points free. So
|mDX′ | is base points free and thus DX′ is semi-ample. �

2.3. Mori Dream Spaces: the surfaces Y and X′.
2.3. Mori Dream Spaces: the surfaces Y and X′. We recall the definition of Mori

Dream Space, in the context of the surfaces (and we recall that any small Q-factorial modi-
fication is an isomorphism if we are considering surfaces).

Definition 2.9. ([4]) We will call a normal projective surface X a Mori Dream Space
provided the following hold:

(1) X is Q-factorial and Pic(X) ⊗ Q ≡ NS (X) ⊗ Q;
(2) Nef(X) is the convex hull of finitely many semi–ample line bundles.

By [4, Proposition 2.9] a variety X such that Pic(X) ⊗ Q = NS (X) ⊗ Q is a Mori Dream
Space if and only if its Cox ring (X) is finitely generated.

Proposition 2.10. Let us assume that there exists no a (−2)-curve BX on X such that
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BXN = 1. Then the surface Y is a Mori Dream Space if and only if the surface X′ is a Mori
Dream Space.

Proof. We recall that every semi-ample divisor is nef. On a K3 surface also the viceversa
holds, i.e. a divisor on a K3 surface is semi-ample if and only if it is nef.

We recall that under the assumptions, Nef(X′) = Nef(Y), by Proposition 2.7.
Let Y be a Mori Dream Space. By definition Nef(Y) is the convex hull of a finite set

of semi-ample divisors, D(1)
Y , . . .D

(r)
Y . Then Nef(X′) is the convex hull of a finite set of nef

divisors, which are the divisors D(1)
X′ , . . .D

(r)
X′ associated to D(1)

Y , . . .D
(r)
Y . It remains to show

that D(1)
X′ , . . .D

(r)
X′ are semi-ample.

The associated divisors on X, D(1)
X , . . .D

(r)
X are nef and such that Di

XN = 0 for each i =
1, . . . r, by Lemma 2.5. So they are semi-ample divisors on X (which is a K3 surface). By
Lemma 2.8, the divisors D(1)

X′ , . . .D
(r)
X′ are semi-ample on X′. Thus X′ is a Mori Dream Space.

Let us now assume that Y is not a Mori Dream Space, then X′ is not a Mori Dream Space.
Indeed, since Y is a K3 surface, it is Q-factorial, Pic(Y) ⊗ Q ≡ NS (Y) ⊗ Q, and the nef
divisors are semi-ample. So if Y is not a Mori Dream Space, then Nef(Y) is not the convex
hull of finitely many nef divisors, which implies that also Nef(X′) is not the convex hull of
finitely many nef divisors, and thus it can not be a Mori Dream Space. �

3. Admissible pairs (X, X′)

3. Admissible pairs (X, X′)Definition 3.1. An admissible pair is a pair of surfaces (X, X′) such that X is a K3 surface
that is not a Mori Dream Space and X′ is obtained by contracting exactly one extremal ray
of X and is a Mori Dream Space.

Let us consider an admissible pair (X, X′). By assumption the Picard number of X is
greater than or equal to 2. Under this condition, by [6, Theorem 2] the extremal rays of the
effective cone of X are curves with self intersection either 0 or −2. Since we are assuming
that X′ is a surface, the contraction associated to the extremal ray can not be a fibration and
so we are contracting a (−2)-curve.

In order to answer positively to the question 1.1 it suffices to find an admissible pair.
In this section we describe how to find the Néron–Severi groups of the K3 surfaces X in
admissible pairs (see Condition 3.3) and we give a list of admissible pairs such that ρ(X) ≥
10 (cf. Theorem 3.4).

Let us assume that X and Y are K3 surfaces as in Section 2 (i.e. X admits a (−2) curve N
such that the lattice orthogonal to N in NS (X) is the Néron–Severi group of Y). We recall
that NS (X′) � NS (Y), where X′ is obtained by X contracting N. By Proposition 2.10, if
there are no (−2)-curves BX on X such that BXN = 1, then the pair of surfaces (X, X′) is an
admissible pair if and only if X is not a Mori Dream Space and Y is a Mori Dream Space.
Both X and Y are K3 surfaces and since the K3 surfaces which are Mori Dream Spaces are
classified, this provides a way to construct pairs (X, X′) as required.

Here we summarize some results on K3 surfaces, which will be used in the following.

Theorem 3.2. ([1, Theorems 2.7,2.11, 2.12]) An algebraic K3 surface S is a Mori Dream
Space if and only if the automorphism group Aut(S ) is finite.

In particular, if ρ(S ) = 1, then S is a Mori Dream Space;
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if ρ(S ) = 2, then S is a Mori Dream Space if and only if NS (S ) contains at least an element
with self intersection either 0 or −2;
if ρ(S ) ≥ 3, then S is a Mori Dream Space if and only if NS (S ) belongs to a finite known
list of hyperbolic lattices.

The previous Theorem gives a constructive way to produce admissible pairs (X, X′), in-
deed it suffices to have a K3 surface X with the following properties:

Condition 3.3. • |Aut(X)| = ∞;
• there exists a rational curve N on X;
• there are no (−2)-curves BX on X such that BXN = 1;
• if M := N⊥NS (X) and Y is a K3 surface such that NS (Y) � M, then |Aut(Y)| < ∞.

Theorem 3.4. Let (X, X′) be an admissible pair of surfaces, then ρ(X) ≥ 3.
Let us assume that there exists no a (−2)-curve BX ⊂ X such that BXN = 1. Then

ρ(X) � 19 and if ρ(X) ≥ 4, then there are finitely many possible choices for the lattice
NS (X).

The complete list of the Néron–Severi groups NS (X) of admissible pairs (X, X′) such that
there exists no a (−2)-curve BX ⊂ X with BXN = 1 and ρ(X) ≥ 10 is given in Table (3.1).

If L is as in Table (3.1) and X is such that NS (X) � L, then there exists a smooth irre-
ducible rational curve N ⊂ X such that, denoted by X′ the surface obtained contracting N,
NS (X′) � M and thus (X, X′) is an admissible pair.

ρ(X) L � NS (X) M � NS (X′)
20 U ⊕ E2

8 ⊕ A2
1 U ⊕ E2

8 ⊕ A1

18 U ⊕ E8 ⊕ E7 ⊕ A1 U ⊕ E8 ⊕ E7

17 U ⊕ E8 ⊕ D6 ⊕ A1 U ⊕ E8 ⊕ D6

16 U ⊕ E8 ⊕ D4 ⊕ A2
1 U ⊕ E8 ⊕ D4 ⊕ A1

15 U ⊕ E8 ⊕ A5
1 U ⊕ D8 ⊕ D4

15 U ⊕ E8 ⊕ A5
1 U ⊕ E8 ⊕ A4

1
14 U ⊕ E7 ⊕ A5

1 U ⊕ E7 ⊕ A4
1

14 U ⊕ E8 ⊕ A3 ⊕ A1 U ⊕ E8 ⊕ A3

13 U ⊕ D6 ⊕ A5
1 U ⊕ D6 ⊕ A4

1
13 U ⊕ E8 ⊕ A2 ⊕ A1 U ⊕ E8 ⊕ A2

12 U ⊕ D4 ⊕ A6
1 U ⊕ D4 ⊕ A5

1
11 U ⊕ E6 ⊕ A2 ⊕ A1 U ⊕ E6 ⊕ A2

11 U ⊕ A9
1 U ⊕ A8

1
10 U(2) ⊕ A8

1 U(2) ⊕ A7
1

10 U ⊕ E8(2) U(2) ⊕ A7
1

10 U ⊕ A7 ⊕ A1 U ⊕ A7

10 U ⊕ D4 ⊕ A3 ⊕ A1 U ⊕ D4 ⊕ A3

10 U ⊕ D5 ⊕ A2 ⊕ A1 U ⊕ D5 ⊕ A2

10 U ⊕ D7 ⊕ A1 U ⊕ D7

10 U ⊕ E6 ⊕ A1 ⊕ A1 U ⊕ E6 ⊕ A1

(3.1)

Proof. If X is a K3 surface and it is not a Mori Dream Space then Aut(X) is not finite.
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In particular this implies that ρ(X) ≥ 2 and that if ρ(X) = 2, then X does not admit curves
with self intersection equal either to 0 or −2. Since we require that X admits a (−2)-curve,
ρ(X) ≥ 3.

