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Abstract
Spectral measures of Wigner matrices are investigated. TheWigner semicircle

law for spectral measures is proved. Regard this as the law oflarge number, the
central limit theorem moments of spectral measures is also derived. The proof is
based on moment method and combinatorial method.

1. Introduction

This paper concerns with real Wigner matricesXN of the form

XN( j , i ) D XN(i , j ) WD
�i j
p

N
, 1� i � j � N.

Here{�i i }1�i and{�i j }1�i< j are two i.i.d. (independent identically distributed) sequences
of mean zero (real) random variables. We require in additionthat all moments of�11

and �12 are finite and�12 has unit variance, that is,E[j�12j
2] D 1.

Let �(N)
1 � �

(N)
2 � � � � � �

(N)
N be the eigenvalues ofXN and

L N WD
1

N

N
X

iD1

Æ

�

(N)
i

be the empirical distribution (measure) ofXN , whereÆ denotes the Dirac measure. Then
the Wigner semicircle law claims that asN tends to infinity,L N converges weakly, in
probability, to the semicircle distribution. This means that for any bounded continuous
function f W R! R, hL N , f i converges in probability toh� , f i. Here the semicircle dis-
tribution, denoted by� , is the probability distribution supported on [�2, 2] with density

� (x) D
1

2�

p

4� x2, (�2� x � 2).

There are many proofs of the Wigner semicircle law. Let us mention here Wigner’s
original one which based on combinatoric arguments. Since the semicircle distribution
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� has compact support, in order to prove the Wigner semicirclelaw, it is sufficient to
show that all moments ofL N converges in probability to the corresponding moments
of � , namely, fork D 0, 1, 2,: : : ,

(1) hL N , xk
i ! h� , xk

i in probability as N !1,

whereh�, f i D
R

f (x) d�(x) for a measure� and an integrable functionf . The k-th
moment ofL N can be written as

hL N , xk
i D

1

N

N
X

jD1

(�(N)
j )k
D

1

N

N
X

jD1

Xk
N( j , j ),

and combinatoric arguments are used here to investigate itsmean and variance. See [2,
Section 2.1] for more details. Thus, in some respects, the semicircle law states that the
average of the diagonal elements ofXk

N converges in probability toh� , xk
i.

With a little modification, one can show that each diagonal element of Xk
N does

converge toh� , xk
i as N tends to infinity. In particular, fork D 0, 1, 2,: : : ,

(2) Xk
N(1, 1)! h� , xk

i in probability as N !1.

On the other hand, there is a probability measure�N on R satisfying

h�N , xk
i D Xk

N(1, 1), k D 0, 1, 2,: : : ,

called the spectral measure of (XN , e1), wheree1 D (1, 0,: : : , 0)T 2 RN . It then follows
that the spectral measure�N also converges weakly, in probability, to the semicircle
distribution because of the compact support of the semicircle distribution.

Regard the convergence in probability of moments as the law of large numbers, the
central limit theorem for moments of the empirical distributions L N has been derived.
It is known that scaled byN,

N(hL N , xk
i � E[hL N , xk

i])

converges weakly to the Gaussian distribution whose variance depends on the second
and fourth moments of�11 and�12. This and the multidimensional version were studied
in [1]. The main purpose of this paper is to investigate the central limit theorem for
moments of the spectral measures�N , or just the central limit theorem for diagonal
elementsXk

N(1, 1). The main result is as follows.

Theorem 1.1. Let

NSN,k D
p

N(h�N , xk
i � E[h�N , xk

i]) D
p

N(Xk
N(1, 1)� E[Xk

N(1, 1)]).
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Then there exists a sequence of jointly Gaussian random variables{�k}kD2,3,::: independ-
ent of� which has the same distribution as�11 such that the following hold.
(i) For even k,

NSN,k
d
�! �k as N!1.

(ii) For odd k� 3,

NSN,k
d
�! ak� C �k as N!1,

where ak is a constant.
(iii) For fixed K, the joint distribution of( NSN,1, NSN,2, : : : , NSN,K ) converges to that of
(� , �2, a3� C �3, : : : ).

Here the symbol“
d
�!” is used to denote the convergence in distribution of random

variables.

The moment method is used to prove the central limit theorem.To compare with
combinatoric arguments in [1], the big difference is that every word starts at 1, as
we will see in the next section. To overcome this difficulty, we refine method in [1]
using some idea from [6]. The central limit theorem forXk

N(1, 1) is actually a spe-
cial case of a more general one in [5], which claims that for a ‘nice’ function f ,
p

N( f (XN)i j � E[ f (XN)i j ]) converges in distribution asN !1. Such result, in case
of Wigner matrices with Gaussian entries, was considered in[3]. More recently, it
is extended to Wigner matrices with non-identically distributed [4]. However, the ap-
proach in this paper are different from all of those. The author would like to thank
Professor Greg W. Anderson for letting him know these references and would like to
thank the referee for valuable comments.

The paper is organized as follows. Section 2 deals with some combinatorics ob-
jects such as Wigner words, CLT sentences and key combinatoric arguments. We prove
in Section 3 the Wigner semicircle law for spectral measuresand investigate the central
limit theorem in Section 4.

