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Abstract
We will give an explicit description of the center of the De remi—Kac type
specialization of a quantized enveloping algebra at an eweh of unity. The case
of an odd root of unity was already dealt with by De Concini€kRrocesi. Our
description in the even case is similar to but a little morenpticated than the
odd case.

1. Introduction

The representation theory of the De Concini—Kac type sfieatoon of a quan-
tized enveloping algebra at a root of unity was initiated by ©oncini—Kac [5]. It is
quite different from and much more complicated than the gengarameter case. A
special feature at a root of unity is that the center of thentipad enveloping alge-
bra becomes much larger than the generic parameter casexphnitedescription of
the center of the De Concini—Kac type specialization at & ofaunity was given by
De Concini—Kac—Procesi [6] when the order of the root of yist odd. In this paper
we give a similar description of the center in the even ordesec We point out that
there already exists partial results in the even order aadgeck [2].

Let Uy = Uq(A) be the simply-connected quantized enveloping algebracegsd
to a finite irreducible root system (the Cartan part is isomorphic to the group algebra
of the weight lattice). Foz € C* we denote byJ, = U,(A) the specialization af = z
of the De Concini—Procesi form df,. Setd =1 (resp. 2, resp. 3) when is of type
A, D, E (resp.B, C, F, resp.G,). We note thatU, coincides with the specialization
of the more standard De Concini—Kac formz® # 1. Let| be a positive integer, and
let ¢ € C* be a primitivel-th root of 1. We assume that the order of is greater
thand.

Assume that is odd. If A is of type G,, we also assume thatis prime to 3. In
this case De Concini—Kac—Procesi [6] gave an explicit dgson of the centerZ(U,)
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as explained in the following. Denote ¥.(U,) the subalgebra oZ(U,) consist-
ing of reductions of central elements Of, contained in the De Concini—Procesi form.
Then we have a Harish-Chandra type isomorph&m(U;) = C[2P]", whereP is the
weight lattice,W is the Weyl group, and the action & on the group algebr&[2P]

is a twisted one. On the other hand we have a Frobenius honpbisor F: U; — U,
which is an injective Hopf algebra homomorphism whose imiageontained inZ(U,).
Set Zg(U;) = Im(F). Then De Concini—Kac—Procesi proved that the canonicaidio
morphism

Zer(Ur) ® 260N ZuarU,) ZHar(Ue) — Z(Uy)

is an isomorphism. They have also given the following geoimelescription ofZ(U,)
(see also De Concini—Procesi [8]). Denote Bythe connected simply-connected sim-
ple algebraic group ove€ with root systemA. Take Borel subgroup8* and B~ of

G such thatB™ N B~ is a maximal torus ofs. We setH = H(A) = Bt NB~. Denote
by N* the unipotent radical oB*. Define a subgrougk = K(A) of BT x B~ by

K={(tx,tlyyeB*xB |[teH, xeN", ye N}.
Then we have

Zp(U;) = Uy = C[K],  Zpa(U;) = C[H/W],
Zp(Uc) N Zpa(Ue) = C[H /W],

and the morphism — H/W, H/W — H/W corresponding to the embeddings
Zr(Ug) N ZpaUr) C Ze(Ug) and Ze(U) N ZpalUe) C ZpalU;) are given by
(g1, %) = Ad(G)((910;)s) N H, and ] + [t'], respectively. Heregs for g € G de-
notes the semisimple part @f in its Jordan decomposition. In conclusion, we obtain

Z(U;) = C[K XH/w H/W]

Now assume that is even, orA is of type G, and| is an odd multiple of 3. We
can similarly defineZp,(U,(A)) as a subalgebra d(U,(A)) isomorphic toC[2P]W =
C[H(A)/W]. However, it is a more delicate problem to defide (U, (A)). We have
an injective Hopf algebra homomorphisk: U.(A") — U, (A), wheree € {£1}, A’ €
{A, AV} are determined fromA andl. Here, AY denotes the set of coroots. THisis
a dual version of the Frobenius homomorphism for the Lusfdighs defined in [17].
In the caseA is of type G, andl is an odd multiple of 3 we have=1, A’ = AY and
Im(F) C Z(U,(A)). In the casd is even anct = 1, U;(A’) is commutative, but Inff)
is not a subalgebra aZ(U.(A)). In the cases = —1 U_;(A’) is non-commutative. We
define Zg (U, (A)) to be the intersection Ini) N Z(U.(A)). Then the conclusion is
similar to the odd order case. Namely, the canonical homphism