We now assume that (X, X′) is an admissible pair such that there exists no a (−2)-curve
BX with BXN = 1. Under the latter condition, the fact that (X, X′) is an admissible pair is
equivalent to the conditions |Aut(X)| = ∞ and |Aut(Y)| < ∞, and hence to a condition on
the lattices L and M. We first investigate the lattice condition on L and M and after that we
discuss of the existence of the curves N and BX .

By hypothesis, NS (X) is an overlattice of finite index of M⊕N where N is the class of the
(−2)-curve contracted and M is primitively embedded in NS (X). We denote by r the index
of the inclusions M⊕N ↪→ NS (X). If r � 1, then there exists a class (m+N)/r ∈ NS (X) such
that m ∈ M, (m+ N)/r � M ⊕ N. Clearly this implies that N((m+ N)/r) = N2/r = −2/r ∈ Z
and thus r is either 1 or 2. So NS (X) is either M ⊕ N or an overlattice of index 2 of M ⊕ N.

The number of hyperbolic lattices M with rank(M) ≥ 3 such that if Y is a K3 surface
with NS (Y) � M, then |Aut(Y)| < ∞ is finite. If (X, X′) is an admissible pair, then NS (Y) �
NS (X′) � M, and the admissible choices for M are finite. The lattice NS (X) is an overlattice
of index 1 or 2 of NS (X′) ⊕ N � M ⊕ A1. Since the number of overlattices of index two of
M ⊕ A1 is finite (up to isometries), it follows that the possible choices for NS (X) are finite if
rank(M) ≥ 3, i.e. if ρ(NS (X)) ≥ 4.

In order to construct the list of the Néron–Severi groups of the admissible pairs (X, X′)
such that there exists no a (−2)-curve BX ⊂ X with BXN = 1 (and to exclude the case ρ(X) =
19), we check the list of the Néron–Severi groups of the K3 surfaces with a finite group of
automorphisms, given in [5]. We denote by M a lattice in this list. If NS (X′) � M, then X′

is a Mori Dream Space: Indeed, if there exists no a (−2)-curve BX ⊂ X with BXN = 1, X′

is a Mori Dream Space if and only if Y is a Mori Dream Space by Proposition 2.10 and Y is
a Mori Dream Space if and only if Y is a K3 surface with a finite automorphism group, by
Theorem 3.2. But NS (Y) � M, so Y is a Mori Dream Space.

So for each M in the list given in [5] we have to construct the lattice M ⊕ N and the
overlattices of index 2 of M ⊕N. Each of these lattices is a good candidate to be the Néron–
Severi group of X. Let us denote by L one of these lattices and by X a K3 surface such
that NS (X) � L. We now have to check that X is not a Mori Dream Space, so we have to
check that |Aut(X)| = ∞, i.e that L is not in the list given in [5]. In this way one produces
the list of the possible Néron–Severi groups of X and X′. Then a geometric argument can
be used in order to show that there exists a model of X such that the class N represents a
smooth irreducible (−2)-curve and so an extremal ray and the analysis of the lattice L allows
to conclude that there exists no a (−2)-curve BX ⊂ X such that BXN = 1.

Our first step is to construct the list of the Nèron–Severi groups given in Table (3.1). We
give all the details for the first lines of the Table, the other cases are very similar. Let us
check the list given in [5] of the lattices M such that if Y is a K3 surface with NS (Y) � M,
then |Aut(Y)| < ∞. If rank(M) = 19, then M � U ⊕ E2

8 ⊕ A1. So the lattice L is either
M ⊕N � U ⊕E2

8 ⊕A2
1 or an overlattice of index 2 of U ⊕E2

8 ⊕A2
1. The discriminant group of

the lattice U⊕E2
8⊕A2

1 is (Z/2Z)2, so an overlattice of index two of this lattice is unimodular.
But there exits no a hyperbolic even unimodular lattice of rank 20. So L � U ⊕ E2

8 ⊕ A2
1.

We now assume NS (X) � L. Since L is not contained in the list given in [5] we conclude
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that |Aut(X)| = ∞ and thus X is not a Mori Dream Space. Moreover, since L � M ⊕ ZN,
all the vectors in v ∈ L are of type v := m + ηN, η ∈ Z, m ∈ M, hence vN ∈ 2Z and thus
there are no divisors D ∈ NS (X) such that DN = 1. In particular there is no a (−2)-curve
BX ⊂ X with BXN = 1. This guarantee that if the pair (X, X′) is admissible and ρ(X) = 20,
then NS (X) � U ⊕ E2

8 ⊕ A2
1 and NS (X′) � U ⊕ E2

8 ⊕ A1.
Let us consider the lattice M of the list in [5] with rank(M) = 18. In this case M � U⊕E2

8,
which is a unimodular lattice. A priori L could be either L � M ⊕ N � U ⊕ E2

8 ⊕ A1 or an
overlattice of index 2 of M ⊕ N � U ⊕ E2

8 ⊕ A1. The discriminant group of U ⊕ E2
8 ⊕ A1

is Z/2Z, so there are no overlattices of index two of U ⊕ E2
8 ⊕ A1, and thus L � M ⊕ N �

U ⊕ E2
8 ⊕ A1. Hence, if there exists an admissible pair (X, X′) such that ρ(X) = 19, then

NS (X) � U ⊕ E2
8 ⊕ A1. But if NS (X) � U ⊕ E2

8 ⊕ A1, then |Aut(X)| < ∞ by [5], and so X is a
Mori Dream Space, by Theorem 3.2. We conclude that there are no admissible pairs (X, X′)
such that ρ(X) = 19. The other cases in the Table are similar.

Let L be a lattice given in the second column of Table (3.1) and M the corresponding
lattice given in the third column of the same Table. Now we prove that the generic K3
surface X such that NS (X) � L admits an extremal contraction (of the curve N) such that
the corresponding surface X′ has the property NS (X′) � M and that there is no a (−2)-curve
BX ⊂ X with BXN = 1. This implies that (X, X′) is an admissible pair.

First we observe that for all the pairs (L,M) in Table 3.1, except (U ⊕E8(−2),U(2)⊕A7
1),

L � M ⊕ A1 � M ⊕ ZN and this implies that for any divisor D ∈ NS (X) � M ⊕ Z,
DN ∈ 2Z. Thus there exists no a (−2)-class BX ⊂ X with BXN = 1. For the pair (L,M) �
(U ⊕ E8(2),U(2) ⊕ A7

1), one has to deeply analyze the lattice L, which is an overlattice of
index 2 of U(2) ⊕ A8

1. Denoted by (u1, u2,N1, . . . ,N8) the basis of U(2) ⊕ A8
1, L is obtained

adding to this set of divisors the divisor (
∑8

i=1 Ni)/2. Each l ∈ L is of the form l := a1u1 +

a2u2 +
∑8

i=1 biN1 − k(
∑8

i=1 N1)/2, where a j, bi ∈ Z and k is either 0 or 1. Choosing the curve
N to be N8, the condition lN = lN8 = 1 implies that k = 1 and b8 = 0. The condition l2 = −2
is now equivalent to 4a1a2 − 2

∑8
i=1 b2

i + 2
∑8

i=1 bi − 4 = −2, which is impossible modulo 4.
Thus also the pair (L,M) � (U ⊕E8(−2),U(2)⊕A7

1) is such that there exists no a (−2)-curve
BX ⊂ X with BXN = 1.

Now it suffices to prove that there exists a smooth irreducible rational curve which is
represented in NS (X) by the class N such that N⊥NS (X) � M � NS (X′). In all the cases but
(L,M) � (U ⊕ E8 ⊕ A5

1,U ⊕ D6 ⊕ D4), (U(2) ⊕ A8
1,U(2) ⊕ A7

1), (U ⊕ E8(2),U(2) ⊕ A7
1), the

lattice L � NS (X) is L � U ⊕ R ⊕ A1 for a certain root lattice R and the lattice M � NS (X′)
is M � U ⊕ R.

Since L � U ⊕ R ⊕ A1, the surface X admits an elliptic fibration such that the irreducible
components of the reducible fibers which do not intersect the zero section are represented
by the lattice R ⊕ A1. In particular, the lattice A1 which appears as direct summand in the
decomposition L � U ⊕ R ⊕ A1, represents an irreducible component of a fiber of type I2

(or III). Thus A1 is generated by the class of a smooth irreducible rational curve. The con-
traction of this curve gives the singular surface X′, whose Nèron–Severi group is naturally
identified with U ⊕ R � M.

In Section 5.1, an explicit equation of the elliptic fibration on X associated to the decom-
position NS (X) � U ⊕ E2

8 ⊕ A2
1 is provided, as example.