2. Words, sentences

This section deals with basic notions and key combinatoric arguments needed in
the paper.

We begin with the definition of words. A wordw D {s1, s2, : : : , sk} is a finite
sequence of positive integer numbers called letters. A wordis closed if the first and
the last letters are the same. The length ofw is denoted bỳ (w) WD k. The support,
denoted by supp(w), is the set of letters appearing inw, and the weight,wt(w), is
defined as the cardinality of supp(w). If we restrict the condition thats1, s2, : : : , sk 2

{1, 2, : : : , N}, we callw an N-word, whereN is a positive integer number.
Two wordsw1 and w2 are called equivalent, denoted byw1 � w2, if there is a

bijection from supp(w1) onto supp(w2), which mapsw1 to w2.
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A word w is associated with an undirected graphG
w

D (V
w

, E
w

), with wt(w)
verticesV

w

D supp(w) and (k � 1) edgesE
w

D {(si , siC1), i D 1, 2, : : : , k � 1}. Then
the wordw defines a path/walk on the connected graphG

w

. We define the set of self
edges asEs

w

D {e2 E
w

W eD (u, u), u 2 V
w

} and the set of connecting edges asEc
w

D

E
w

n Es
w

. For e 2 E
w

, we useNw

e to denote the number of times this path traverses
the edgee (in any direction). Note that equivalent words generate thesame graphs (up
to graph isomorphism)G

w

and the same passage countsNw

e .
A sentenceaD (w1,w2, : : : ,wn) is a finite sequence of words of at least one word

long. The support ofa is defined as supp(a) D
Sn

iD1 supp(wi ), and the weight ofa,
wt(a), is just the cardinality of supp(a). Two sentencesa1 anda2 are called equivalent,
denoted bya1 � a2, if there is a bijection from supp(a1) onto supp(a2), which maps
a1 to a2.

A graph Ga D (Va, Ea) associated with a sentencea D (w1, w2, : : : , wn), where
wi D (si

1, si
2, : : : , si

`(wi )
), i D 1, 2, : : : , n, is the graph with verticesVa D supp(a) and

undirected edges

Ea D {(si
j , si

jC1) W j D 1, : : : , `(wi ) � 1, i D 1, 2, : : : , n}.

We define the set of self edges asEs
a D {e 2 Ea W eD {u, u}, u 2 Va} and the set of

connecting edges asEc
a D Ea n Es

a.
In words, the graph associated with a sentence is obtained bypiecing together the

graphs of the individual words. Thus, the graph of a sentencemay be disconnected.
Note that the sentencea definesn paths in the graphGa. For e 2 Ea, we useNa

e to
denote the number of times the union of these paths traversesthe edgee (in any dir-
ection). We note that equivalent sentences generate the same graphsGa and the same
passage countsNa

e .
The paper deals with closed words starting at 1. LetW (N) be the set of allN-

words starting at 1. LetU (N)
WD {w 2W (N)

W Es
w

D ;} be the subset ofW (N) consisting
of words with no self-edge, andV (N)

WDW (N)
n U (N). Set

W WD

1

[

ND1

W (N), U WD

1

[

ND1

U (N), V WD

1

[

ND1

V (N).

Henceforth, the setsWk, W (N)
k , Uk, U (N)

k , Vk, V (N)
k with a subscriptk, are used to de-

note the corresponding subsets consisting of words of length kC 1.
A closed wordw is called a weak Wigner word ifw visits each edge ofG

w

at
least twice. Assume thatw is a weak Wigner word. Since the graphG

w

D (V
w

, E
w

)
of w is connected and each edge is visited at least twice, it follows that

wt(w) D # V
w

� 1C # E
w

� 1C
`(w) � 1

2
D

`(w)C 1

2
.

A weak Wigner wordw of weightwt(w) D (`(w)C1)=2 is called a Wigner word. We
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also call a single letter word a Wigner word. Note thatw is a Wigner word only if its
length is an odd number.

Here are some properties of a Wigner wordw (see [1] or [2, Section 2.1] for
more details):
(i) the graphG

w

is a tree, that is, a connected graph with no loop;
(ii) the set of self edgesEs

w

is empty;
(iii) the pathw visits each connecting edge exactly twice,Nw

e D 2 for all e2 E
w

.
A pair of words (w1, w2) is called a weak CLT pair if

(P1) Na
e � 2, for all e2 Ea, wherea D (w1, w2);

(P2) E
w1 \ E

w2 ¤ ;.
To study properties of weak CLT pairs, we need the following simple but useful

property. It is a special case of the so called “the parity principle” (see [1, Lemma 4.4]).

Lemma 2.1 (Closed walk on a tree). A closed walk on a tree visit each edge an
even of times.

Lemma 2.2. Let aD (w1, w2) be a weak CLT pair. Then

wt(a) �
`(w1)C `(w2)

2
� 1.

Proof. LetGa D (Va, Ea) be the graph of the sentencea. Since the pair (w1,w2)
visits each edge at least twice, it follows that

# Ea �
`(w1) � 1C `(w2) � 1

2
.

