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Abstract
In this paper, we introduce a subpoggt(G) of a posetV,, (G) of all non-trivial
nilpotent 7-subgroups of a finite grouB. We examine basic properties of sub-
groups inL,(G) which contain the notion of both radica-subgroups and centric
p-subgroups ofG. It is shown thatZ,(G) is homotopy equivalent taV,(G). As
examples, we investigate in detail the case where symmgitoiaps.

1. Introduction

Let G be a finite group, and SgB| the totality of subgroups os. We regard
Sgp@G) as a partially ordered set (poset for short) with respec¢héoinclusion-relation
<. Then any subset C Sgp@G) can be thought of a subposet of (SG)(=<) which is
identified with the associated order complex. Ipet 7(G). Denote bySy(G) the total-
ity of non-trivial p-subgroups ofG. A p-subgroup complext’ C Sy(G) itself is stud-
ied well by many authors (see [9] and various references)indn the other hand, for
distinct p,q € 7(G), it is also quite important to investigate C Sp(G) and) € S4(G)
simultaneously. In order to do so, we focus on nilpotent soings, and actually deal
with a posetN;(G) of all non-trivial nilpotentz-subgroups ofG wherer C 7 (G). In
particular, we introduce a subposét (G) of A,(G), and show that they are homo-
topy equivalent each other. It is worth mentioning that agsabp in £, (G) contains
the notion of both radicap-subgroups and centrip-subgroups ofG.

The paper is organized as follows: In Section 2, we estabbisihe notations, and pre-
pare a number of standard posets of subgroupsNikéG). In Section 3, we introduce a
new poset’, (G) consisting of certain nilpotent-subgroups of5. We give another de-
scription of £, (G) which is different from the form of the definition. Furtheone some
tools for determiningC, (G) are developed. Then by using those results, we classify sub
groups inL,(G) for some groupss as examples. In Section 4, we provide homotopy
equivalences among,(G) and the other standard posets of subgroups. Relations with
known p-subgroup posets are examined. In Section 5, we investigaletail the case
where the symmetric grou, of degreen. In particular, we give a strategy to deter-
mine £, (Sy) which is focused on irreducible subgroups (see Definitids).5Then, as
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examples, we classify subgroupsdn (&) for n < 6 by using our method.
Finally, this work is derived from a series of our papers [5/B

2. Preliminaries

In this section, we establish some notations which will bedum this paper. Let
G be a finite group with the identity element Denote byx(G) the set of all prime
divisors of the order ofs. Let = be a subset ofr(G). A subgroupH of G is called a
m-subgroup ifr(H) € =. The notation Sgb) stands for the totality of subgroups of
G. Note that Sgpg) is regarded as a poset together with the usual inclusiatior
<. We define the following subposets of (S@)( <):

N:z(G) :={U € Sgp@G) | U is a non-trivial nilpotentr-subgroup ofG},
Ab;(G) := {U € Sgp@G) | U is a non-trivial abeliant-subgroup ofG}.

Furthermore let4,(G) be a subposet consisting of all non-trivial direct produof
elementary abeliarp-subgroups ofG where p runs over primes inr. Then we have
three posetsd, (G) € Ab,(G) € N, (G) on which the groupG acts by conjugation.
The set of all maximal elements inV;(G), <) is denoted by\,(G)™. For x =
{p1, ..., p} € 7(G), we sometimes writeV, . (G) in place of NV (G). The ways
of writing N, (G)™ and Ny, .. n(G) are applied to the other posets. Lpte 7(G).
Denote byS,(G) the totality of non-trivial p-subgroups ofG. Then we note that
Ni(G) = Sp(G).

Denote byZ(G) and O,(G) respectively the center db, and the largest normal
m-subgroup ofG. For A € Ab,(G), suppose thaA = A; x- - -x Ay is the direct product
of Sylow p;-subgroupsA; (1 <i <k) of A. Then denote by2;(A) := Q1(Ag) x---x
Q1(A) € A, (G) where Q(A) € Ay (G) is a subgroup generated by all elements in
A; of order pj. For a subgroufH < G, if O,(Z(H)) # {e} then O,(Z(H)) € Ab,(G)
and 21(0,(Z(H))) € A, (G). We express these subgroups@sz(H) and2;0, Z(H)
for short. In this way, we frequently omit parentheses of toenposition of group
operators throughout this paper.

Let (P, <) be a poset. For € P, put P, :={x € P | x < z}. Similarly, we define
Pozy P>z, and P-,.

3. Subposets of\; (G)

Let G be a finite group, andr € 7 (G). We introduce subposets ol (G), <)
as follows:
L;(G) :={U € Nz(G) |U = O, ZNg(U)},

L(G) = {U € N2(G) | U = ©,0, ZNg(U)}.

Both families are closed und@&-conjugation. In this section, we study basic properties
of £,(G) € L:(G), and provide some examples. Note that, for a subgidupf G,
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U > 0,ZNg(U) if and only if Z(U) > O, ZNg(U).

REMARK 3.1 (p-radicals andp-centrics). Letp € 7 (G).
(1) Denote by Bp(G) the totality of non-trivial p-subgroupsU of G satisfying
OpNg(U) =U. A subgroup inBp(G) is called a radicap-subgroup (or jusip-radical)
of G. The posei3,(G) is a generalized object of the Tits building, and it playsimn
portant role in the area of group geometry. Fop#adicalU € B,(G), we have that
U > ZU) = ZOyNg(U) = OpZNg(U). It follows that By(G) € L,(G), and thus,
a subgroup inL,(G) contains the notion ofp-radicals. Furthermore, we see later in
Remark 4.9 that3,(G) is homotopy equivalent ta ,(G).
(2) A centric p-subgroup (or jusip-centric)U of G is defined as a subgroup 8,(G)
such that anyp-element inCg(U) is contained inJ. This is also important in the area
of group geometry or representation theory. Then it is nosyda check that a con-
dition U > Op,ZNg(U) holds for ap-centricU. Thus £,(G) includes all p-centrics.

Lemma 3.2. Suppose that g 7. ThenL,(G) N Np(G) € L,(G), and LE(G) N
No(G) € L(G).