The existence of the smooth irreducible rational curve N in the remaining cases (i.e.
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(L,M) � (U ⊕ E8 ⊕ A5
1,U ⊕ D6 ⊕ D4), (U(2) ⊕ A8

1,U(2) ⊕ A7
1), (U ⊕ E8(2),U(2) ⊕ A7

1))
is proved in Section 5, (more precisely in Example 5.1, in Section 5.2 and in Section 5.3
respectively). �

Remark 3.5. In Theorem 3.4 we proved that if (X, X′) is an admissible pair, there exists no
a (−2)-curve BX ⊂ X such that BXN = 1 and ρ(X) ≥ 4, then the lattice NS (X) is isometric to
a lattice in a finite list of hyperbolic lattice. On the other hand, if ρ(X) = 3 then it is possible
to construct infinitely many admissible pairs (Xn, X′n) such that n ∈ N and NS (Xn) � NS (Xn′)
if n � n′. Examples are provided in Proposition 5.2.

Remark 3.6. There exist examples of both the following cases:
• (X1, X′1) and (X2, X′2) are two admissible pairs such that NS (X1) � NS (X2), but

NS (X′1) � NS (X′2)
• (X1, X′1) and (X2, X′2) are two admissible pairs such that NS (X′1) � NS (X′2), but

NS (X1) � NS (X2).
An example of the first case is given in the Table 3.1, ρ(X) = 15 and an example of the
second case is given in Table 3.1, M � U(2)⊕A7

1. We briefly describe the geometry of these
case in Example 5.1, Section 5.2 and Section 5.3.

An more exhaustive example of the second case is provided in Section 4, where the geo-
metric details are given. Moreover, an infinite series of examples is presented in Proposition
5.2.

Remark 3.7. In the proof of Theorem 3.4 we proved and used the following fact: if
L � M ⊕ ZN, then there exists no a (−2)-curve BX ⊂ X such that BXN = 1. To be more
precise, the existence of such a curve implies that L is an overlattice of index 2 of M ⊕ ZN
which contains the class (m + N)/2, where m ∈ M, m2 = −6 and m/2 ∈ M∨/M. Hence
sufficient conditions to conclude that there exists no a (−2)-curve BX ⊂ X with BXN = 1 are:

• M ⊕ ZN has index 1 in L;
• M does not contain vectors with self intersection −6;
• M does not contain vectors m of self intersection −6 such that m/2 ∈ M∨/M (for

example this is the case if the discriminant quadratic form of M takes value in Z).

Since we described the deep relation between the automorphism group and the property of
being a Mori Dream Space, we now consider the relation between the automorphism groups
of the surfaces involved in our construction. Since X′ is obtained from X by contracting a
curves, Aut(X′) ⊂ Aut(X). More precisely, every automorphism α which does not preserve
the curve N does not descend to an automorphism of X′ and every automorphism α which
preserves N descend to an automorphism α′ of X′. Every automorphism α′ of X′ lifts to an
automorphism α of X which leaves invariant the rational curve N. Moreover there is also a
strong relation among the automorphism group of X′ and Y:

Corollary 3.8. Let us assume that there is no a (−2)-curve BX ⊂ X such that BXN = 1.
Then group of automorphisms of X′ is contained in the group of automorphisms of Y.

Proof. Let α′ be an automorphism of X′. It lifts to an automorphism α of X which
preserves N. So α induces an effective Hodge isometry of H2(X,Z). We denote by TX the
transcendental lattice of X and we observe that the isometry induced by α preserves the
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splitting M ⊕ N ⊕ TX . Hence it is a Hodge isometry of H2(Y,Z), and the Néron–Severi
group NS (Y) is M. Moreover, the Nef cone of Y can be identified with the one of X′ by
the Proposition 2.7. Since α′ is an automorphism of X′, it preserves the nef cone of X′ and
so α∗ preserves the ample cone of Y . So α∗ is an Hodge effective isometry for Y and thus
it is induced by an automorphism αY of Y . Let αY be an automorphism of Y induced by
α′ ∈ Aut(X′) as above. If αY is the identity, then α∗Y is the identity on H2(Y,Z) and thus
α∗ is the identity on H2(X,Z). So α ∈ Aut(X) is the identity, by Torelli theorem, hence
α′ ∈ Aut(X′) is the identity. So the map α′ �→ αY is injective. �

4. Two examples

4. Two examples
This section is devoted to the geometric description of two examples. First we consider a

lattice M of rank 2 such that if Y is a K3 surface with NS (Y) � M, then Y is a Mori Dream
Space. We describe the geometry and the automorphism group of Y in Section 4.2.1: Y
admits a model as quartic hypersurface with a node and a model as double cover of P2. For
a generic choice of Y the automorphism group is generated by the cover involution.

In Section 4.1 we construct two different lattices L of rank 3: one of them is isometric to
M⊕A1, the other one is the unique even overlattice of index 2 of M⊕A1. If the Néron–Severi
group of a K3 surface is isometric to one of these two lattices, then the K3 surface is not a
Mori Dream Space, but the contraction of a (−2)-curve on it produces a Mori Dream Space
whose Néron–Severi group is isometric to M, so we construct the Nèron–Severi groups of
two admissible pairs.

We describe the geometry of the K3 surfaces of these two admissible pairs in Sections
4.3.1 and 4.3.3: one of them admits a model as quartic in P3 with two nodes (which clearly
specializes the model of Y) and as double cover of P2, the other is an elliptic fibration and
admits a model as double cover of the Hirzebruch surface F4. We show that the automor-
phism group of both these K3 surfaces are infinite, but that several automorphisms do not
descend to automorphism of the contracted model, which is in fact a Mori Dream Space.

In the following proposition we summarize the results obtained in this section.

Proposition 4.1. Let M be the lattice 〈4〉 ⊕ 〈−2〉. Let L be an overlattice of M such that:

• There exists a vector n ∈ L, such that n2 = −2 and n⊥L � M
• L admits a primitive embedding in ΛK3.

Then L is a hyperbolic even lattice of rank 3 and it is isometric either to 〈4〉 ⊕ 〈−2〉 ⊕ 〈−2〉
or to U ⊕ 〈−4〉 (see Section 4.1). Moreover,

(1) Let Y be a generic K3 surface such that NS (Y) � M. Then Y admits a map φ : Y →
P2 which is a 2 : 1 cover branched along a smooth sextic C6 ⊂ P2. There exists a
conic c2 which is tangent to C6 in their six intersection points. The automorphism
group of Y is generated by the cover involution ι, in particular it is finite (see Section
4.2.1).

(2) Let X be a generic K3 surface such that NS (X) � 〈4〉 ⊕ 〈−2〉 ⊕ 〈−2〉. Then X
admits two different maps φi : X → (P2)i, i = 1, 2. Each of them is a 2 : 1 cover
branched along a sextic (C6)i ⊂ (P2)i with one node in the point (P)i ∈ (C6)i. There
exists a conic (c2)i such that (P)i � (c2)i and (c2)i is tangent to (C6)i in their six
intersection points. The automorphism group of X is infinite and contains the two
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(non commutative!) cover involutions ιi.
The map φ1 (resp. φ2) contracts exactly one rational curve, which is (c2)2 (resp.

(c2)1). Let X′ be the double cover of P2 branched along (6)1. Then ((c2)2)⊥NS (X) �
NS (X′) is isometric to M and (X, X′) is an admissible pair. Moreover Aut(X′) is
generated by the cover involution ι1 (in particular it is finite) and the induced ef-
fective Hodge isometry coincides with the one induced by the involution ι of Y (see
Section 4.3.1).

(3) Let S be a generic K3 surface such that N(S ) � U ⊕〈−4〉. Then S admits an elliptic
fibration  : S → P1 such that MW() = Z is generated by a section s1 which has
a trivial intersection with the zero section. The automorphism group of S is infinite
and contains the translation by s1 (which is an automorphism of infinite order).

There exists a 2 : 1 map ϕ : S → P5 whose image is the cone, , over the twisted
rational quartic in P4 and let B ⊂  be the branch locus. The map ϕ contracts
exactly one rational curve s, which is a section of the fibration  and whose im-
age is the vertex of the cone. Let S ′ be the double cover of  branched along B.
Then s⊥NS (S ) � NS (S ′) is isometric to M and (S , S ′) is an admissible pair. More-
over Aut(S ′) is generated by the cover involution (in particular it is finite) and the
induced effective Hodge isometry coincides with the one induced by the involution ι
of Y (see Section 4.3.3).

The following lemma will be essential, since it implies that Proposition 2.10 can be ap-
plied for both the pairs (X, X′) and (S , S ′).