In addition,wt(a) � 1C # Ea because the graphGa is connected.
Now, if wt(a) � # Ea, then the conclusion immediately follows. Thus, we only

need to consider the casewt(a) D 1C # Ea, in which Ga is a tree. Sincew1, w2 are
closed walks on the treeGa, each wordw1,w2 visits any edgee2 Ea an even of times.
Consequently, a common edge ofw1 andw2 is visited at least four times. Therefore,

# Ea �
`(w1) � 1C `(w2) � 1

2
� 1,

and hence the conclusion follows.

A pair (w1, w2) is called a CLT pair if it is a weak CLT pair and in addition,

wt((w1, w2)) D
`(w1)C `(w2)

2
� 1.

Denote byUk1,k2 a set of representatives for equivalence classes of CLT pairs (u1,u2),
whereu1 and u2 are (k1 C k2)=2-words of lengthk1 and k2, respectively, provided that
k1C k2 is even. Whenk1C k2 is odd, we setUk1,k2 D ;.
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The following lemma introduces some properties of CLT pairs. We omit an
easy proof.

Lemma 2.3. Let aD (u1, u2) 2 Uk1,k2 with k1, k2 � 2, and k1 C k2 being even.
Then eitherwt(a) D 1C # Ea or wt(a) D # Ea. Moreover, the following hold.
(i) If wt(a) D 1C # Ea, then Ga is a tree and

(a) Nui
e D 2, for all e 2 Eui , i D 1, 2;

(b) Na
e D 2, for all e 2 Ea except one edge e0 with Na

e0
D 4.

(ii) If wt(a) D # Ea, then
(a) Nui

e D 1, for some e2 Ea, i D 1, 2;
(b) Na

e D 2, for all e 2 Ea.

A sentencea D (w1, : : : ,wn) is called a weak CLT sentence if the following con-
ditions hold
(S1) Na

e � 2, for all e2 Ea;
(S2) for all i , there existsj ¤ i such thatE

wi \ E
w j ¤ ;.

Lemma 2.4. Let aD (w1, : : : , wn) be a weak CLT sentence. Then

wt(a) � 1C
n
X

iD1

`(wi ) � 2

2
.

A sentenceaD (w1, : : : ,wn) is called a CLT sentence ifa is a weak CLT sentence
and the above equality holds, namely,

wt(a) D 1C
n
X

iD1

`(wi ) � 2

2
.

Lemma 2.5. Let aD (w1, : : : ,wn) be a CLT sentence withwi 2 U , i D 1,2,: : : ,n.
Then the following hold.
(i) For each i, there exists unique j¤ i such that E

wi \ E
w j ¤ ;.

(ii) The number n is even and there exists a perfect matching� 2 Sn such that
(a) ai D (w

� (2i�1), w� (2i )) is a CLT pair, i D 1, 2, : : : , n=2;

(b) {Ei }
n=2
iD1 are disjoint sets, where Gi D (Vi , Ei ) denotes the graph of ai ;

(c) {{Vi n {1}}}
n=2
iD1 are disjoint sets.

Proof of Lemma 2.4. This lemma is a special case of [2, Lemma 2.1.34]. How-
ever, we mention the proof here because it will be used in the next lemma. Leta D
(w1,w2,:::,wn) be a weak CLT sentence, wherewi D {si , j } jD1,:::,`(wi ). Let I D

Sn
iD1{i }�

{1,2,: : : ,`(wi )�1} and letA be ann rows left-justified table whose entries are the edges
of a, namely,

Ai j D (si , j , si , jC1), (i , j ) 2 I .
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Let Ga D (Va, Ea) be the graph of the sentencea. Note thatGa is a connected
graph because every word is a closed word starting at 1. LetG0

D (V 0, E0) be any
spanning tree inGa. Then we havewt(a) D 1C # E0 and so in order to proof the
lemma, we just have to bound #E0.

Now let X D {Xi j }(i , j )2I be a table of the same “shape” asA, but with all en-
tries equal either to 0 or 1. We callX an edge-bounding table if the following condi-
tions hold:
(E1) for all (i , j ) 2 I , if Xi j D 1, then Ai j 2 E0;
(E2) for eache2 E0, there exist distinct (i1, j1), (i2, j2) 2 I such thatXi1, j1 D Xi2, j2 D 1
and Ai1, j1 D Ai2, j2 D e;
(E3) for eache2 E0 and indexi 2 {1, : : : , n}, if e appears in thei -th row of A, then
there exists (i , j ) 2 I such thatAi j D e and Xi j D 1.

For an edge-bounding tableX, the corresponding quantity (1=2)
P

(i , j )2I Xi j bounds
#E0, whence the terminology. At least one edge-bounding table exists, namely the table
with a 1 in position (i , j ) for each (i , j ) 2 I such thatAi j 2 E0 and 0’s elsewhere. Now
let X be an edge-bounding table such that for some indexi0 all the entries ofX in the
i0-th row are equal to 1. Then all egdes ofwi0 belongs toE0. In other words,wi0 is
a closed walk in the treeG0, hence every entry in thei0-th row of A appears there
an even number of times and afortiori at least twice. Now choose (i0, j0) 2 I such
that A(i0, j0) 2 E0 appears in more than one row ofA. Let Y be the table obtained by
replacing the entry 1 ofX in position (i0, j0) by the entry 0. Then it is not difficult to
check thatY is again an edge-bounding table. Proceeding in this way we can find an
edge-bounding table with 0 appearing at least once in every row, and hence we have

# E0

�

1

2
(# I � n) D

Pn
iD1(`(wi ) � 2)

2
.