Proof. For anyU € £,(G) N N,(G), we have thal > O, ZNg(U). But U is a
p-subgroup, so thatD, ZNg(U) = OpZNg(U). ThusU e L,(G). The second asser-
tion similarly holds. O

Lemma 3.3. For U € N, (G), put Ky := 0,ZNg(U). Then the product UK is
a member ofL,(G).

Proof. SinceU and Ky are nilpotentr-subgroups such thatJf Ky] = {€}, so
is the productU Ky. SetH := ZNg(UKy). SinceU < Ng(U) < Ng(UKy), we have
that H < Cg(U) < Ng(U). It follows that H is contained inZ Ng(U). Thus O,(H) <
0,ZNg(U) = Ky <UKy. This shows thatl Ky € £, (G). O

Below is a description ofZ,(G) by usingUKy.

Proposition 3.4. Under the notation in.emma 3.3,£,(G) = {UKy |U e N;(G)}.

Proof. By Lemma 3.3, it is enough to show that a mipA,(G) — L.(G) de-
fined by f(U) := UKy is surjective. Indeed, for an¥X € £,(G) C N;(G), we have that
X > 0, ZNg(X) =: Ky by the definition ofX. Thus X = XKy = f(X) as desired. []

From here, we want to develop some tools for determiningG).

Lemma 3.5. The followings hold.
(1) N (G)™C L(G) and A (G)"™ < L;(G).
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(2) For U € Ab,(G)™ N,(G)su S L:(G). In particular, Ab,(G)™* C Ab,(G) N
L.(G).
(3) Ab,(G)"™ = (Ab,(G) N L (G))™.

Proof. (1) ForU e A(G)™* put Ky := O, ZNg(U). SinceU <UKy € N;(G)
and the maximality olJ, we have thatJKy =U andU > Ky. ThusU € £,(G). On
the other hand, foW € A,(G)™, put Ky :=10,ZNg(V) € A;(G). SinceV <VK;
A, (G), we have the second assertion by the same way.

(2) ForU € Ab,(G)™, takeV € N;(G)sy. SinceU <V < Ng(V), any elem-
entt € Ky := 0,ZNg(V) commutes withU. ThusU < {t)U € Ab,(G). By the
maximality of U, we have that e U <V, and soKy <V as desired.

(3) SetL(G):= Ab,(G) N L(G). ForU e Ab,(G)™* C £3(G), there exists
R e £3(G)"* C Ab,(G) such thatU < R. Then by the maximality otJ, U = R e
L£3(G)Ma The converse inclusion similarly holds. ]

Proposition 3.6. ForV <U € £,(G), suppose that &J) <V <U and Nz(U) <
Ng(V). Then Ve L, (G).

Proof. Take any € ZNg(V). SinceNg(U) < Ng(V), we have that},Ng(U)] =
{e}. This yields thatx € ZNg(U) and ZNg(V) < ZNg(U). Thus O,ZNg(V) <
0,ZNg(U) < Z(U) <V as wanted. ]

DEFINITION 3.7. For subgroup® < B < G, A is said to be weakly closed iB
with respect toG if A% < B for someg € G implies A® = A. In particular,Ng(B) <
Ng(A) holds.

The next result is an immediate consequence of Propositi®n 3

Proposition 3.8. For V <U e £,(G), suppose that &J) <V < U.
(1) If V is weakly closed in U with respect to G theneVL, (G).
(2) If V is a characteristic subgroup of U then ¥ £,(G). In particular, Z(U) €
L:(G), and that Q@ ZNgZ(U) < Z(U) holds.

Before giving examples, we recall some notations. For amsupgH < G, we set
HC¢ := {g-'Hg | g € G}. For an integem > 2, the symmetric and alternating group
of degreen are denoted by§, and A,. The notationC,, means the cyclic group of
ordern.

EXAMPLE 3.9 (Solvable groups). LetG = S, of order 2.3, andr := 7(G) =
{2, 3}. We determineL,(G). By Lemma 3.5 (1),Dg =~ U € Syl,(G) € N, (G)™* C
L,(G). Since any subgroul of U containingZ(U) is weakly closed irJ with respect
to G, we have thav € £,(G) by Proposition 3.8 (1). LeWV := {((12)) be a remaining
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2-subgroup ofs. SinceNg(W) = ((12),(34), we have thaD,, Z Ng(W) = ((12),(34) £
W, so that,W ¢ £,(G). Finally, by Lemma 3.5 (1), SY{G) C AN, (G)™* C L,(G).
Therefore, we get

L3 5(G) = L23(G) = N2,3(G) \ ((12))® = (52(G) \ ((12)®) U Syly(G).

ExamPLE 3.10 (Non-solvable grouiss). Let G = S of order 2-3-5, andr :=
{2, 3} € 7(G). We determineL,(G). By the same way as in Example 3.9, we have
that S»(G) \ ((12))¢ < £.(G). Let W := ((12)) be a remaining 2-subgroup d&.
Since Ng(W) = ((12)) x L whereL is the symmetric group of3, 4, §, we have that
0, ZNg(W) = W, so that,W € £, (G). Let X := ((123)) € Syly(G) € N, (G). Since
Na(X) = ((123), (12), (45), we have thatO, ZNg(X) = ((45)) £ X. Thus X ¢ L. (G).
Finally, by Lemma 3.5 (2)Cs = ((123)(45) € Ab,(G)™* C L,(G). Therefore, we get

L5 (G) = L23(G) = N2,3(G) \ ((123)° = S2(G) U {(123)(45)°.

ExampLE 3.11 (Simple groupJ;). Let G = J; be the Janko simple group of
order 2-3-.5.7-11-19, andr := {2, 3,5 C n(G). We determine’,, (G) referring
[2, p.36]. There is a unigue class of involutions with a repreativez. SetU = (z).
Since Ng(U) = U x As, we have thatO,ZNg(U) = U, so that,U € £,(G). By
Lemma 3.5 (1),C; x C; x Cp @ V € Syl,(G) C N, (G)™* C L, (G). Since Ng(V) =~
V x (C; x Cs), all subgroups of order?2are G-conjugate each other. Take the four
groupCo x Co = W < Ay < As < U x As = Ng(U). Then Ng(W) = U x A4 and
0,ZNg(W) =U £ W. ThusW ¢ £,(G). By looking at the normalizers, we see that
Syl(G) U Syl5(G) € L,(G). Finally, by Lemma 3.5 (2), subgroups isomorphicGg
or Cyp are in Ab,(G)™* C L, (G). Therefore, we get

L35 4G) = L234G) = N234G) \ W
= (S2(G) \ W®) U Syl3(G) U Syls(G) U (Ce)® U (C10)°.