Lemma 4.2. The lattice M � 〈4〉 ⊕ 〈−2〉 does not contain a vector of length −6. Hence
X (respectively S ) does not contain a (−2) curve which intersects (c2)2 (respectively s) in 1
point.

Proof. The quadratic form of M computed on (x, y) is 4x2 − 2y2. So a vector has length
−6 if and only if 2x2 − y2 = −3. This condition implies that x ≡ 0 mod 3 and y ≡ 0
mod 3. So we write x = 3h, y = 3k. The requirement (3h, 3k) has length −6, is equivalent
to 6h2 − 3k2 = −1, which is clearly impossible modulo 3. By Remark 3.7, this implies that,
denoted by N a vector with self intersection −2, neither M ⊕ ZN or an overlattice of index 2
of M ⊕ZN contains a vector B with length −2 such that BN = 1. In particular this applies to
the lattices NS (X) � M ⊕ Z(c2)2 and NS (S ), which is an overlattice of index 2 of M ⊕ Zs,
and thus X and S are as in the statement. �

4.1. Lattice enhancements.
4.1. Lattice enhancements. Let M be the lattice 〈4〉 ⊕ 〈−2〉 and let us denote by {n1, n2}

its basis. The generators of the discriminant group are M∨/M � 〈n1/4, n2/2〉.
Let L be a lattice such that L admits a primitive embedding in ΛK3. Since ΛK3 is an even

lattice, L is an even lattice.
We now require that there exists a vector n ∈ L, such that n2 = −2 and n⊥L � M. In

particular this implies that L is an overlattice of finite index r ∈ N of M ⊕ Zn. Since M ⊕ Zn
is a hyperbolic lattice of rank 3, L is a hyperbolic lattice of rank 3.

We recall that every even hyperbolic lattice of rank less than 11 admits a primitive em-
bedding in ΛK3. So its enough to construct all the non isometric even overlattices of M ⊕Zn
of index r ∈ N in order to classify the admissible lattices L. We already proved that r is
either 1 or 2 in proof of Theorem 3.4.
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The first admissible choice for L is M⊕Zn � 〈4〉⊕〈−2〉⊕〈−2〉 (which clearly corresponds
to r = 1).

Now we look for an overlattice of index r = 2. A Q-basis of L is given by n1, n2 and n. If
this is not a Z basis, then there exists a vector w := (a1n1+a2n2+a3n)/2, ai ∈ Z/2Z, such that
w � (M ⊕Zn), wn1 ∈ Z, wn2 ∈ Z, wn ∈ Z and ww ∈ 2Z. The condition ww ∈ 2Z immediately
implies a2 ≡ a3 mod 2. If a2 and a3 are both even, then w ≡ n1/2 mod (M ⊕ Zn) and
(n1/2)2 = 1 � 2Z. So a2 ≡ a3 ≡ 1 mod 2. Again the condition ww ∈ 2Z implies that a1 ≡ 1
mod 2. So there exists a unique overlattice of index r � 1 of M ⊕ Zn and it is the lattice
obtained by adding to the Q basis {n1, n2, n} the vector (n1 + n2 + n)/2. We can now find a
change of bases in order to give a better description of this overlattice: let us consider the
Z-basis {(n1 − n2 − n)/2, (n1 + n2 − n)/2,−n1 + 2n}. Computing the bilinear form on this
basis we find U ⊕ 〈−4〉, so the unique even hyperbolic overlattice of index 2 of M ⊕ Zn is
isometric to U ⊕ 〈−4〉.

4.1.1. Remarks on the orthogonal to M.
4.1.1. Remarks on the orthogonal to M. There exists a unique embedding (up to isome-

tries) of M in ΛK3 � U ⊕ U ⊕ U ⊕ E8 ⊕ E8 which is given by

n1 :=
(

1
2

)
⊕

(
0
0

)
⊕

(
0
0

)
⊕ 0 ⊕ 0, n2 :=

(
0
0

)
⊕

(
1
−1

)
⊕

(
0
0

)
⊕ 0 ⊕ 0.

Let us denote by T the lattice M⊥ΛK3 . It is generated by the generators of the third copy of
U, by the generators of E8 ⊕ E8 and by the two vectors:

t1 :=
( −1

2

)
⊕

(
0
0

)
⊕

(
0
0

)
⊕ 0 ⊕ 0, t2 :=

(
0
0

)
⊕

(
1
1

)
⊕

(
0
0

)
⊕ 0 ⊕ 0.

Since ΛK3 is unimodular, it is an overlattice of index 8 of M ⊕ T and indeed ΛK3/(L⊕M) is
generated by (t1 + n1)/4 and (t2 + n2)/2.

In order to construct a lattice isometric to M ⊕Zn we have to identify a vector n ∈ T with
n2 = −2. Let us consider the following two possibilities:

• n :=
(

0
0

)
⊕

(
0
0

)
⊕

(
1
−1

)
⊕ 0 ⊕ 0. In this case there is no overlattice of L ⊕ Zn

contained in ΛK3 and so L is 〈4〉 ⊕ 〈−2〉 ⊕ 〈−2〉. The orthogonal of such a lattice
in ΛK3 is generated by the generators of E8 ⊕ E8, by t1, by t2 and by the vector(

0
0

)
⊕

(
0
0

)
⊕

(
1
1

)
⊕ 0 ⊕ 0. It is isometric to E8 ⊕ E8 ⊕ 〈−4〉 ⊕ 〈2〉 ⊕ 〈2〉.

• n := t1 + t2. In this case the lattice generated by n1, n2, (n1 + n2 + n)/2 is primitively
embedded in ΛK3 and is clearly an overlattice of index 2 of M ⊕Zn. The orthogonal
of such a lattice in ΛK3 is generated by the generators of the third copy of U, the
generators of E8 ⊕ E8 and by t1 + 2t2. This lattice is isometric to U ⊕ E8 ⊕ E8 ⊕ 〈4〉.

4.2. Some K3 surfaces with Picard number 2.
4.2. Some K3 surfaces with Picard number 2.

4.2.1. Quartic with a node.
4.2.1. Quartic with a node. Let us consider a K3 surface Y which admits a model as

quartic with exactly one ordinary double point, which is a singularity of type A1. Then there
exists a pseudo-ample divisor H in NS (Y) with self intersection 4 and which is orthogonal
to a (−2)-vector. Indeed ϕ|H| : Y → P3 contracts exactly one rational curve to the ordinary
double point. The class of this curve, called N1, has self intersection −2 (since the curve is a
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rational curve on a K3 surface) and is orthogonal to H (since the curve is contracted by ϕ|H|).
Hence the lattice 〈H,N1〉 � 〈4〉 ⊕ 〈−2〉 is primitively embedded in the Néron–Severi group
of a K3 surface which admits a model as quartic with a singularity of type A1. Moreover
the computation of the moduli of the family of the nodal quartics, implies that generically
NS (Y) � 〈4〉 ⊕ 〈−2〉.

Up to projective transformations, we can assume that the node of the quartic is in the
point (1 : 0 : 0 : 0) ∈ P3

(x0:x1:x2:x3) and so an equation for Y is of the form

(4.1) x2
0F2(x1 : x2 : x3) + x0F3(x1 : x2 : x3) + F4(x1 : x2 : x3) = 0,

where Fi are generic homogenous polynomials of degree i.
Let us consider the projection of the quartic (4.1) from (1 : 0 : 0 : 0) to P2

(x1:x2:x3). It
exhibits Y as double cover of P2

(x1:x2:x3) branched along the sextic curve

(4.2) C6 := V
(
F3(x1 : x2 : x3)2 − 4F2(x1 : x2 : x3)F4(x1 : x2 : x3)

)
⊂ P2

(x1:x2:x3)

The conic c2 := V (F2(x1 : x2 : x3)) intersects the branch locus in the six points F2(x1 : x2 :
x3) = F3(x1 : x2 : x3) = 0 and each of them has multiplicity 2.

The projection from the singular point of the quartic is associated to the divisor H − N1.
The cover involution of the 2 : 1 map ϕ|H−N1 | : Y → P2 is an involution, called ι, of Y and

it does not preserve the symplectic structure of Y (indeed Y/ι is birational to P2). The class
of H − N1 is clearly preserved by the isometry ι∗, but the class N1 is not. Indeed, since c2

is everywhere tangent to the branch locus, its inverse image consists of two disjoint curves.
One of them is N1 and the other is 2H − 3N1. So ι∗ acts as −1 on the transcendental lattice
and as [

3 2
−4 −3

]
(4.3)

on the basis {H,N1} of the Néron–Severi group.