The lemma is proved.

Proof of Lemma 2.5. (i) Assume thata D (w1, : : : ,wn) is a CLT sentence with
wi 2 U , i D 1, 2, : : : , n. Let Ga, G0 be the graph ofa and the spanning tree as in
the proof of Lemma 2.4. Moreover, letX be an edge-bounding table satisfying the
condition that at least one entry is 0 in each row. Then, recall that

# E0

�

1

2

X

(i , j )2I

Xi j �

Pn
iD1(`(wi ) � 2)

2
.

Therefore, the above two inequalities must become equalities by the definition of CLT
sentence. Consequently, the edge-bounding tableX has exactly one 0-entry in each
row. For eachi , let ei denote the edgeAi j at the positionXi j D 0. Note that by the
first property (property (E1)) of the edge-bounding tableX,
(�) all edges ofwi , except at most one edgeei , belong toE0.
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We claim that for eachi , there is a uniqueLi ¤ i such thate
Li D ei . This claim is shown

as follows.
Let

N 0

e WD #{(i , j ) 2 I W Xi j D 1, Ai j D e}.

Then the two equalities imply thatN 0

e D 2 for all e2 E0.
Uniqueness. Assume that there are at least three wordswi1, wi2, wi3 such that

ei1 D ei2 D ei3 D (s, Ns). Since we consider words which do not contain self edge, assume
without loss of generality thats¤ 1. Then each wordwik contains a walk on the tree
G0 from 1 to s (or from s to 1), which can be chosen to traverse only those edges
Aik, j with Xik, j D 1. Therefore, there exists some edgee with N 0

e � 3, which is a
contradiction.

Existence. Now fix some indexi . Then eitherei � E0 or ei 2 E0.
CASE 1: ei � E0. In this case,Nwi

e D 1 by (�). Thus,ei 2 E
wi1

for somei1 ¤ i
becauseNa

e � 2 (see property (S1)). It also follows from (�) that ei1 D ei . Assume that
ei D (s, Ns) andwi is a walk 1! s! Ns! 1. The wordwi1 may be either 1! s!
Ns! 1 or 1! Ns! s! 1. We construct a new word/walkwi _ wi1 as follows. Walk
from 1 to s by wi , then go toNs by wi1, and back to 1 bywi . A new wordwi _ wi1

of length `(wi )C `(wi1) � 3 is a closed walk on a treeG0, and thusN
wi_wi1
e is even,

and hence is at least 2. It follows thatN
wi_wi1
e D 2 because it is bounded byN 0

e.
CASE 2: ei 2 E0. In this case,wi is a closed walk on the treeG0, which implies

that Nwi
ei

is even. Moreover, it is bounded by 1C N 0

e D 3. Thus Nwi
ei
D 2. Therefore,

in the i -th row, there is only one pair (i , j ) such thatXi , j D 1 and Ai j D ei . By
property (E2) of edge-bounding table, there is another pair(i1, j1) such thatXi1, j1 D 1
and Ai1, j1 D ei . Note thati1 ¤ i .

Next, we show thatei1 D ei . Indeed, assume to the contrary thatei1 ¤ ei . There
are two cases to consider.
• If ei1 2 E0, then by the same argument as in the beginning of Case 2, it follows
that N

wi1
ei D 2, thereforeN 0

ei
� 3, which is a contradiction;

• if ei1 � E0, then by Case 1, there existsi2 with ei2 D ei1 and N
wi1_wi2
ei D 2. It also

follows that N 0

e � 3, the same contradiction.
We also construct a new word/walkwi _ wi1 as in Case 1.

(ii) It is clear thatn must be an even number becausen wordsw1, : : : ,wn can be
partition in pairs which have the sameei . We construct a permutation� on {1,2,: : : ,n}

as follows. Let
�

� (1)D 1,
� (2)D j , if (w1, w j ) is a pair.

Then by induction, we define fori D 2, 3, : : : , n=2,

�

� (2i C 1)D min{{1, : : : , n} n {� (1), : : : , � (2i )}},
� (2i C 2)D j , if (w

� (2iC1), w j ) is a pair.
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It is clear that� is a perfect matching. Moreover words/walksw
� (2i�1) _ w� (2i ) are

distinct walks on the treeG0. The rest of the lemma follows.

3. The Wigner semicircle law for spectral measures

In this section, we will show that spectral measures of Wigner matrices also con-
verge weakly, in probability, to the semicircle distribution. Recall that{�i j }1�i� j are
independent real random variables with the following properties:
(i) {�i i }1�i is an i.i.d. sequence withE[�11] D 0 andE[j�11j

p] <1, p D 2, 3, : : : ;
(ii) {�i j }1�i< j is another i.i.d. sequence withE[�12] D 0,E[�2

12] D 1 andE[j�12j
p] <1,

p D 3, 4, : : : .
Recall also that the Wigner matrixXN is defined as

XN(i , j ) D XN( j , i ) D
�i j
p

N
, 1� i � j � N.