4. Homotopy equivalences

Let (P, <) be a poset. Denote bg(P) = O(P, <) the order complex o, which
is a simplicial complex defined by all inclusion-chaing & - - - < xx), wherex; € P,
as simplices. We identify a posé® with the associated order complex(P). We
write P >~ O when posetsP and Q (namely, complexe®©(P) and O(Q)) are homo-
topy equivalent. Now any subsét C Sgp@G) is thought of a subposet of (S@p), <).
Thus we can consider homotopy propertiesAf In this section, we give homotopy
equivalences among,(G) and the other standard posets of subgroups. Relations with
known p-subgroup posets are also investigated. The next lemmangafental in the
theory of subgroup complexes.
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Lemma 4.1. Let P and Q be posets. Lep: P — P and v: P — Q be
poset maps.
(1) (cf. Lemma 3.3.3in [9]) If there exists ¥ € P such thatp(x) > x and ¢(X) > Xg
for any xe P (that is P is conically contractiblg thenP is contractible.
(2) (cf. Proposition 3.1.12 (2)n [9]) Suppose thap(x) < x for any xe P. Then for
any subsetm ¢ € R € P, we have thatP ~ R. (And dually forp(x) > x.)
(3) (Quillen's fiber theoremcf. Theorem 4.2.1in [9]) Suppose thaty~1(Q,) is con-
tractible for any ze Q. ThenP? ~ Q. (And dually for Q>,.)
(4) (cf. Theorem 4.3.2n [9]) Suppose thaP is finite. Let

P=:={ze P | P, is not contractiblé,

P~ :={ze P | P-. is not contractiblé.
Then for any subseP= € R € P, we have thatP ~ R. (And dually forP>.)

Proposition 4.2. The inclusionsA, (G) — N, (G) and Ab, (G) — N, (G) induce
homotopy equivalences.

Proof. Let f: A4,(G) — N;(G) be the inclusion map. Then by Lemma 4.1 (3),
it is enough to show thaf ~3(V;(G)<y) = {E € A,(G) | E < U} = A,(U) is con-
tractible for anyU € N;(G). ExpressU = U; x- - -x Uy, as the direct product of Sylow
subgroupdJ; (1 <i <m)of U. ThenA:= Q;Z(U) = Q1Z(U1) x- - -xR21Z(Up) # {€}
is a member ofd,(U). Let ¢: A,(U) — A, (U) be a poset map defined (E) :=
AE for E € A,(U), which satisfiesp(E) > E and ¢(E) > A. This yields that4,(U)
is contractible by Lemma 4.1 (1).

By the same way, we obtainlb,(G) ~ N;(G) although we may replacé :=
©;Z(U) with just Z(U) in the above discussion. O

Proposition 4.3. N;(G)™ € £,(G) € L:(G) € N,(G) holds. In particulay
Nz(G), L:(G), and L(G) are homotopy equivalent each other bgmma 4.1 (4)

Proof. It is enough to show thaV/},(G)> € £,(G). For U € N,(G), we have
that N;(G)-uy =~ N;z(Ng(U))-y. Indeed, for anyw € NV, (G).uy, Ny(U) > U asV is
nilpotent. Then a poset map

f: Nn(G)>U g NN(G)>U

defined byV — Ny(U) < V provides usN;(G).y ~ Im f = A, (Ng(U)).u by
Lemma 4.1 (2).

SetKy := 0,ZNg(U). SinceU and Ky are normal nilpotentr-subgroups of
Ng(U), we have thati Ky € N, (Ng(U)). Suppose that # Ky, that is,U ¢ L. (G).
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Then UKy € N;(Ng(U))-y. Furthermore, forX € A,(Ng(U))-y, we have that
[X,Ky] = {€}. This yields thatV; (Ng(U))-u > XKy = X(UKy), and that a poset map

Q: NJT(NG(U))>U - NH(NG(U))>U

defined byX — X(UKy) induces contractibility ofV;(Ng(U)).y by Lemma 4.1 (1).
It follows that N (G)> € L. (G). ]

REMARK 4.4. The converse inclusioN(G)> 2 £.(G) is not necessarily es-
tablished. For example, le6 = M;, be the Mathieu group of degree 12 of order
26.3%.5.11, andr := {2} € 7(G). Referring [2, p.33], there exists a subgroup=
C4 x C4 of G with NG(U) ~ U x D1 and O,Z NG(U) = {e} < U. ThusU € ,Cz(G)
However, N2(Ng(U))-u = MNo(D12) = S»2(D1o) is contractible sinceOy(Dyy) = Co.
This shows that) ¢ N>(G)>.

Proposition 4.5. The followings hold.
(1) Ab;(G)~ < Ab;(G) N LA(G) S Ab,(G).
(2) Az(G)” € A(G) N L3(G) € Az (G).
In particular, we have homotopy equivalenceb,(G) ~ Ab,(G) N L,(G) and
A (G) =~ A, (G) N LE(G) by Lemma 4.1 (4)

Proof. ForU e Ab,(G), setKy := O, ZNg(U). Since U, Ky] = {e}, we have
that UKy € Ab,(G). Suppose that) # Ky, that is,U ¢ Ab,(G) N £L,(G). Then
UKy € Ab,(G).y. Furthermore, forX € Ab,(G)-y, we have thatX < Cg(U) <
Ng(U), and thus K, Ky] = {e}. This yields thatAb,(G).y > XKy = X(UKy), and
that a poset map

@: Aby (G)-y — Abr(G)-u

defined by X — X(UKy) induces contractibility ofAb,(G).y by Lemma 4.1 (1). It
follows that . Ab,(G)~ < Ab,(G) N L, (G).

By the same way, we obtaid, (G)” € A, (G)NL:(G) € A,(G) by usingK, :=
2:0,ZNg(U) in place of Ky := 0, ZNg(U) in the above discussion. ]

Summarizing Propositions 4.2, 4.3, and 4.5, we obtain the. ne

Proposition 4.6. The following homotopy equivalences hold.
(@) Nz(G) = L:(G) = L3(G) = Ab,(G) =~ A, (G).
(B) Ab:(G) =~ Ab,(G) N L (G).
(¥) Az(G) = A (G) N L3 (G).