Remark 4.3. The K3 surface Y admits two different (equivalent up to automorphism of
the surface, but not up to projectivity of P3) models as singular quartic in P3. One of them is
associated to the divisor H, the other one to ι∗(H) = 3H − 4N1.

Since Y has a smooth rational curve and its Picard number is 2, the automorphism group
of Y is finite. To be more precise it is known that the automorphism group of Y generically
coincides with Z/2Z � 〈ι〉 (see e.g. [2]).

4.2.2. K3 surfaces with an elliptic fibration.
4.2.2. K3 surfaces with an elliptic fibration. Let V be a K3 surface and  : V → P1 be

an elliptic fibration (i.e. a fibration in curves of genus 1 which admits at least one section).
We will denote by F the class of the fiber of  and by s0 the class of a given section (called
zero section) of  .

Hence NS (V) ⊃ 〈F, s0〉. We obseve that F2 = 0, Fs0 = 1 and s2
0 = −2 so the bilinear

form computed on the basis {F, F + s0} is given by the matrix U.
If V is generic among the K3 surfaces admitting an elliptic fibration, then NS (V) � U.
On each elliptic curve (so on each smooth fiber of ) the hyperelliptic involution is well

defined. The hyperelliptic involutions on the fibers glue together giving an involution, called
h, of V . The quotient by this involution is the Hirzebruch surface F4 and the ramification
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locus consists of the zero section and of the trisection t10 passing through the 2-torsion of
each fiber. The trisection t10 is a curve of genus 10 and is represented by the class 6F + 3s0.

Since both the class of the section s0 and the class of the fiber F are preserved by h, h∗ is
the identity on NS (V) and −1 on the transcendental lattice.

The divisor 4F + 2s0 defines a 2 : 1 map ϕ|4F+2s0 | : V →  ⊂ P5 where  is a cone
over the twisted quartic curve in P4 (see [8]). We observe that  is a model of F4 obtained
contracting the exceptional curve.

The zero section s0 is contracted by ϕ|4F+2s0 | and its image is the vertex of the cone. So
the double cover V →  is branched along the image of the trisection, i.e. on ϕ|4F+2s0 |(t10).
The involution h is exactly the cover involution of this double cover.

Since V contains a rational curve and ρ(V) = 2, |Aut(V)| < ∞. To be more precise, for a
generic choice of V , Aut(V) = 〈h〉 (see e.g. [2]).

4.3. K3 surfaces with Picard number 3.
4.3. K3 surfaces with Picard number 3.

4.3.1. Quartic with two nodes (lattice L � 〈4〉 ⊕ 〈−2〉 ⊕ 〈−2〉).4.3.1. Quartic with two nodes (lattice L � 〈4〉 ⊕ 〈−2〉 ⊕ 〈−2〉). Let us now consider a
K3 surface X such that NS (X) � 〈4〉 ⊕ 〈−2〉 ⊕ 〈−2〉. We assume that X is generic among the
ones with this property and we denote by {H,N1,N2} the basis of NS (X). We can assume
that H is a pseudo ample divisor. The map ϕ|H| : X → P3 exhibits X as quartic surface with
two double points (the contraction of N1 and N2). Up to projective transformations we can
assume that the singular point ϕ|H|(N1) is (1 : 0 : 0 : 0) ∈ P3

(x0:x1:x2:x3) (as in Section 4.2.1)
and the singular point ϕ|H|(N2) is (0 : 0 : 0 : 1) ∈ P3

(x0:x1:x2:x3). So any quartic in this family
has the following equation:

x2
0F2(x1 : x2 : x3) + x0

(
G3(x1 : x2) + x3G2(x1 : x2) + x2

3G1(x1 : x2)
)
+

+x2
3H2(x1 : x2) + x3H3(x1 : x2) + H4(x1 : x2) = 0

(4.4)

where Fi, Gi, Hi are homogenous polynomial of degree i.
As in Section 4.2.1, we consider the projection from (1 : 0 : 0 : 0) which corresponds to

the divisor H − N1. This gives a 2 : 1 map ϕ|H−N1 | : X → P2
(x1:x2:x3) which is a double cover

branched along the sextic:

C6 := V
((

G3(x1 : x2) + x3G2(x1 : x2) + x2
3G1(x1 : x2)

)2
+

−4F2(x1 : x2 : x3)
(
x2

3H2(x1 : x2) + x3H3(x1 : x2) + H4(x1 : x2)
))
.

The sextic C6 has a unique singular point, which is an ordinary node, in (0 : 0 : 1), i.e. in
the point ϕ|H−N1 |(N2). Moreover (as in section 4.2.1), the conic V(F2(x1 : x2 : x3)) intersect
C6 in six smooth points and is tangent to C6 in each of these points. This conic is the image
for ϕ|H−N1 | of the rational curve N1.

The cover involution ι1 preserves both the class H − N1 (which is the pull back of the
hyperplane section of P2

(x1:x2:x3)) and the class N2 (which is sent to the node of the sextic C6

and thus is preserved by the cover involution). Viceversa, the curve corresponding to N1

is not preserved by ι1 and ι∗1(N1) = 2H − 3N1 (see Section 4.2.1). So the involution ι∗1 on
NS (X) is represented, with respect to the basis {H,N1,N2}, by the matrix:
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ι∗1 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
3 2 0
−4 −3 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
Since the quartic surface (4.4) has two nodes, we can consider two different projections

to P2: the projection (already considered) from (1 : 0 : 0 : 0) to P2
(x1:x2:x3), associated to the

linear system |H −N1|, which exhibits X as double cover of P2
(x1:x2:x3) whose cover involution

is ι1; and the projection from (0 : 0 : 0 : 1) to P2
(x0:x1:x2), which is associated to the linear

system |H−N2|. It exhibits X as double cover of P2
(x0:x1:x2) and we call the cover involution ι2.

The involution ι∗2 of NS (X) is represented with respect to the basis {H,N1,N2} by the matrix

ι∗2 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
3 0 2
0 1 0
−4 0 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
We observe that ι1ι2 is an automorphism of infinite order of X, indeed the associated

isometry of NS (X) has infinite order and is represented on the basis {H,N1,N2} by the matrix

(ι1ι2)∗ :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
9 2 6

−12 −3 −8
−4 0 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
So Aut(X) is infinite (indeed ι1ι2 ∈ Aut(X)).
The map ϕ|H−N1 | gives a model of X which contracts exactly one rational curve, the curve

corresponding to the class N2. Indeed (H − N1)⊥NS (X) � 〈−4〉 ⊕ 〈−2〉 which clearly contains
exactly two vectors with self intersection −2 and only one of them is effective. We observe
that ι∗2 does not preserves the class H − N1, so it does not descend to an automorphism
of ϕ|H−N1 |(X). Viceversa ι1 is (by definition) an automorphism of the model associated to
ϕ|H−N1 |. The restriction of ι∗1 to N⊥NS (X)

2 � NS (Y) coincides with the action of ι∗ (where ι is
the unique non trivial automorphism of Y) on NS (Y), given in (4.3).

Denoted by X′ the (singular) double cover of P2 branched along 6, (X, X′) is an admis-
sible pair and Aut(X′) is generated by the cover involution. Indeed, ι1 induces the cover
involution on X′, so Aut(X′) ⊃ Z/2Z. By Corollary 3.8, Aut(X′) ⊂ Aut(Y) and since
Aut(Y) = Z/2Z, we deduce that Aut(X′) = Z/2Z.

4.3.2. Elliptic fibrations with non trivial Mordell Weil group (lattices U ⊕ 〈−2d〉).4.3.2. Elliptic fibrations with non trivial Mordell Weil group (lattices U ⊕ 〈−2d〉).
Here we consider K3 surfaces with Picard number 3 and an elliptic fibration. Since U is
primitively embedded in the Néron–Severi group of any K3 surface admitting an elliptic
fibration and it is a unimodular lattice, the Néron–Severi group of a K3 surface with an
elliptic fibration and with Picard number 3 is isometric to U ⊕ 〈−2d〉, d ∈ N>0.

We will denote by Sd a K3 surface such that NS (Sd) � U ⊕ 〈−2d〉 and we will assume
that Sd is generic among the K3 surfaces with this property. First we discuss the geometric
properties of these surfaces Sd and then we focus on the case d = 2.