We begin with the following expression forXk
N(1, 1),

Xk
N(1, 1)D

N
X

i1,i2,:::,ik�1D1

X1,i1 Xi1,i2 � � � Xik�1,1

D

1

Nk=2

N
X

i1,i2,:::,ik�1D1

�(1,i1)�(i1,i2) � � � �(ik�1,1)

D

1

Nk=2

X

w2W
(N)
k

T
w

,

where T
w

D

Q

e2E
w

�

Nw

e
e .

Lemma 3.1. (i) For odd k,

E[Xk
N(1, 1)]! 0 as N!1.

(ii) For even k,

E[Xk
N(1, 1)]! Ck=2 as N!1,

where Cn denotes the n-th Catalan number,

Cn D

�2n
n

�

nC 1
D

(2n)!

(nC 1)! n!
,

which is the numbers of equivalence classes of Wigner words of length 2nC 1.
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Proof. It is clear that

E[Xk
N(1, 1)]D

1

Nk=2

X

w2W
(N)
k

E[T
w

].

Recall thatT
w

D

Q

e2E
w

�

Nw

e
e , which implies thatE[T

w

] D
Q

e2E
w

E[�
Nw

e
e ]. Thus E[T

w

] D
0 unlessw is a weak Wigner word.

Let WkIt denotes a set of representatives for equivalence classes ofweak Wigner

wordsw 2W (t)
k of weight t . Then for N � t , given a wordw 2Wk,t , there are exactly

CN,t WD (N � 1)(N � 2) � � � (N � t C 1)

words inW
(N)
k that are equivalent tow.

Since the weight of a weak Wigner word of lengthkC1 is bounded by (k=2C1),
and two equivalent words have the same graphs, we can rewritethe expression of
E[Xk

N(1, 1)] as

E[Xk
N(1, 1)]D

1

Nk=2

X

t�k=2C1

X

w2WkIt

X

w

0

2W
(N)
k W w

0

�w

E[T
w

0 ]

D

1

Nk=2

X

t�k=2C1

CN,t

X

w2WkIt

E[T
w

]

D

X

t�k=2C1

CN,t

Nk=2

X

w2WkIt

E[T
w

].

Note that for fixedt , as N ! 1, CN,t=N t�1
! 1. Note also that the cardinality of

WkIt is finite and thatE[T
w

] <1 because all moments of{�i j } are finite. Therefore,
as N !1,

E[Xk
N(1, 1)]!

8

�

<

�

:

0, if k is odd,
X

w2WkIk=2C1

E[T
w

], if k is even.

Finally, w 2WkI k=2C1 means thatw is a Wigner word, and henceE[T
w

] D 1 by prop-
erties of Wigner words. Thus for even numberk, the limit of E[Xk

N(1, 1)] is equal to
the number of equivalence classes of Wigner words of lengthkC 1, which is nothing
but the (k=2)-th Catalan number. The lemma is proved.

Lemma 3.2. It holds that

E[(Xk
N(1, 1)� E[Xk

N(1, 1)])2] ! 0 as N!1.
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Proof. We begin with the following expression

Xk
N(1, 1)� E[Xk

N(1, 1)]D
1

Nk=2

X

w2W
(N)
k

(T
w

� E[T
w

]) DW
1

Nk=2

X

w2W
(N)
k

NT
w

.

Here NT
w

WD T
w

� E[T
w

]. Then

(Xk
N(1, 1)� E[Xk

N(1, 1)])2 D
1

Nk

X

w1,w22W
(N)
k

NT
w1
NT
w2 D

1

Nk

X

w1,w22W
(N)
k

NT(w1,w2),

where NT(w1,w2) WD NTw1
NT
w2.

It is clear thatE[ NT(w1,w2)] D 0 unless (w1,w2) is a weak CLT pair. Similar argument
as in the proof of Lemma 3.1 with noting thatwt((w1, w2)) � k if (w1, w2) is a weak
CLT pair, we have

E[(Xk
N(1, 1)� E[Xk

N(1, 1)])2] D
X

t�k

CN,t

Nk

X

(w1,w2)2Wk,kIt

E[ NT(w1,w2)].

Here Wk,kIt denotes a set of representatives for equivalence classes ofweak CLT
pair/sentence (w1,w2) of weight t , wherew1 andw2 are botht-words of lengthkC1.
Therefore

E[(Xk
N(1, 1)� E[Xk

N(1, 1)])2] ! 0 as N !1,

which completes the proof.

As a direct consequence of Lemmas 3.1 and 3.2, we have the following result.

Lemma 3.3. As N! 1, Xk
N(1, 1) converges in L2, and hence, converges in

probability to h� , xk
i.

We are now in a position to investigate the semicircle law forspectral measures
of Wigner matrices.

DEFINITION 3.4. Let A be a real symmetric matrix of degreeN andv be a unit
vector inRN . Then the spectral measure� of (A, v) is the probability measure onR
satisfying

Z

R

xk
�(dx) D (Ak

v, v), k D 0, 1, 2,: : : ,

where (� , � ) denotes the inner product inRN .
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Let A be a real symmetric matrix. Let�1 � �2 � � � � � �N be the eigenvalues
of A, and letv1, v2, : : : , vN be corresponding eigenvectors which are chosen to be an
orthonormal system ofRN . Then the spectral decomposition ofA can be written as

AD
N
X

jD1

� j v j v
T
j .