Zr(U; (A)) @ 24U (0N Zysar (U (2)) ZHar(U (A)) — Z(U(A))
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turns out to be an isomorphism. Moreover, we have
Zr(Ue(A)) = CIK(A)/T], ZnalUc(A)) = C[H(A)/W],
Ze(U; (A)) N Zpal(U, (A)) = CH(A')/W],

where, T is a certain finite group acting on the algebraic varigtyA’), and the mor-
phism K(A”)/T — H(A")/W is induced byK(A') — H(A')/W. The definition of
H(A)/W — H(A’)/W is more involved and omitted here. In conclusion, we obtain

Z(U,(4)) = C[(K(A)/T) xnH(anw H(A)/W].

The proof is partially similar to that for the odd order caseDe Concini—Kac—
Procesi [6]. However, some arguments are simplified usimtpicebilinear forms aris-
ing from the Drinfeld pairing. We also note that we have aedidhe usage of quantum
coadjoint orbits in this paper. We hope to investigate thantum coadjoint orbits in
the even order case in the near future since they should ligpamsable in developing
the representation theory.

In dealing with the case = —1 we useU_i(A)" = Uy (A)". We establish it
using a result of [12] relating)_q with Ug. | would like to thank Masaki Kashiwara
for explaining it to me.

2. Quantized enveloping algebras

2.1. Let A be a (finite) reduced irreducible root system in a vectorsm%cover
Q (we assume thﬁa is spanned by the elements af). We denote byw the Weyl
group. We fix aW-invariant positive definite symmetric bilinear form

(2.1) (, )by xby — Q.

Fora € A we seta” = 2o/(a,@) € hg. ThenAY = {a" | « € A} is also an irreducible
root system in a vector spadg),. Set

Q=) Za, Q'=) Zda’

aEA aEA
P={rebhy|(a’)eZ (x ),
P'={rebhy| (M a)€Z (x €A
Take a setll = {a;}i¢; Of simple roots ofA, and denote byA™ the corresponding

set of positive roots ofA. ThenIlV = {¢ }ic iS a set of simple roots oAY, and
AVt = {a¥ | a € AT} is the corresponding set of positive roots Af. We set

Qt = Z Z>o,

PP ={rebhy|(ha’)€eZz (@€ AT}
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Fori €| lets € W be the corresponding simple reflection. We denote the stdnda
partial order onW by =. We denote byAghort (resp. Ajong) the set of short (resp. long)
roots. In our convention we hav&snorr = Ajong = A if A is of type A, D, E. We set

= % (x € Ajong: B € Ashor),
(o, @) o .
d, = 8, B) (O‘ €A, Be Ashort)a g = da\ (' € |)-

Define p € P N (Q/2) by (0, ) = 1 (i € |). Define p € QV/2 by p =
(1/2) Y ycn+ dor”. We havep = ((«, «)/2)p for o € Ashort
For n € Z>o we set

tn_ —Nn

[n] = t_tt_l ez[t,t™], [nl! = [n][n]i—1---[1]; € Z[t, t1].

2.2. LetF = Q(q) be the rational function field in the variabtg and set
®=09% (@eA), q=gq, (ecl).

We denote byJ = U(A) the corresponding simply-connected quantized envetpplp
gebra overF, i.e., U is an associative algebra ovEr generated by the elemenks
(A € P), &, fj (i €l) satisfying the fundamental relations

ko=1, Kk, =k, (4 pneP),

()

keki'l=q""'e (LeP,iel),

kifikt=q “f (eP,iel)
efi—fia=djk —k/@—-ag") @ jcl),
1-a;

Y e e =0 G, jel,i#))
n=0

1-a;

NP =0 G el i#])

n=0

wherek =k, (i € 1), &j = (o",e;) (i, € 1), &” =&/nlg!, £ = £"/nlg! (i €1,
n € Z>p). Note that the above definition d&f (A) does not depend on the choice of
the symmetric bilinear form (, ).
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We regardU as a Hopf algebra by

AK) =k ®k. (reP),

A@)=e®l+k®e, A(f)=fiok*+1fi (ecl),
e(k)=1 (LeP),

e(@)=e(fi)=0 (el),

Sk) =k* (reP),

Se)=-k'e, Sfi)=—fik (iecl).