Let us denote by {b1, b2, b3} the basis of NS (Sd) on which the bilinear form is represented
by U ⊕ 〈−2d〉. Then we put F := b1 and s0 := b2 − b1. The lattice F⊥NS (Sd ) consists of the
vector w := (w1, w2, w3) such that w2 = 0. The bilinear form computed on w is 2w1w2−2dw2

3,
so F⊥NS (Sd ) contains a (−2)-class if and only if d = 1.

So if d = 1, then the elliptic fibration ϕ|F| : Sd → P1 admits exactly one reducible fiber,
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which is necessarily of type I2, since S 1 is generic.
If d > 1, then the elliptic fibration ϕ|F| : Sd → P1 has no reducible fibers and thus, by

Shioda–Tate formula, the rank of the Mordell Weil group is 1. From now on we assume
d > 1 and we denote by s1 a section of ϕ|F| : Sd → P1 which generates the Mordell–Weil
group. Hence {F, s0, s1} is a basis of NS (Sd). It is related to the basis {b1, b2, b3} by the
following: F = b1, s0 = b2 − b1, s1 = (d − 1)b1 + b2 + b3. It is immediate to check that the
bilinear form computed on this basis is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1
1 −2 d − 2
1 d − 2 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
So the K3 surfaces Sd, d > 1, can be geometrically described as the K3 surfaces admitting
an elliptic fibration such that the rank of the Mordell-Weil group is 1 and the intersection
among the zero section and a generator of the Mordell–Weil group is d − 2.

We observe that the classes sn := (dn2 − 1)b1 + b2 + nb3, n ∈ Z are the sections of the
fibration ϕ|F| : Sd → P1 and there is an isomorphism of groups between the Mordell–Weil
group of ϕ|F| and Z given by sn �→ n. Fixed a value d, we have s0sn = dn2 − 2. Moreover
sisi+n = s0sn, since si is the translation (by si) of s0 and si+n is the translation (by si) of sn. It
is immediate to check that s0sk > s0sh if |k| > |h|, so s0s1 is the minimal possible intersection
number among two sections of ϕ|F| : Sd → P1.

4.3.3. The K3 surface S := S 2 (NS (S ) � L � U ⊕ 〈−4〉).4.3.3. The K3 surface S := S 2 (NS (S ) � L � U ⊕ 〈−4〉). In case d = 2, NS (S 2) �
U ⊕ 〈−4〉. In the following we will denote by S the surface S 2, in order to simplify the
notation. The K3 surface S is the generic K3 surface with an elliptic fibration, such that
there is a section of infinite order which has a trivial intersection with the zero section.

Our purpose is to describe a map (a geometric model) of S which contracts exactly one
rational curve (indeed we already know that there exists a rational curve on S such that the
orthogonal to the class of this curve in NS (S ) is isometric to the lattice M � 〈4〉 ⊕ 〈−2〉, by
Section 4.1).

We consider the map 4F + 2s0. It exhibits S as double cover of a cone  ⊂ P5 over the
twisted rational curve of degree 4 in P4, as in Section 4.2.2. The curve s0 is contracted and
it is the unique rational curve which is contracted by this map. Indeed the orthogonal to
4F + 2s0 = 2b1 + 2b2 in NS (S 2) is generated by b2 − b1 = s0 and b3. So, if r is the class of a
rational curve in S contracted by 4F + 2s0, then r = z1(b2 − b1) + z2b3, z1, z2 ∈ Z; r2 = −2;
rF = rb1 ≥ 0. This implies that z1 = 1 and z2 = 0, so r = s0.

The family of K3 surfaces which are double covers of  ⊂ P5 is 18-dimensional (the K3
surface V described in Section 4.2.2 is a general member of such a family), but S is the
general member of a 17-dimensional subfamily. Indeed there is a peculiarity in the branch
locus, ϕ|4F+2s0 |(t10), of the double cover ϕ|4F+2s0 | : S → : there exists a curve which is
tangent to ϕ|4F+2s0 |(t10) ⊂  in each of their intersection points. Indeed the class 4F + 2s0

is equivalent to s1 + s−1 in NS (S ). This means that ϕ|4F+2s0 |(s1) = ϕ|4F+2s0 |(s−1) and thus
the inverse image of ϕ|4F+2s0 |(s1) splits in the double cover. So ϕ|4F+2s0 |(s1) is tangent to
ϕ|4F+2s0 |(t10) in all their intersection points, which are 6 = s1t10. We observe that since
s1s0 = 0, the curve ϕ|4F+2s0 |(s1) does not pass through the vertex of .

The automorphism group of S is surely infinite and contains at least the following auto-
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morphisms: h which is the cover involution of the double cover S →  (i.e. it is the hyper-
elliptic involution of the elliptic fibration ϕ|F| : S → P1) and the automorphism Ts1 which is
the translation by the section s1. We observe that: h(F) = F, h(s0) = s0, h(sn) = s−n (indeed
h switches for example the sections s1 and s−1) and that Ts1 (F) = F and Ts1 (sn) = sn+1,
n ∈ Z. With respect to the basis {b1, b2, b3} these automorphisms are represented by

h =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ Ts1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 2 4
0 1 0
0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
It is immediate to check that the class 4F + 2s0 = 2b1 + 2b2 is preserved by h but not by Ts1 ,
so Ts1 does not descend to an automorphism of the singular model ϕ|4F+2s0 | : S → . Indeed
the class s0, which is the class of the unique curve contracted by ϕ|4F+2s0 |, is not preserved
by Ts1 .

The map ϕ|4F+2s0 | contracts s0 and we observe that the lattice s
⊥NS (Y2)

0 � M = 〈4〉 ⊕ 〈−2〉
is generated by 2b1 + 2b2 + b3 and b1 + b2 + b3. The involution h∗ restricted to the lattice
〈(2b1 + 2b2 + b3), (b1 + b2 + b3)〉 is represented by the matrix:[

3 2
−4 −3

]
,

which in fact coincides with the involution ι∗ defined on M by the automorphism ι of Y .
Denoted by S ′ the (singular) double cover of  branched along ϕ|4F+2s0 |(t10), (S , S ′) is

an admissible pair and Aut(S ′) is generated by the cover involution. Indeed, h induces the
cover involution on S ′, so Aut(S ′) ⊃ Z/2Z. By Corollary 3.8, Aut(S ′) ⊂ Aut(Y) and since
Aut(Y) = Z/2Z, we deduce that Aut(S ′) = Z/2Z.

5. Other examples

5. Other examples
In this section we briefly describe other geometric examples: We conclude the proof of

the Theorem 3.4 in cases (L,M) � (U ⊕ E8 ⊕ A5
1,U ⊕D6 ⊕D4), (U(2)⊕ A8

1,U(2)⊕ A7
1), (U ⊕

E8(2),U(2) ⊕ A7
1), showing the existence of the smooth irreducible rational curve N which

has to be contracted in order to obtain the Mori Dream Space X′. We also give an explicit
equation of an elliptic fibration mentioned in the proof of the same theorem.

The principal results of this section are geometric descriptions of the following situations:
• there exists two admissible pairs (X1, X′1) and (X2, X′2) such that X1 � X2 but X′1 � X′2 (see
Example 5.1);
• there exists two infinite series of admissible pairs (Sd, S ′d ) and (Qd,Q′d) such that ρ(Qd) =
ρ(Sd) = 3, (the minimal possible), and moreover NS (Sd) � NS (Qd) but NS (S ′d ) � NS (Q′d),
see Proposition 5.2.

5.1. The K3 surface with NS (X) � U ⊕ E2
8 ⊕ A2

1.
5.1. The K3 surface with NS (X) � U ⊕ E2

8 ⊕ A2
1. Let X be the K3 surface such that

NS (X) � U ⊕ E2
8 ⊕ A2

1. In the proof of Theorem 3.4 we showed that X admits a smooth
irreducible rational curve N which can be contracted in order to obtain a Mori Dream Space
X′ and that this curve is one of the two components of one of the two fibers of type I2 of
a certain elliptic fibration  : X → P1. The existence of this fibration immediately follows
from the decomposition of NS (X) in the direct sum U ⊕ E2

8 ⊕ A2
1. Here we give also an

explicit equation of this fibration.
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Let us consider the pencil of plane cubics

V((x3
1 + x2

0x2 + x2
1x2) + tx3

2) ⊂ P2
(x0:x1:x2)

generated by a triple line l and a smooth cubic C3 which admits the line l as inflectional
tangent. It is well known (and easy to check) that this pencil induces an elliptic fibration on
the rational surface which is the blow up of P2 nine times in the intersection point between l
and C3. This elliptic fibration has one fiber of type II∗ (which is the pull back of l) and two
fibers of type I1. With the coordinates x2 = 1, y = x0 and x = x1 − 1/3 we immediately
obtain the Weierstrass form

y2 = x3 − 1
3

x + t

which has a fiber of type II∗ at infinity and two fibers of type I1 in t = ±2/27. So the double
cover P1

(T :S ) → P1
(t:s) which is branched in t = ± 2

27 , induces the base change s := 27
4 (S 2 −T 2)

and t := 1
2 (S 2 + T 2) which gives the elliptic fibration

y2 = x3 − 1
3

x
(
27
4

S 2 − 27
4

T 2
)4

+

(
1
2

S 2 +
1
2

T 2
) (

27
4

S 2 − 27
4

T 2
)5

.