Note that equivalences in Proposition 4.6 can be extende&s-b@motopy equiva-
lences (see [9, Section 3.5] or [11]).
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REMARK 4.7 (The wholer(G) case). In the case of = 7(G), our equivalence
(@) in Proposition 4.6 givesV(G) ~ Ab(G) ~ A(G) where these three posets are re-
spectively the totality of non-trivial nilpotent subgrajpabelian subgroups, and direct
products of elementary abelian subgroups@f This result coincides with a part of
[8, Proposition 1.2].

Like Lemma 4.1, posets(G), Ap(G), andBy(G) (see Remark 3.1) are also fun-
damental in the theory of subgroup complexes. In particulamse three posets are
homotopy equivalent each other (cf. [9, p.165]). Below isimmediate consequence
of Proposition 4.6 withr = {p}. In particular, equivalences related fiy(G) should
be new.

Corollary 4.8. The following homotopy equivalences hold.

Sp(G) = Np(G) = Abp(G) = Ap(G) = L(G) = L1(G),
Abp(G) ~ {U € Aby(G) | U > 0,ZNg(U)},
Ap(G) ~ {U € A,y(G) | U > ©,0,ZNg(U)}.

REMARK 4.9. (1) Recall that a posedp(G) :={U € Ap(G) | 2:0,ZCs(U) =
U} is introduced by Benson (see [1, p.226]). It is known tHg(G)~ € Z,(G) (cf. [9,
Remark 4.3.5]), so thatd,(G) ~ Z,(G). But this equivalence ofA,(G) is different
from Ap(G) >~ Ap(G) N L,(G) in Corollary 4.8.
(2) As mentioned in Remark 3.8(G) is included inL(G). Thus a relatior3,(G) =
By(G) N L(G) holds. Furthermore, we have thB(G) ~ Sp(G) =~ Lp(G) by Corol-
lary 4.8.

REMARK 4.10. We investigatedV;(G)> in Proposition 4.3, and alsglb, (G)>
and A;(G)~ in Proposition 4.5. On the other hand, it is known (cf. [9, 2]} that
Sp(G)= = Ap(G) andSp(G)~ € By(G) in general. Furthermore the equalifi(G)~ =
Bp(G) holds assuming Quillen conjecture which is saying thatj{G) is contractible
then O,(G) is non-trivial. From this viewpoint, a subgroup i, (G)~ € £,(G) might
be a candidate ofs#-radicals”. In addition, we already saw in Remark 3.1 thaub-s
group in £,(G) contains the notion op-radicals.

REMARK 4.11. Suppose thaD,(G) # {e}. Then a relation < UOy(G) >
Op(G) for any U € S,(G) gives us (conical) contractibility o,(G). The converse
is Quillen conjecture. How about/, (G)? Let G be the symmetric grouf, of degree
4, andr := 7(G) = {2, 3}. ThenN,(G) = S»(G) U S3(G) is disconnected (i.e. non-
contractible) even ifO,(G) = G # {e} or O, F(G) = F(G) =~ C, x C, # {e} where
F(G) is the Fitting subgroup o6.
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5. Investigations on L, (&)

For a positive integen, denote by&(Q2) = &, the symmetric group on a s& .=
{1, 2,...,n}. In this section, we investigate subgroups4p(S(2)). It is shown that
the determination oH € £,(&(2)) can be reduced to the case wheteis irreducible
(see Definition 5.5) such that there is no fixed pointtbfon €. Then focusing on the
irreducibility of subgroups, we provide a strategy to detiee £,(S,). As examples,
we classify subgroups if,(Sy) for n < 6 by using our method.

For a family # € Sgp(Gn) of subgroups closed und&s,-conjugation, denote by
H/~a, a set ofGy-conjugate representatives &f.

5.1. The symmetric group. We establish some notations @(2). For x, y €
&(2), the compositiorky € &(2) is read from left to right, and denote by € Q the
image ofa € 2 underx. Let e e G(2) be the identity element. The notatidh:= {e}
stands for the trivial subgroup ab(2). For a subgroupH < &(2), as in [3, p.19],
the set of fixed points and support bf are defined by

fix(H) := {@ € Q | o«" = « for all h € H},
suppH) := 2\ fix(H) = {« € Q | " # « for someh € H}.

It is clear thatH = E if and only if suppf) = 9.

NOTATION 5.1. For anH-invariant subsef” C 2, denote byH|r < &(Q) the
group of permutations which agree with an elementobn I' and are the identity on
Q\ I. In other words, for an elemerit € H, we identify a bijective restriction map
hir: I' - ' with a permutation orf2 which is the identity on2 \ I'. Then the group
H|r is defined by{h|r | h e H} < &(") — &(R).

A subset supfl) € Q is Ng(e)(H)-invariant, andH is identified with H|syppg) <
&(suppH)). For any H-invariant subsetl’ € €, it is clear that supfd|r) =

suppH) NT.

5.2. Reduction to the fixed point free case. In this section, we show that the
determination ofH € £,(&(2)) can be reduced to the case whefie has no fixed
points in Q. Put

L (6())° = {H € L(8(Q)) | fix(H) = 2}.

Lemma 5.2. Let H < &(R2) be a non-trivial subgroup.
(1) Suppose ¢ 7. Then He £,(S(R)) if and only if He £,(S(2\ fix(H)))°.
(2) Suppose € . Then He L,(&(RQ)) if and only if H e £,(S( \ fix(H)))° and
[fix(H)| # 2.
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Proof. SetG := &(2), 24 :=suppH), and 2 := fix(H). Recall thatH is iden-
tified with H, := H|syppp). In order to prove this lemma, it is enough to show that
H e £,(5() if and only if Hy € £,(6(24))°, and || # 2 or 2¢ 7. Now since
Ng(H) acts on both2g and ©2,, we have thaiNg(H) < &(Q0) x &(2,.). Hence

Ne(H) = Ne@oxs(@.)(H+) = 6(Q0) x Ne(@,)(H+),
O; ZNg(H) = O, Z(6(£20)) x Or Z(Ng(e.,)(H4)).
Suppose that € £, (G), that is,H, = H > O,ZNg(H). Then O, Z(&(0)) =
E and H; > O, Z(Ng(q,)(H+)). Thus Hy € £,(&(24))°. FurthermoreZ(&()) is

non-trivial if and only if || = 2. This yields thatO, Z(&(2)) = E if and only if
|| # 2 or 2¢ . The converse is now clear. The proof is complete. O

The following result is a consequence of Lemma 5.2.