Define subalgebrasl®, U+, U~, UZ%, U=0 of U by
UP= (k. |2eP), Ut=(aliel), U =(filiel),
U =(k, e |reP,iecl), UL=(k, filreP,icl).
We haveU® = @, » Fk;, and the multiplication ol induces isomorphisms
Utou’oU =~U ®U°®U* xU,
UteUu’=2U’@uUt=U=’ U U’~U@U =U=°

of vector spaces.

We denote byJ,g the F-subalgebra ofJ generated by, (A € Q), g, fi (i €1).
We also set

U= (ki |1€Q),
U= (k, & reQ icl), UX=(k, fi|lreQ,iecl).
Then we have
UT®US®U =2U" U2 ®@U™ = Uy,
Ut e@ud=Uudeut=uz

U ®U%=Udeu- =Uz.

We denote by Mod{,q) the category of finite-dimensiond),;-modules M with
weight space decompositiod = P, ., M,, where

M, ={meM|km= qi(k’“‘v)m (i en}

2.3. The modified quantized enveloping algelta= U(A) is defined as follows
(see Lusztig [17]). Fory € Q setUag, = {U € Usg | kiukt = q”“u (i e 1)}. For
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A, n € P we set

20,0 = Uag / (Z(K — " NUaa + > Uadks — g ’))

i€l i€l

(note ,U,, = 0 unlessi — u € Q), and let, p,: Uag — 2U, be the natural map. For
rLePsetl = Apk(l) Set
U = @ )»UIL'

rueP
ThenU is an associative algebra (without 1) by

_ [P (xy) (w=2),
2 Pu (X)N pu’(y) = {)6 " (//L # )»/)

for x € Uadp—u, ¥ € Uadp— - Moreover,U is a Uag-bimodule by

U-aPu(X) - U =4y Pu—y (UXU) (X € Uada—p, U € Uagy, U € Uagy).

Then we have an isomorphism

PU RUH=U (U RU)er < X,cp L)),
reP

We denote by Mod{) the category of finite-dimensiontl-modulesM with weight
space decompositioM = ), ., 1, M. Then anyM € Mod(U,g) is regarded as an object
of Mod(U) via the action ofJ on M given by

(uLu)m=upMUum) (UeU-, U eU"),

where pM: M — 1, M is the projection with respect to the weight space decontipasi
of M. Moreover, this correspondence gives the equivalence efjodaes Mod(,q) =~
Mod(U) (see Lusztig [17]). It follows that for each € P+ there exists uniquely (up
to isomorphism) a finite-dimensional irreduciblemodule L (1) such that

Lo)= P L.L®), dmLLE)=1,

ner—Q+

and that anyM € Mod(U) is isomorphic to a direct sum df()'s for » € P+,
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2.4. We denote byV = V(A) the associative algebra ov@r generated by the
elementst, (A € P), %, yi (i €l) satisfying the fundamental relations

to =1, t)\tﬂ = t)nLM ()L, JYNS P),

txit L = qi(k’aiv)xi (reP,iel),

Lyttt ="y (eP,iel),

Xiyj—yixi =0 (i,jel),

1-a

ST X =0 (,jel,i# )
n=0

1-g;

Sy P =0 el i#))
n=0

wherex™ = x"/[n]g!, Y = y"/[nl! (i €1, n € Z=p). We sett; =t, foriel.
Define subalgebra¥®, v+, V-, V0, V=0 of V by
VO=(t|reP), Vi=(xliel), VT =(yliel),
VE = (ti,x [reP,iel), VE¥2=(t,yi|reP,icl).

We haveV? = @, _, Ft;, and the multiplication ol induces isomorphisms

VI@VieV =V VeVt xv,
VIieVixVoeVt =V Vv @VlixVigV =xV=0°
of vector spaces. Moreover, we have algebra isomorphisms
JT:VT Ut (%~ 8),
J VT —>UuU~ (y| — f|)
REMARK 2.1. V is ag-analogue of the enveloping algebra of a certain solvable

Lie subalgebra ofg & g, whereg is a simple Lie algebra with root system (see
Subsection 2.14 below).