This is in fact the equation of the unique (up to projective transformation) elliptic fibration
over P1

(T :S ) with reducible fibers 2II∗ + 2I2 and so it is an equation of (a singular model of)
the unique K3 surface X with NS (X) � U ⊕ E2

8 ⊕ A2
1. The fibers over (1 : 0) and (0 : 1) are

of type I2, so each of them consists of two smooth irreducible rational curves meeting in 2
points. One of these rational curves meets the zero section of the fibration. The other can be
chosen to be the curve N.

5.2. K3 surfaces with NS (X) � U(2) ⊕ A8
1.

5.2. K3 surfaces with NS (X) � U(2) ⊕ A8
1. We give a geometric description of the K3

surface X, which is generic among the K3 surfaces such that NS (X) � U(2) ⊕ A8
1. We will

show that it surely contains a smooth irreducible rational curve which can be contracted in
order to obtain a singular surface X′ whose Néron–Severi group is isometric to U(2) ⊕ A7

1.
This concludes the proof of Theorem 3.4 in case NS (X) � U(2) ⊕ A8

1.
Since there exists a unique even hyperbolic lattice L such that: rank(L) = 10, the discrim-

inant group is (Z/2Z)10 and the discriminant form takes values in 1
2Z (and not in Z), we find

U(2) ⊕ A8
1 � 〈2〉 ⊕ 〈−2〉9. So NS (X) � 〈2〉 ⊕ 〈−2〉9. We can assume that one of the primitive

generators of the sublattice 〈2〉 ↪→ NS (X) is pseudo ample. We denote this divisor by A
and we observe that φ|A| : X → P2 exhibits X as double cover of P2 branched along an irre-
ducible sextic C6 with 9 nodes P1, . . . , P9. The double cover of the blow up of P2 in these
9 points is a smooth minimal model of X and it contains 9 smooth rational curves which
are the double cover of the 9 exceptional divisors. The classes of these rational curves are
represented by (−2)-classes orthogonal to A and mutually orthogonal. So X admits at least
one smooth rational curve (indeed at least 9) such that the contraction of this curve produces
a singular surface X′ whose Néron–Severi group is isometric to 〈2〉 ⊕ 〈−2〉8 � U(2) ⊕ A7

1. A
geometric construction of X′ is the following: let us consider the irreducible sextic curve C6

with 9 nodes P1, . . . P9 such that φ|A| : X → P2 is branched along C6. Let us blow up P2 in
the eight points P1, . . . , P8 and let us denote by P̃2 the surface obtained by this blow up. Let
us denote by C̃6 the strict transform of C6 for this blow up. We observe that C̃6 has exactly
one singular point. The double cover of P̃2 branched along C̃6 is X′, indeed the following
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diagram commute:

X′
2:1 ��
P̃2

���
��

��
��

�

X
2:1 ��

φ

��

˜̃
P2

��

�� P2

where
˜̃
P2 is the blow up of P̃2 in the unique singular point of C̃6 and it coincides with

the blow up of P2 in the nine points P1, . . . , P9 and φ : X → X′ is the contraction of the
smooth rational curve of X which is the double cover of the exceptional divisor of the blow

up
˜̃
P2 → P̃2 .

5.3. K3 surfaces with NS (X) � U ⊕ E8(2).
5.3. K3 surfaces with NS (X) � U ⊕ E8(2). We give a geometric description of the K3

surface X, which is generic among the K3 surfaces such that NS (X) � U ⊕ E8(2). We will
show that it surely contains a smooth irreducible rational curve which can be contracted in
order to obtain a singular surface X′ whose Néron–Severi group is isometric to U(2) ⊕ A7

1.
This concludes the proof of Theorem 3.4 in case NS (X) � U ⊕ E8(2).

Since there exists a unique even hyperbolic lattice L such that: rank(L) = 10, the discrim-
inant group is (Z/2Z)8 and the discriminant form takes values in Z, we find that U ⊕ E8(2)
is the unique overlattice of index 2 of U(2) ⊕ A8

1, and it is generated by the generators of
U(2) ⊕ A8

1, {u1, u2,N1, . . .N8}, and by the class (
∑8

i=1 Ni)/2.
We can assume that a choice of the primitive generators of the sublattice U(2) ↪→ NS (X)

consists of nef divisors, and we denote them by u1 and u2. We observe that φ|u1+u2 | : X → P1×
P1 ⊂ P3 exhibits X as double cover of P1×P1 branched along a (possibly reducible) curve 4,4

of bidegree (4, 4) in P1 × P1 with 8 nodes P1 = φ|u1+u2 |(N1), . . . , P8 = φ|u1+u2 |(N8). The class
of the reduced curve φ−1

u1+u2
(4,4) in NS (X) is given by 2u1 + 2u2 −∑8

i=1 Ni. The curve (4,4)

is in fact reducible and it is the union of two curves of bidegree (2, 2), which corresponds
on X to the class

(
2u1 + 2u2 −

(∑8
i=1 Ni

))
/2 ∈ NS (X). These two components meet exactly

in the 8 points Pi. The double cover of the blow up of P1 × P1 in these 8 points is a smooth
minimal model of X and it contains 8 smooth rational curves, Ni, which are the double cover
of the 8 exceptional divisors. The classes of these rational curves are represented by (−2)-
classes orthogonal to u1 + u2 and mutually orthogonal. So X admits at least one smooth
rational curve (indeed at least 8) such that the contraction of this curve produces a singular
surface X′. The Néron–Severi group of X′ is the orthogonal to an Ni, say to N8, in the
lattice spanned by {u1, u2,N1, . . .N8, (

∑8
i=1 Ni)/2} and it is generated by {u1, u2,N1, . . .N7}.

So NS (X′) � U(2)⊕A7
1. A geometric construction of X′ is the following: let us consider the

reducible curve 4,4 with 8 nodes P1, . . . P8 such that φ|u1+u2 | : X → P1 ×P1 ⊂ P3 is branched
along 4,4. Let P1 × P1̃ be the blow up P1 × P1 in the seven points P1, . . . , P7. Let us denote
by ̃4,4 the strict transform of 4,4 for this blow up. We observe that ̃4,4 has exactly one
singular point. The double cover of P1 × P1̃ branched along ̃4,4 is X′, indeed the following
diagram commute:
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X′
2:1 ��
P1 × P1̃

������������

X
2:1 ��

φ

��

P1 × P1̃̃

��

�� P1 × P1

where P1 × P1̃̃ is the blow up of P1 × P1̃
2

in the unique singular point of ̃4,4 and it coincides
with the blow up of P1 × P1 in the eight points P1, . . . , P8 and φ : X → X′ is the contraction
of the smooth rational curve of X which is the double cover of the exceptional divisor of the

blow up P1 × P1̃̃ → P1 × P1̃.

5.4. Two admissible pairs (X, X′1) and (X, X′2) with X′1 � X′2 and ρ(X) = 15.
5.4. Two admissible pairs (X, X′1) and (X, X′2) with X′1 � X′2 and ρ(X) = 15. We consider

a K3 surface X whose Néron–Severi group is isometric to U ⊕ D8 ⊕ D4 ⊕ A1, so it is not
a Mori Dream Space (cf. Proposition 3.4 and [5]). We show that it admits two different
rational curves N1 and N2 such that, denoted by X′i the singular surface contraction of the
curve Ni, the two pairs (X, X′1) and (X, X′2) are both admissible and X′1 � X′2. This gives
geometric examples of the cases with ρ(X) = 15 of the Table 3.1 and concludes the proof of
Theorem 3.4.