Proposition 5.3. For positive integers = 3 and2 <k <n-—1, set[k] := {1,.
k} € Q. Then we have that

k=2
L (6(R)/~s@) = 1

U LK)/ ~spa | U LA(S(@)/~sw if 2€m.

k=2
k#n—2

n-1
<U L (S(KD)°/ ~e([k])) UL(6(@)°/~e@ if 2¢m,

By Proposition 5.3 together with the inductive argumentg tetermination of
L.(6(R)) can be reduced to that af,(&(R))°.

5.3. Reduction to components. In this section, we introduce the irreducibility
of a subgroup of&(2), and show that any non-trivial subgroupp of &(2) can be
uniquely decomposed into irreducible subgroupsHof Using such a decomposition of
H, the notion of components dfi comes out. Then we show that the determination
of H € £,(&(R))° can be reduced to the case wheieitself is a component oH.

NoOTATION 5.4. If a direct product subgroupl = H; x H, < &(Q2) satisfies
suppHi) N suppH,) = @, then we denote it byH = H; L H,. In this case, we have
a disjoint union supg) = suppH:) W suppHy). Furthermore, we recursively define
H; L Hy L--- L H for any finite number of subgroupd; < &(2) by (Hy L --- L
Hi-1) L H.

DEFINITION 5.5. LetH < &(2) be a subgroup.H is said to be reducible if
there exist non-trivial subgroupll;, H, < H such thatH = H; L H,. On the other
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hand, we callH irreducible if H £ E and H is not reducible, that is, whenevét =
K L L for subgroupsK, L <H thenK =E or L = E.

Lemma 5.6. (1) For a subgroup H= H; 1L H, < &(2) and an H-invariant sub-
setI” € @, we have that H- = Hq|r L Hy|r.
(2) Suppose that A B= A1 C <6(2). Then B=C.

Proof. (1) Straightforward.
(2) SetD:= A1 B. ThenTI'g :=suppB) = suppD)\supp@) = suppC) =: T'c.
For a D-invariant subsel’'s = I'c, we have by (1) that

Dlrg =(ALB)|r, =Alr, LB, =ELB=B,
Dlre =(ALC)re =Alre LCl;, =ELC=C.

Thus B = C as wanted. O

Proposition 5.7. Let H < &(2) be a non-trivial subgroup. Then H is decom-
posed as

H=H;L---1LH
where the K< H are irreducible and unique up to order.

Proof. We proceed by induction osuppH)| > 0. For the existence, we may
assume thaH is reducible. Then there exist non-trivial subgrougs, H, < H such
that H = H; L H,. Since the supports dfl; and H, are strictly contained in suppl(),
we have that each; can be decomposed into irreducible subgroups by induciitis
shows the existence of the decomposition.

Suppose next thad = Hy L --- L H = Ky L --- 1L K, for some irreducible
subgroupsH;, K; < &(). SinceTl := suppHi) € suppH) = Urjnzl suppK;), we
may assume thaf N A # @ for A := suppKi). Then suppi|r) = suppK,) N T =
ANT # @ and Kq|r # E. Now

Hi=Hlp = (K1 L--- L Kp)|lr = Kgfp L -+ L Kp|p.

By the irreducibility of H;, Hy = Kq|r and I' = suppHi) = suppKi|r) € A.
Exchanging roles of* and A, we can obtain that C I', so that,[' = A. This yields
that Hy = Ki|r = Ki|p = K3. Then by Lemma 5.6H" :=Hy, L --- L H = K, L
.-+ 1 Kp. Since the support ofH’ is strictly contained in supp{), the uniqueness
also holds by induction. ]

Corollary 5.8. Let H < 6(2) be a non-trivial subgroupand let H=H; 1L .-- 1
H, be a decomposition of H as iRroposition 5.7 SetT; := suppH;) for 1 <i <.
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Suppose thasuppH) = Q. Then we have that if He £,(S(T}))° for all 1 <i <|
then He £,(S(R))°.

Proof. Any elemeng € O, Z Ng(q)(H) commutes withH; for all 1 <i <. So
T is {g)-invariant. Since supp{) = €2, we have thag = ]’[!zlg|ri which is contained
in [T_; Oz ZNs(r)(Hi). Thus

(Y4 Ne(g)(H) = 1_[ OnZNG(F.)(Hi)*
i=1

and this completes the proof. ]

We establish the situation once more here. Get= G(2), and letH < &(R)
be a non-trivial subgroup. Suppose thdt= H; L --- L H be a decomposition of
H into irreducible subgroup$ii (1 <i <1) as in Proposition 5.7. Then a sé&}; :=
{Hq, ..., H} is uniquely determined by. Let {K4,..., K{} € X4 be a set of repre-
sentatives ofG-conjugate classes ity. For eachK;, denote by Ki] := {Hj € &y |
Hj ~c Ki} the class containindS;. We set K] = {Ki(l), Ki(z), c Ki(m‘)}, and define
a subgroup

M(Ki):= (K |K e[K]) = KO LK® L... L KM <H,

ThenH = M(K;) L M(Ky) L --- 1L M(Kt). We call each subgroup(K;) a “compo-
nent” of H. Put

X; := suppM(Ky)) = U suppK), Gi == 6(X) < G.
j=1

Proposition 5.9. With the above notationsuppose thasuppH) = 2. Then we
have that
(1) Na(H) = No,(M(K)) L Ney(M(K2)) L -+ L N, (M(K)).
(2) H e L,(G) if and only if M(K;) € L,(G;)° for all 1 <i <t.

Proof. (1) For anyg € Ng(H), H = H9 = H? L --- L H% Since Xy is
uniquely determined byH by Proposition 5.7, we have that)) acts onXy and [K|]
for any 1<i <t. This yields thatX; is (g)-invariant, and thug|x, € Ng,(M(Kj)).
Since suppfl) = ©, we have thag = Hit=19|x‘ which is contained ifNg,(M(K3)) L
-+ L Ng,(M(K¢)). The converse inclusion is trivial.