Consequently,

Ak
D

N
X

jD1

�

k
j v j v

T
j ,

and thus,

(Ak
v, v) D

N
X

jD1

�

k
j (v, v j )

2.

Therefore, the spectral measure of (A, v) is given by

� D

N
X

jD1

(v, v j )
2
Æ

� j .

Now let �N be the spectral measure of (XN , e1), wheree1 D (1, 0, : : : , 0)T 2 RN .
Then by definition,

h�N , xk
i D (Xk

Ne1, e1) D Xk
N(1, 1).

Theorem 3.5. (i) The k-th moment of�N converges in probability to that of the
semicircle law, namely,

h�N , xk
i ! h� , xk

i in probability as N!1.

(ii) The spectral measure�N converges weakly, in probability, to the semicircle distri-
bution.

Proof. The statement (i) is just Lemma 3.3.
Since� has compact support, we will show that (ii) follows from (i).Indeed, let

f be a bounded continuous function onR. We need to prove that

h�N , f i ! h� , f i in probability as N !1.
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Recall that� is supported in [�2, 2], which implies thath� , x2k
i � 22k. Let B > 2

be fixed. Then, fork D 0, 1, : : : ,

jh�N , xk1{jxj>B}ij D

�

�

�

�

Z

R

xk1{jxj>B} d�N(x)

�

�

�

�

�

Z

R

jxjk1{jxj>B} d�N(x)

�

1

B2n�k

Z

R

x2n d�N(x) D
h�N , x2n

i

B2n�k
, for k < 2n.

By letting N !1, we obtain

jh�N , xk1{jxj>B}ij �
h�N , x2n

i

B2n�k

in probability
��������!

as N !1

h� , x2n
i

B2n�k
�

22n

B2n�k
.

Note that 22n
=B2n�k

! 0 asn!1. Thus

h�N , xk1{jxj>B}i ! 0 in probability as N !1.

Consequently, for any polynomialQ,

(3) h�N , Q1{jxj>B}i ! 0 in probability as N !1.

Given " > 0, there is a polynomialQ such that

sup
jxj�B
j f (x) � Q(x)j � ".

Then consider the following decomposition

h�N , f i � h� , f i D h�N , f 1{jxj>B}i C h�N , ( f � Q)1{jxj�B}i

� h�N , Q1{jxj>B}i C (h�N , Qi � h� , Qi)C h� , Q � f i.

The first term and the third term converges to 0 in probabilityby (3). The fourth term
converges to 0 in probability by (i) of this theorem. Finally, the second term and the
fifth term is bounded by". Since " is arbitrary, it follows thath�N , f i converges to
h� , f i in probability. The proof is complete.

4. Central limit theorem for moments of spectral measures

This section investigates weak limits of moments of spectral measures, more
precisely, the weak limits of

p

N(Xk
N(1, 1)� E[Xk

N(1, 1)]) as N tends to infinity.
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4.1. Zero diagonal. Recall that

Xk
N(1, 1)D

1

Nk=2

X

w2W
(N)
k

T
w

,

where T
w

D

Q

e2E
w

�

Nw

e
e .

Let

YN,k WD
p

N

 

1

Nk=2

X

w2U
(N)
k

(T
w

� E[T
w

])

!

D

1

N(k�1)=2

X

w2U
(N)
k

NT
w

(D
p

N(Xk
N(1, 1)� E[Xk

N(1, 1)]), if �11D 0).

For a sentencea D (w1, : : : , wn), we denote

NTa D NT(w1,:::,wn) D NTw1 � � �
NT
wn .

Next, we considerE[YN,k1YN,k2] for fixed k1, k2 � 2. It is clear that

E[YN,k1YN,k2] D
1

N(k1Ck2)=2�1

X

w12U
(N)
k1

,w22U
(N)
k2

E[ NT(w1,w2)].

Lemma 4.1. For k1, k2 � 2,

lim
N!1

E[YN,k1YN,k2] D
X

(w1,w2)2Uk1,k2

E[ NT(w1,w2)].

The limit is positive, if k1C k2 is even, and only depends on the second and the fourth
moments of�12. It is zero, if k1C k2 is an odd number.

Proof. It is clear thatE[ NT(w1,w2)] D 0 unless (w1, w2) is a weak CLT pair. Let

U
(t)
k1,k2

denote a set of representatives for equivalence classes of weak CLT pairs (w1,w2)
of weight t , wherew1 andw2 are t-words of lengthsk1C 1 andk2C 1, respectively.
By Lemma 2.2,t � (k1C k2)=2 unlessU (t)

k1,k2
D ;. For t D (k1C k2)=2, the setU (t)

k1,k2
is

just a set of representatives for equivalence classes of CLTpairs Uk1,k2. An argument
similar to Lemma 3.1, we obtain

lim
N!1

E[YN,k1YN,k2] D

8

�

<

�

:

0, if k1C k2 is odd,
X

(w1,w2)2Uk1,k2

E[ NT(w1,w2)], if k1C k2 is even.
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Next, let (w1,w2) 2 Uk1,k2. If wt(a)D 1C#Ea, then by Lemma 2.3 (i),E[T
wi ] D 1,

i D 1, 2. Moreover,E[T
w1Tw2] D E

�

Q

e2Ea
�

Na
e

e
�

D E[�4
e0

] D E[�4
12], wheree0 is the only

edge withNa
e0
D 4. Thus

E[ NT(w1,w2)] D E[T
w1Tw2] � E[T

w1]E[T
w2] D E[�4

12] � 1� 0.