2.5. The modified versio’V = V(A) is defined similarly tdJ as follows. Denote
by Vaq the F-subalgebra oV generated by, (A € Q), xi, ¥ (i €1). Fory € Q" set

Vady = {v € Vag |ttt =g v (i € 1)}. Fora, u € P we set

)\.vpt = Vad/ (Z(ti - qi(kyaiV))Vad + Z Vad(ti — qi(u,aiv)))

i€l i€l
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(note;,V, = 0 unlessi — . € Q*), and let,m,: Vag— ,V,, be the natural map. For
A e P setl =,m(1). Set
V=@ ..

A ueP

ThenV is an associative algebra (without 1) by

_ amwe(xy)  (n=2),
Aﬂu(X)x'ﬂu/(Y) = {0 : (/’L ?é )\./)

for X € Vada—p, Y € Vady—p'- Moreover,V is a Vaebimodule by
V7 (X) -V = 4y ey (UXY) (X € Vada—p, U € Vagy, U € Vagy).

Then we have an isomorphism

PV V)=V (1 ®))icp < X sep a3 1)

reP

Denote by Mod{) (resp. Mod¥/xg) the category of finite-dimension -module
(resp. Vag-module) with weight space decomposition. Then we have aralaequiva-
lence Mody/) =~ Mod(Vag) of categories.

2.6. We denote by

e =0
Uy xUy —F

the Drinfeld pairing. It is a bilinear form uniquely detemmeid by the properties

(2.2) (1, 1)=1,

(2.3) (X, y1¥2) = (T @ T)(A(X), Y1 ® ¥2) (x € Uz, yi, y2 € UZ),
(2.4) (X2, y) = (T ® T)(% ® X1, A(Y)) (X1, %2 € Uz, ¥ € U,
25 k. k) =g W e,

(2.6) t(k, fi)=1(6,k)=0 (AeQ,iel),

(2.7) (e, fj) =8/(@ —a) (.jel)
We define a bilinear form
c:UxV >TF
by
o(urk,(Sw), v_vy1y) = t(Us, J7(V))8rut(F (v4), UD)
(ur eU*, ve e VE L, ueP).
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The following result is a consequence of Gavarini [9, Theoi®2] (see also [20,
Proposition 3.4]).

Proposition 2.2. We have
o(u, vv) = (0 ® o)(AU), v® V) (UeU, v, v V).
2.7. For a Hopf algebraH we define a left action oH on H by

ad0)(h) = ) hojh'(Shy) (h,h' € H, A(h) = ¥; hoj ® hy).
j

We define a right action ofJ;q on U by

X -ad@u) = Z(Suoj)xulj (xe U, ueUqyq Au) =Y, Uoj ® uy).

J

We set

U =) UTky(SU) CU.
reP

Then®U is a subalgebra o) satisfying ad()(®U) c *U. Define a bilinear form

w:®UxU > F
by
w(U+kz, (SW), w-1,(Sw+)) = (U4, w-)d, - T(w4, U-)

(Ug, wy eUE, X, neP).
The following result is a consequence of [19, Propositich 1.
Proposition 2.3. We have
w(@dW)(u), X) = w(u, x-adW’)) (uecU, u eU, xeU).

Set
'U = {u e U | dimadU)(u) < oo}.

Then fU is a subalgebra ofU and we have

'U =) adU)kz)

rEPT

(see [11]).
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2.8. We denote Lusztig's braid group action bhby T; (i € 1). Namely,T;: U —
U is the algebra automorphism given by

Ti(ky) = ks (AeP),

[tk =10
e = {Z:f*‘e(—l)ai e e (i #£ ),
= {Z:fzx—l)fqra'—“ G0 G #1).

We denote byw, the longest element dfv. We fix a reduced expressiong =
S, 'Sy (i1,...,in € ) in the following. Forj =1,...,N setg; =s,---5, (), and

e, =TT (&), fg =T, T .(f)
eg:) = Ti1 . ﬂj—l(g(in))! fé?) — Ti1 e ﬂj—l(fign)) (ne Z;O)-
Then we haveA™ ={g; | j =1,...,N}, andeg e U™, fg e U~ (B € AT). Moreover,
the set{eg" - €5 | m; € Zzo} (resp.{fg"--- f;" | m; € Z=o}) is known to be a basis
of U™ (resp.U").
2.9. We setG = G(A) = P/Py, where
Po={reP|d( o) e2Z (i €l)}.