(2) Straightforward from (1). ]

By Proposition 5.9 (2), the determination Bf € £, (&(2))° can be reduced to the
case wherdH itself is a component offl, that is, all subgroups i&y areS(£2)-conjugate
each other.
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5.4. Reduction to irreducible subgroups. In this section, we show that the de-
termination of H € £,(&(RQ))° can be reduced to the case whddeis irreducible.
Set G := &(R2). By reason of Proposition 5.9 (2), we assume the followingdth-
esis 5.10

HYPOTHESIS5.10. LetH < &(R2) be a non-trivial subgroup. Suppose thét=
Hy L--- 1 H be a decomposition oH into irreducible subgroup$l; (1 <i <1) as
in Proposition 5.7. TheH; ~g H; for any 1<i, j <I.

We examine the structure dfig(H). SetI; := suppHi) and G; := &(I;) for
1 <i <I. By Hypothesis 5.10, for each 2 i <1, there existsg; € G such that
H = ng‘ := ¢ 'H1g which induces a permutation equivalendé;(I'1) ~ (H;, I'}).
In other words, there exist bijectionf: H; — H; defined byx — x9% := g 1xg for
X € Hy, and ¢ : 'y — Iy defined bya + o9 for o € I'y satisfying ¢ )*" = (a*)¢
for any x € H; anda € I';. Now we define an involution

o= [[l@a)es(uUN)<6(Q) (2<i<l)

ael’y

which acts onXy = {Hy,..., H} as a transpositionHy, H;). ThenS:= (0y,...,01) =
&, acts on bothXy and {Ng,(H1), ..., Ng (Hi)} as &, respectively, and a subgroup
Ng,(H1) ¢ S= B x S=< Ng(H) is defined whereB := Ng,(H1) x - - - x Ng, (H)).

Proposition 5.11. AssumeHypothesis 5.10 With the above notationssuppose
that suppH) = Q2. Then we have that
(1) Ng(H)=Bx S.
(2) H e L,(G) if and only if H € £,(G1)°.

Proof. (1) For any elemerg € Ng(H), (g) acts onX}y as in the proof of Prop-
osition 5.9. Then there exists € S such thato is equal tog as elements o&(Xy).
Thusgo ! fixes H; for all 1 <i <I, so that, §o~1)|r, € Ng, (H;). Since suppfl) = ,
we have thaigo * = []_,(go )|, which is contained inB. Soge Bo C Bx S.

(2) Suppose thaH; ¢ £,(G1)° and then we will show thaH ¢ £,(G)°. We
may assume thdt> 2. Now there existz; € O, ZNg,(H1) \ Hi. For 2<i <I, put

I
z =07 'z10i € O, ZNg,(Hi) \ Hi, z0:= HZi € Ng(H) \ H.
i—1

Then [z, B] = E. Furthermore, for each; € S (2 < j <1), we have that

| |
i __ 0] 0i0] 0j%) __ 9 Oi _
ZO_ZlXHZl X Z; —ZIXH21X21—ZO.
i=2 i=2

i#] i#]



744 N. IYORI AND M. SAWABE

This implies that fp, S] = E and zy € ZNg(H) by Proposition 5.11 (1). Thug, is in
0,ZNs(H)\H, andH ¢ £,(G)° as desired. The converse follows from Corollary 5.8.
O

Summarizing Propositions 5.9 and 5.11, we have the follgwin
Theorem 5.12. Let H < &(2) be a non-trivial subgroupand let
H=HD Lo LHM™)y L HP Lo L HM) L L (Y 1 L H™)

be a decomposition of H as iRroposition 5.7where each #111) L. L Hi(mi) is a
component of H. Sef; := suppq-h(l)) for 1 <i <t. Suppose thasuppH) = Q.
Then we have that H £, (S())° if and only if HY € £,(S(I}))° for all 1 <i <t.

By Theorem 5.12, the determination bff € £, (&(2))° can be reduced to the case
where H is irreducible.

5.5. On intransitive subgroups. In this section, we show that intransitive sub-
groups of&(2) can be described inductively in terms of smaller irrediecubgroups.
This idea will be used in Section 5.6. First we recall pulksac

REMARK 5.13. (1) LetG and H be groups, and leé: G/N — H/K be a
group isomorphism between quotient groups. Then the ki@ x’ H of G and H
via 0 is a subgrougd(g,h) e GxH | (gN)? = hK} of GxH (cf. [4, Definition 13.11]]).
Note that if@ is trivial, that is,G/N is the trivial group, therG x H = G x H.

(2) Let G = K x L be a direct product. Then any subgrotpof G can be realized
as the pullback of certain subgroupsKnand L. More precisely, there exist subgroups
K>K;>KyandL > L; > Ly, and also a group isomorphisénr K;/K, — Li/L>
such thatH = Ky x? L (cf. [10, (4.19)]).

Let H < &(Q2) be a non-trivial subgroup. Suppose that supp& @2, and thatH
acts intransitively ore2. Let

QZOlU"‘UOm71UOm (mZZ)
be a decomposition of2 into H-orbits. SetA; := O; U---U Ony_1 and A, := Op,.
Then a subgrouB := H|,, < 6(Ay) is transitive onAy, that is, irreducible. On the
other hand, a subgroupl|s, < &(A;) is decomposed abl|y, = Ay L --- L A into
irreducible subgroup#\ (1 <i <1) by Proposition 5.7. It follows that

H<H|an xH[x=(A L---LA)LB.
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Since the supports ofy and B are strictly contained in suppl) = €2, we may
assume that a list of irreducible subgroups and B is already known by induction.
Thus H can be concretely described as the pullbatkx? H, of certain subgroups
Hi <A L---1 A andH, < B where® is a group isomorphism between quotients
(see Remark 5.13). Note that, H is irreducible thend must not be trivial. In the
next, we give a result on irreducible pullbacks under thevalsituation.

Proposition 5.14. Let B < &(R2) be an irreducible subgroypand let A:= A; L
-« L A < 6(R2) where A is irreducible for all 1 <i <|. Suppose thasupp@) N
supp@B) = 0 and supp@ L B) = Q. Suppose further that there exists a group iso-
morphismé: A/N; — B/N, (# E) for some N << A and N <0 B such that AZ N;
for all 1 <i <. Then the pullback P= Ax? B = {(a,b) € Ax B | (aNy)? = bNy}
is irreducible.