The last inequality holds becauseE[�4
12] � 1D E[(�2

12� 1)2] � 0.
Now, if wt(a) D # Ea, thenE[T

wi ] D 0 because there exists an edge which is vis-
ited only one time bywi , i D 1,2. Further, since each edge is visited exactly two times
by (w1, w2), it follows that E[T

w1Tw2] D 1. Combining those we have

E[ NT(w1,w2)] D

�

1, if wt(a) D # Ea,
E[�4

12] � 1� 0, if #wt(a) D 1C Ea.

Finally, the set of CLT pairsa D (w1,w2) for which wt(a) D # Ea is not empty. Thus,
the rest of this lemma follows.

By an argument similar to the previous lemma, Lemma 2.4 implies the following
statement.

Lemma 4.2. For k1, k2, : : : , kn � 2,

lim
N!1

E

"

n
Y

iD1

YN,ki

#

D

X

(w1,:::,wn)2Uk1,:::,kn

E[ NT(w1,:::,wn)].

Here Uk1,:::,kn denotes a set of representatives for equivalence classes ofCLT sentences

a D (w1, : : : , wn), wherewi 2 U
(t)
ki

, t D 1C
Pn

iD1(ki � 1)=2.

Let

A(k1, k2) WD
X

(w1,w2)2Uk1,k2

E[ NT(w1,w2)].

Then the matrix (A(k, l ))k,lD2,3,::: is symmetric. Each finite block (A(k, l ))n
k,lD2 is posi-

tive semidefinite because it is the limit of the covariance matrix of random variables
(YN,k)kD2,:::,n. Thus, there exists a sequence of mean zero jointly Gaussianrandom vari-
ables{�k}kD2,3,::: defined on the same probability space such that

E[�k�l ] D A(k, l ).

Lemma 4.3. For even number n,

(4)
X

(w1,:::,wn)2Uk1,:::,kn

E[ NT(w1,:::,wn)] D
X

�2Sn
� : perfect matching

n=2
Y

iD1

A(k
� (2i�1), k

� (2i )).
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Proof. It is a direct consequence of Lemma 2.5.

Theorem 4.4. The joint distribution of{YN,k}
K
kD2 converges to that of{�k}

K
kD2 as

N tends to infinity for any fixed K� 2.

Proof. The left hand side of (4) is exactly the Wick formula for the expectation

E

"

n
Y

iD1

�ki

#

.

Thus, for any even numbern, and for anyk1, : : : , kn � 2,

lim
N!1

E

"

n
Y

iD1

YN,ki

#

D E

"

n
Y

iD1

�ki

#

.

This also holds ifn is odd, in which both sides are zero. Therefore, the joint dis-
tribution of {YN,k}

K
kD2 converges to that of{�k}

K
kD2 because Gaussian distributions are

characterized by their moments.

4.2. General case. Let

ZN,k D
1

N(k�1)=2

X

w2V
(N)
k

(T
w

� E[T
w

]) D
1

N(k�1)=2

X

w2V
(N)
k

NT
w

.

It is clear thatE[ZN,k] D 0. We consider

E[Z2
N,k] D

1

Nk�1

X

w1,w22V
(N)
k

E[ NT(w1,w2)].

Recall that (w1, w2) is a weak CLT pair if
(P1) Na

e � 2, for all e2 Ea, wherea D (w1, w2);
(P2) E

w1 \ E
w2 ¤ ;.

For a wordw 2 V, let Lw 2 U be the word constructed fromw by deleting every adja-
cent same letter. Then the graph ofLw is obtained from that ofw by removing all self
edges. The following lemma refines Lemma 2.2

Lemma 4.5. Let w1, w2 2 Vk be a weak CLT pair. Then
(i) wt((w1, w2)) � k, if k is odd;
(ii) wt((w1, w2)) � k � 1, if k is even.

Proof. The proof is similar to that of Lemma 2.2. LetLw1, Lw2 2 U be the words
obtained fromw1, w2 by deleting every adjacent same letter. LetLa D ( Lw1, Lw2). Then
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N La
e � 2 for all e2 E

La. Let G
La D (V

La, E
La) be the graph ofLa. Note thatG

La is connected
because bothLw1 and Lw2 are words started from 1. Note also thatwt(a)D wt( La). Since
N La

e � 2 for all e2 E
La, it follows that

# E
La �

1

2
(`( Lw1) � 1C `( Lw2) � 1)�

1

2
(`(w1) � 2C `(w2) � 2)D k � 1.

The last inequality holds because`( Lwi ) � `(wi ) � 1D k, i D 1, 2. Thus

wt(a) D wt( La) � 1C # E
La � k.