Example 5.1. Let X be a K3 surface admitting an elliptic fibration  : X → P1 whose
singular fibers are I∗4 + I∗0 + I2 + 6I1 and whose Mordell–Weil group is trivial. The Néron–
Severi group of the surface is isomorphic to U⊕D8⊕D4⊕A1 and is generated by the classes
F, s0,Θ

(1)
i , i = 1, . . . 8,Θ(2)

j , j = 1, 2, 3, 4,Θ(3)
1 , where F is the class of the fiber of the fibration

 , s0 is the class of the unique section of the fibrations, Θ(1)
i are the eight components of the

fibers of type I∗4 which do not intersect the zero section, Θ(2)
j are the 4 components of the

fiber of type I∗0 which do not intersect the zero section, Θ(3)
1 is the component of the fiber of

type I2 which does not intersect the zero section. The map φ : X → X′1 which contracts the
curve N1 := Θ(3)

1 produces the singular surface X′1 such that NS (X′1) � U ⊕ D8 ⊕ D4.
In the following we will assume that the intersection properties of the components of the

fibers of type I∗n are numbered as follow:

Θ0

��
��

��
��

Θn+3

Θ2 Θ3 . . . Θn+1 Θn+2

��������

��������

Θ1

��������
Θn+4

Let us consider the divisor

D := Θ(1)
5 + 2Θ(1)

4 + 3Θ(1)
3 + 4Θ(1)

2 + 5Θ(1)
0 + 6s0 + 4Θ(2)

0 + 2Θ(2)
2 + 3Θ(3)

0

on X.
We observe that D2 = 0 and D is an effective divisor. Moreover the curve Θ(1)

6 is a
rational curve such that DΘ(1)

6 = 1. Thus, the linear system |D| defines an elliptic fibration
φ|D| : X → P1. The class of D is the class of the fiber of the fibration and the divisor
D exhibits a reducible fiber of type II∗ of this fibration. Let us denote by R the lattice
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〈Θ(1)
5 ,Θ

(1)
4 ,Θ

(1)
3 ,Θ

(1)
2 ,Θ

(1)
0 , s0,Θ

(2)
0 ,Θ

(2)
2 ,Θ

(3)
3 ,Θ

(1)
6 〉. Then R � U ⊕ E8 and the orthogonal

complement of R in NS (X) is isometric to A5
1 (since the discriminant group of NS (X) is

(Z/2Z)5). So the reducible fibers of the elliptic fibration induced by |D| are II∗ + 5I2. In
particular the class

Θ
(1)
0 − Θ(1)

1 + 2s0 + 2Θ(2)
0 + Θ

(2)
1 + 2Θ(2)

2 + Θ
(2)
3 + Θ

(3)
0

is the class of an effective (−2)-curve orthogonal to R (and in fact a bisection of the fibration
) and so it is the class of one of the components of one of the fibers of type I2 of the
fibration φ|D| : X → P1. The map which contracts exactly this curve produces a surface X′2
which is singular in a point and whose Néron–Severi group is U ⊕ E8 ⊕ A4

1.

5.5. Infinite admissible pairs (Sd, S ′d ) with ρ(Sd) = 3.
5.5. Infinite admissible pairs (Sd, S ′d ) with ρ(Sd) = 3. Let Sd be a generic K3 surface

admitting an elliptic fibration d : Sd → P1 such that MW(d) = 〈s1〉 and s0s1 = d − 2
(described in Section 4.3.2).

Proposition 5.2. Let φ : Sd → S ′d be the contraction of the curve s1. Then NS (S ′d ) �
〈2〉 ⊕ 〈−2d〉. If d is even, then there is no a (−2)-curve BSd ⊂ Sd with BSd s1 = 1.

If d is even and a square, then (Sd, S ′d ) is an admissible pair. In particular this gives an
infinite number of admissible pairs such that the Picard number of the K3 surface is 3 (the
minimal possible).

If d is not a square and d ≡ 0 mod 4, then S ′d is not a Mori Dream Space, so (Sd, S ′d ) is
not an admissible pair for infinitely many values of d.

Moreover, for almost all the d such that d is a square, the pair (Qd,Q′d) is also an admissi-
ble if NS (Q′d) � NS (S ′d ) and NS (Qd) � 〈2〉⊕〈−2d〉⊕〈−2〉. So we have an infinite number of
admissible pairs (Sd, S ′d ) and (Qd,Q′d) such that NS (Sd) � NS (Qd) and NS (S ′d ) � NS (Q′d).

Proof. We already observed that Sd is not a Mori Dream Space, since the translation by
the section s1 is an automorphism of infinite order of Sd.

Let us assume that there exists a (−2)-curve BSd ⊂ Sd such that BSd s1 = 1. Then there
exists a vector b ∈ NS (Sd) such that b2 = −2 and bs1 = 1. The vector b is of the form
xF + ys0 + zs1. So bs1 = 1 implies x + (d − 2)y − 2z = 1, i.e. x = 1 + 2z − (d − 2)y and
b2 = −2 implies −2y2 − 2z2 + 2xy + 2xz + 2(d − 2)yz = −2. These two conditions together
give y2 + z2 + y + 2zy − y2d + z + 1 = 0, which is impossible modulo 2 if d is even. We
conclude that if d is even there exists no a (−2)-curve BSd ⊂ Sd such that BSd s1 = 1 and thus
Proposition 2.10 applies.

The lattice (s1)⊥NS (Sd ) is generated by 〈2F + s1,−dF + s0 − s1〉 � 〈2〉 ⊕ 〈−2d〉. If d is even,
the surface S ′d is a Mori Dream Space if and only if the K3 surface Yd with Néron–Severi
group isometric to 〈2〉 ⊕ 〈−2d〉 is a Mori Dream Space. Since the rank of the lattice is 2, we
know that the K3 surface Yd is a Mori Dream Space if and only if the lattice 〈2〉 ⊕ 〈−2d〉
represents 0 or −2.

The quadratic form associated to 〈2〉 ⊕ 〈−2d〉 is 2x2 − 2dy2. The form represents the zero
if and only if there exists (x, y) ∈ Z2 such that 2x2 − 2dy2 = 0 and represents −2 if and only
if 2x2 − 2dy2 = −2.

If d is a square, then there exists b ∈ Z such that d = b2 and it suffices to chose (x, y) =
(b, 1). So if d is a square, then the quadratic form represents zero which implies that Yd is a
Mori Dream Space. So if d is an even square, then S ′d is a Mori Dream Space.
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Viceversa if d is not a square, then the quadratic form does not represent 0. Let us assume
that the quadratic form represents −2. So there exists (x, y) ∈ Z2, x2 − dy2 = −1. Let us
consider this equation modulo 4 (where the square are either 0 or 1). We have the following
possible values for (x2, y2) modulo 4, (0, 0), (0, 1), (1, 0), (1, 1). The choices (0, 0) and (1, 0)
give a contradiction. So either (x2, y2) ≡ (0, 1) mod 4 and in this case d ≡ 1 mod 4 or
(x2, y2) ≡ (1, 1) mod 4 and in this case d ≡ 2 mod 4. Therefore, if d ≡ 0 mod 4 or d ≡ 3
mod 4, then the quadratic form does not represent −2. If d ≡ 0 mod 4, then d is even and
thus there is no a (−2)-curve BSd ⊂ Sd such that BSd s1 = 1. So if d ≡ 0 mod 4, then S ′d is a
Mori Dream space if and only if 〈2〉 ⊕ 〈−2d〉 represents either 0 or −2. But if d ≡ 0 mod 4
and d is not a square, then 〈2〉 ⊕ 〈−2d〉 does not represent neither 0 or −2 and thus S ′d in not
a Mori Dream Space.

We observe that NS (Qd) � 〈2〉 ⊕ 〈−2d〉 ⊕ 〈−2〉 � NS (Yd) ⊕ 〈−2〉 does not contain a
vector of length −2 which meets the last generator with multiplicity 1, by Remark 3.7. So
by Proposition 2.10 Q′d is a Mori Dream Space if and only if Yd is a Mori Dream Space.

If d is a square, then the K3 surface Yd is a Mori Dream Space. As a consequence Q′d are
Mori Dream Space. Hence the pair (Qd,Q′d) is an admissible pair if and only if Qd is not a
Mori Dream Space. Since there are exactly 27 hyperbolic lattices L of rank 3 such that if the
Néron–Severi group of a K3 surface is isometric to one of these lattices, the K3 surface has
a finite automorphism group and so is a Mori Dream Space, we conclude that for almost all
the even squares d, Qd is not a Mori Dream Space and (Qd,Q′d) is an admissible pair.

In particular for almost all the d ∈ N such that d is an even square, both (Qd,Q′d) and
(Sd, S ′d ) are admissible pair such that NS (Sd) � NS (Qd) and NS (S ′d ) � NS (Q′d). �
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