Proof. Setl'; := supp@;) (1 <i <I) andT := suppB). Suppose thaP is re-
ducible. Then there exist non-trivial subgroulds L < P such thatP = K L L. Let
na: P —> Aandng: P — B be the projections oP on A and B respectively. Both
wa and g are surjective. This implies tha |, = A (1 <i <1) and P|r = B. Since
B = P|r = K| L L|r is irreducible, we may assume that

Kir=B ie. T =suppB) < suppK),
Lr=E ie. LA=A1..-1LA.

Suppose thal” C suppK) € Q =T, U---UT, UT. Then we may assume that
@ # suppK) N I'y = suppK|r,), so that,K|r, # E. SinceA; = P|r, = K|, L L,
is irreducible, we have that

Kir, = A1 i.e. T'1 =supp@;) € suppK) and I'UT; € suppK),
Lib=E ie. L<AyLl---LA.

Repeating this process, we may assume that there eéxistssuch that

suppK)=Turyu---Ury,
L<AqLl---LA.

(*)

Note that ift =1 then L = E, a contradiction. Nowra: P =K L L — Ais
surjective. Thus for anya € A, there existéx,bk) e K < AxB and @ ,e)eL <A
such that

a=ma((ak, bx) x (a., €)) = aka.

But by the above conditionk, ax € Ay L --- L A; anda, € Aiyp L--- L AL Thus
ac =eanda=a_ €L < P. This implies &, €) € P and @N;)’ = eN, = N, by
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the definition of P. Therefore A/ < N; which contradicts our assumption. The proof
is complete. 0

5.6. A strategy to determine £,(S,)°. In this section, we provide a method
of determining £, (&,)° which is focused on irreducible subgroups. So we introduce
the notations

IRR(N)® := {E # H < &(Q) | H is irreducible such that fix{) = 0},
T(n) :={E # H < &(Q) | H is transitive on2} < IRR(N)°.

Then, as in the following, we divide our work of determinity € £,(S,)° into two

cases whereH is irreducible or not.

A: DetermineH € £,(6,)° such thatH is not irreducible (see Theorem 5.12).
(Step Al) Give a non-trivial partitiom = (ny +---+ny) 4+--- 4+ (N +--- + ny)

of n such thatn; > 2 andn; > nj,1.

(Step B2)H is Gp-conjugate to one of subgroups of the fortd; (L --- L Hy) L

coo L(Hy L+-- L Hy) whereH; € £,(&,)° for 1<i <t.

DetermineH € £,(&,)° such thatH is irreducible.

(Step B1) Make a list ofS,-conjugate classes ifi(n).

(Step B2) Describe subgroupsIRR(n)°\ T(n), namely intransitive irreducible sub-

groupsH having no fixed points (see Section 5.5). Indeed, we first gimen-trivial

partitionn = n; + --- 4+ n,_1 + n, of n such thatn; > 2. Let A < &5, and

B € T(n,) such thatA hasr — 1 orbits of lengthay; for 1 <i <r —1. Calculate an

irreducible pullbackH = A; x? B; via a group isomorphism: A;/A, — B1/B;

(# E) whereA> A; > A, andB > B; > B,.

(Step B3) By the previous two Steps B1-B2, the &&R(n)° is complete. Then,

from IRR(n)°, pick up subgroups belonging 6, (Sy).

0

5.7. Examples£,(S,)° (n < 6). According to a strategy introduced in Sec-
tion 5.6, we determin&,(S,) for 4 <n < 6. Let2(2) = 2, be the alternating group
on Q= {1,...,n}. For a prime numbep and a positive integem, denote byp™, Cp,
D.m respectively the elementary abeligagroup of orderp™, cyclic group of ordem,
dihedral group of orderr@. Setr := 7 (&y).

The cases of5, and &3 are trivial as follows:

IRR(2)° = T(2) = L;(6,)° = {&, = Cy},

IRR(3)° = T(3) = {S3, Az}, and L, (S3)° = {Az = C3}.

The case 0f5,:

(Steps A1-A2) A non-trivial partition of 4 not containing ¥ aummands is only
4 =2+ 2. Then any non-irreducible subgroup in £, (S4)° is conjugate toH; L H,
where H; € £,(62)°. ThusH ~g, ((1, 2)) L ((3, 4)).

(Step B1) It is easy to see th@{d)/~s, = {G4, s, ((1,2,3,4),(2,4) = Dg, V,
((1, 2, 3,4) =~ C4} whereV :={((1, 2)(3, 4), (1, 3)(2, 4) is the four group. In particular,
T(4)/~e, N Lr(S4) = {Ds, V, C4}.
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(Step B2) A non-trivial partition of 4 not containing 1 as suands is 4= 2+ 2.
There is the unique transitive subgro8p.= ((3,4)) € T(2) on {3, 4}. Then we choose
a transitive subgroupA € T(2) on {1, 2} having a quotientA/N of order 2, namely
(A, N) = ({(1, 2)), E). Define a group isomorphisi: A/N — B. The pullbackA x°
B = ((1, 2)(3, 4) = C; is irreducible.

(Step B3) By Steps B1-B2, we have that

IRR(4)°/~e, = T(4)/~e, U {{(L, 2)(3, 4)}.
Then £, (6,4)° consists of 5-classes whose representatives are as follows

H € £:(64)°/~e, ‘ &~ ‘
(1, 2) L((3,4) | 2° | non-irreducible
((1,2,3,4),(2,4) | Dg | irreducible and transitive

Vv 22
((1,2,3,4) Cq4
((1, 2)(3, 4) 2 | irreducible and intransitive

The case 0fSs:

(Steps A1-A2) A non-trivial partition of 5 not containing $ aummands is only
5= 3+ 2. Then any non-irreducible subgrou in £,(Ss)° is conjugate toH; L Hy
where H; € £,(63)° and Hy € £,(8,)°. ThusH ~g, ((1, 2, 3) L ((4, 5)).

(Step B1) Since the order of a transitive group of degree Svisible by 5, it is
easy to see thal(5)/~s, = {Gs, As, Cs x Cyq, C5 X Cy, Cs}. In particular, T(5)/~a, N
L.(65) = {{((1, 2, 3, 4, 5) = Cs}.