Next, we show thatwt(a) D k does not hold ifk is even. Indeed, assume that
wt(a) D k. It follows that wt(a) D wt( La) D 1C # E

La, and hence the graphG
La is a

tree. In this case, it also implies that`( Lwi ) D `(wi ) � 1 D k, i D 1, 2. Thus Lwi is
a closed walk of lengthk, which is even, on the treeG

La, which is impossible. The
lemma is proved.

Let Vk,kI t denote a set of representatives for equivalence classes of weak CLT pairs
(w1,w2), wherew1,w2 2 V are t-words of lengthkC1. Then similarly to Lemma 2.2,
we can show that

(5) lim
N!1

E[Z2
N,k] D

X

(w1,w2)2Vk,kI k

E[ NT(w1,w2)],

which is zero ifk is even.
For oddk, let Ak denote a set of representatives for equivalent classes of wordsw

of lengthkC1, for which Nw

(1,1)D 1 and Lw is a Wigner word. Letak be the cardinality
of Ak.

Lemma 4.6. Let k� 3 be an odd number. Let(w1,w2) 2 Vk,kI k. Then the follow-
ing hold.
(i) wi is equivalent to some element ofAk, i D 1, 2.
(ii) supp(w1) \ supp(w2) D {1}.
(iii) E[ NT

w1,w2] D E[�2
11].

(iv)

(6)
X

(w1,w2)2Vk,kI k

E[ NT(w1,w2)] D a2
kE[�2

11].

Proof. Let La be as in the proof of Lemma 4.5. Recall that, in this case, both
Lw1 and Lw2 are walks of lengthk on the treeG

La and Lwi visit each of it edges exactly
twice, i D 1, 2. Thus Lw1 and Lw2 are Wigner words. Moreover,N La

e D 2 for all e 2 La,
which implies that supp(Lw1) \ supp(Lw2) D {1}. Now, it follows from the condition
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(P2), E
w1 \ E

w2 ¤ ;, that (1, 1) must be a common edge ofw1 andw2. Therefore, we
obtain (i) and also (ii).

(iii) and (iv) are direct consequences of (i) and (ii).

Lemma 4.7. Let k be an odd number. Then the following hold.
(i)

lim
N!1

E[�11ZN,k] D akE[�2
11].

(ii)

lim
N!1

E[(ZN,k � ak�11)
2] D 0.

Proof. (i) It follows from the definition ofZN,k that

E[�11ZN,k] D
1

N(k�1)=2

X

w2V
(N)
k

E[�11 NTw].

It is clear thatE[�11 NTw] D 0 unless a wordw satisfies the following conditions
• Nw

(1,1) � 1;
• Nw

e � 2 for all e2 E
w

n {(1, 1)}.
Assume that a wordw satisfies the above conditions. LetLw be the simplified word

of w. Then Lw is a word of length at mostk, which visits each edge at least twice.
Thus,

wt(w) D wt( Lw) � # E
La C 1�

k � 1

2
C 1D

kC 1

2
.

The equalitywt(w) D (kC 1)=2 holds if Lw is a Wigner word of lengthk, or equiva-
lently, if w is equivalent to some word inAk.

Now by a standard argument as in the proof of Lemma 3.1

lim
N!1

E[�11ZN,k] D
X

w2Ak

E[�11 NTw] D akE[�2
11].

(ii) follows from (i), the limit (5) and the expression (6). The lemma is proved.

The following results are direct consequences of the limit (5) with even k and
Lemma 4.7 (iii).

Lemma 4.8. (i) For even k, ZN,k converges in probability to zero.
(ii) For odd k, ZN,k converges in probability to ak�11.

Theorem 4.9. Let � be a random variable which has the same distribution as
�11 and is independent of{�k}k�2. Let NSN,k D

p

N(Xk
N(1, 1)� E[Xk

N(1, 1)]). Then the
following holds.
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(i) For even k,

NSN,k
d
�! �k as N!1.

(ii) For odd k� 3,

NSN,k
d
�! ak� C �k as N!1.

(iii) For fixed K, the joint distribution of( NSN,1, NSN,2, : : : , NSN,K ) converges to that of
(� , �2, a3� C �3, : : : ).

Proof. We only need to prove (iii). Leta1 D 1, YN,1 D 0 and ZN,1 D �11. For
evenk, let ak D 0. Note that

NSN,k D YN,k C ZN,k D YN,k C ak�11C (ZN,k � ak�11).

For any real numbers{�k}
K
kD1, we consider

K
X

kD1

�k NSN,k D

K
X

kD2

�kYN,k C

 

K
X

kD1

�kak

!

�11C

K
X

kD2

�k(ZN,k � ak�11)

DW S1C S2C S3.

As N !1, S1 converges in distribution to
PK

kD2 �k�k by Theorem 4.4. SinceS1

is independent of�11, it follows that S1C S2 converges in distribution to
PK

kD2 �k�kC
�

PK
kD1 �kak

�

� as N tends to infinity. Finally,S3 converges in probability to zero by
Lemma 4.8. Therefore,

K
X

kD1

�k NSN,k
d
�!

K
X

kD1

�k(ak� C �k) as N !1.

The theorem is proved.
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