(Step B2) A non-trivial partition of 5 not containing 1 as smands is 5= 3+ 2.
There is the unique transitive subgro8x= ((4,5)) € T(2) on {4, 5. Then we choose
a transitive subgrou@A € T(3) on {1, 2, 3 having a quotientA/N of order 2, namely
(A, N) = (&3,23). Define a group isomorphis#: A/N — B. The pullbackAx’ B =
((1, 2, 3), (1, 2)(4, 5) =~ &3 is irreducible.

(Step B3) By Steps B1-B2, we have that

IRR(5)°/~e, = T(5)/~s5 U {((L, 2, 3), (1, 2)(4, B
Then £, (&5)° consists of 2-classes whose representatives are as follows

HeL:(6s)/~e, | =
((1,2,3) L{(4,5) | C3xC;, | non-irreducible
((1,2,3,4,5) Cs irreducible and transitive
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The case 0f&g:

(Steps A1-A2) Non-irreducible subgroupkin £, (S6)° correspond to non-trivial
partitions of 6 not containing 1 as summands. Thus thosersupg are determined
as follows:

() 6=4+2: H ~g, Hy L Hy where H; € £,(8,)° and H, € £,(62)°, and thus

H ~e, Dg L ((5,6)), V L((56), CsaL((56) (1 2)3 4)L((05,E6).
(i) 6 =3+3: H~g, Hy L H, where H; € £,(S3)°, and thus
H ~e, ((1,2,3) L ((4,5,6).
(ii)) 6 =2+ 2+2: H ~g, Hy L Hp L Hy where H; € £,.(&,)°, and thus
H ~e, (1, 2) L ((3,4) L ((5, 6).

(Step B1) We can find that there are 16-classes of transitibgreups ofSg,
and representatives are as follows:

T(6)/N66 = {661 QLG! PG L(2! 5)g 65! Q[51 641
G326, = 32 % Dg, 3 xCy, 3 x 22, 3xCy, C3xCy, Dyp, G,
62063222 %S, 2xCs, 22%Cs, Gal.

In particular, T(6)/~g, N Lr(Se) = {((1, 2, 3, 4, 5, 6) = Cq¢}.

(Step B2) In order to examine intransitive subgroupsin IRR(6)°, we consider
pullbacks associated to non-trivial partitions of 6 not taiming 1 as summands as
follows:

(i) 6 =4+ 2: There is the unique transitive subgroBp.= ((5, 6)) € T(2) on {5, 6}.
Then we choose a transitive subgrodpe T(4) on {1, 2, 3, 4 having a quotientA/N
of order 2, so that, a group isomorphighm A/N — B is defined.

0: A/N - B |H=Ax"B | nilp. | Ne,(H)
Ga4/As — B (Ag, (1, 2)(5, 6) =~ G4 no
Dg/Cs — B (1, 2,3,4), (2,4)5, )= Dsg yes | DD x ((5, 6))

((1,2)3, 4, (1,3)(2,4), (2,45, p)
=((1, 2, 3, 4)(5, 6), (2, 4)(5, 6)= Dsg
((1,3), (2, 4), (1, 2)3, H)(5, 6)
=((1, 2, 3, 4)(5, 6), (2, )=~ Dg
V/((1,2)(3,4) — B [((1, 2)(3,4), (1, 3)(2, 4)(5, 6)= 22 yes | D@ x ((5, 6))
C4/C, — B (1, 3)(2, 4), (1, 2, 3, 4)(5, )= C, yes | D@ x ((5, 6))

Dg/V — B yes | DO x ((5, 6))

Dg/((1, 3), (2,4) — B yes | DM x ((5, 6))

where DW := ((1, 2, 3, 4), (2, 4) and D@ := ((1, 3, 2, 4), (1, 2).
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(i) 6 =34 3: There are three non-trivial quotienfs/N of transitive subgroups
T(3), namely @, N) = (&3, A3), (S3, E), and @3, E).

0: A/N > A/N | H=Ax"A | nilp. | Ne,(H)
G3/U3 > G3/23 ((l, 2, 3), (4, 5, 6), (1, 2)(4, 5)% 3 x Cz| no

G3/E — G3/E | ((1, 2, 3)(4, 5, 6), (1, 2)(4, 5)= G3 no

A3/E — A3/E | ((1, 2,3)(4, 5, 6) = Cs yes [ 32 xCy x C,

(i) 6 = (24 2) 4+ 2: There is the unique transitive subgro8p:= ((5, 6)) € T(2) on
{5, 6. Then we choose an intransitive subgrodp=< &4 on {1, 2, 3, 4 which has
two orbits of length 2. NamelyA is an irreducible subgroug\; = ((1, 2)(3, 4) or
non-irreducible subgroupg\, = ((1, 2)) L ((3, 4)). Each A; has a quotient of order 2.

6: A/N > B |H=Ax"B | nilp. | Ne,(H)
A/E > B (1, 2)(3, 4)(5, 6) =~ C, yes | G52 63
A/{(1,2)3,4) > B | ((1,2)3,4), (1,2)(5, 6)=22 | yes | 6,263
A2/{(1,2) > B ((1,2) L((B,4)5,6) =2> | yes

Note that the las{(1, 2)) L ((3, 4)(5, 6) is the only non-irreducible subgroup among
the above twelve subgroups in Step B2 (compare with Prapos8.14). Thus there
are 11-classes of intransitive subgroupsiRR(6)°.

(Step B3) By Steps B1-B2, there are (6.1)-classes of subgroups IRR(6)°,
and then’, (G6)° consists of 9-classes whose representatives are as follows

H e £:(6G6)°/~s, | = |
((1,2,3,4),(2,4) L ((5,6) | Dgx Cy | non-irreducible
V L {((5, 6) 22
((1,2,3,4) L{(5,6) CsxCy
((1,2)3, 4) L((5 6) 2
((1,2,3) L {@#4,5,6) 3
((1,2) L (B, 4) L5 6) 2
((1,2,3,4,5, 6) C, x Cg | irreducible and transitive
((1, 2, 3)(4, 5, 6) Cs irreducible and intransitive
(1, 2)3, 4)(5, 6) &

Furthermore, Proposition 5.3 tells us that, since 2, the wholeL,(Sg) is con-
structed by four part<,(&,)° L.(63)°, L£.(65)°, and £,(Se)°. Therefore there are
(14 1+ 2+ 9)-classes of subgroups i, (Se).
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