Note thatG is a 2-elementary finite group. Fare P we denote by, € G the element
represented by. We define an action of on the algebrdJ by

§i(ky) =k, 8i(a) = (1) g,  §i(f) = (14,
for », w € P, i € |. We define arF-algebra structure off = U(A) = U ® F[G] by
UV =us(v) ®88 (U,velU,s 8 €qg).
We will identify U and F[G] with the subalgebras) ® 1 and 1Q F[G] of U respect-

ively. We extend theG-action onU to that onU by §(x) = sx6 1 (8 € G, x € U).
Set

U9={ueU|su)=u@eq), U9={xeU]|sX) =x(scq)).
Then we see easily thal9 = U9F[G].

2.10. Let 6 be the automorphism of the field sendingq to —g. For anF-
algebraR we denote by R the F-algebra obtained by twisting tHE-module structure
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of R via 6. Namely,’R is isomorphic toR as a ring via the correspondenBes x <
x € YR, and theF-module structure is given bg’x = ?(0(c)x) (c € F, x € R).

Now we are going to define an embedding®tf into U following [12]. We can
take a subsefl of | such that fori, j € | with i # j we have

di(e’, aj) €22 = |{i, j} N J| = 1.
Fori €| set

" {aa, (€ _ iy,

1 (¢,

Fory =Y., m € Q we further set

(%% :l_[(pimi- Yy :Hwiml-

iel iel
Proposition 2.4 ([12]). An embeddindU — U of F-algebras is given by
k> ks, ‘e, “fie fiy
REMARK 2.5. In [12] Kashiwara—Kang—Oh established using Projursi2.4
the equivalence Modl{) = Mod("U), where Mod() (resp. Mod{U)) denotes the cat-

egory of U-modules (resp?U-modules) with weight space decompositions (see also
Andersen [1]).

We will identify “U with a subalgebra ofJ. We can easily check the following.

Lemma 2.6. (i) The multiplication ofU gives an isomorphisfiU ® F[G] =~ U
of F-modules.
(i) For anys e G and’u U we haves’us—t = (s(u)).

Proposition 2.7. For any B € AT we have
ey = teppp, (St = £(Sh)ws.

Proof. Fori € | definefT;: U — U by °T;(°u) = ?(Ti(u)) (u € U). Fory €
QT set

Ut ={xeU" | kxk™=qg""x (i ).

Fori € | we set

-1 (€,
”"‘{1 (i ¢J).
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In order to show the statement feg, it is sufficient to show that foy € Q* and
i €l there exists, € {£1} satisfying

(2.8) “Ti(xgy) =Gy Ti()ps, (x€UT).
We first note that foii, j € | we have
(2.9) ‘Ti(ejo;) = G, Ti(e))@sa,

where
Gj = (-1 M @25 % ¢ (1),

The verification of (2.9) in the case= j is easy. In the case# | one needs some
case by case calculation according to the relative positibr; and «j. Details are
omitted. Now let us show (2.8) using (2.9). F¢f, ..., jr € | with Zpajp =y
we have

(€.9j1) -~ (&), 9j.) = A€, -+~ €0,

djp ((x}/p ,a]p+1+---+aj, )

i . Hence we have

where A=[]") o
“Til(ey, - &)ey) = A'Ti((ey,05,) -+ - (&5, ¢},))

) A(H C”") ((Ti €, o ) - ((Ti ), ™)

p

= AA’(H C«'ip>Ti(en € )Py

p
with

r—1 r—1
dip (@8 (@), +tap) —diay (@, (@), +tay)
o 1P \%ijp Jp+1 Ir Ip\¥i Jp+1 Ir
A = < @, | | w;

p=1 p=1

r-1 r-1
= A(l_[ w'jcljp(a}/p’a')(ai\/'ajp+1+m+a")) <l_[ w‘idjp(ajvp’al)(ai\/’alp+l+"'+alr))

p=1 p=1
r—1
=A H(ZU| wj )djp(aivp'ai)(aiv'ajp+1+"'+aj’)
p
p=1
r-1
= A H(_]_)di (CARIM AR ST
p=1

=A J] (oteraea,)

1=p<psr
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We thus obtain (2.8), where
P p<p’
The proof of the assertion fofg is similar. O

2.11. SetH =H(A) = QV/2QY. Forv € Q¥ we denote by, the element of{
represented by. Define an action of{ on theF-algebrau® = @, ., Fk, = F[P] by

Yook = (D0 (ve QY, aeP).
We can extend thig{-action onU?° to that on the algebrd) =~ U+ ® SU~ @ U° by
y-(ut) =u(y-t) (v eH,ueUT(SU), teU9.
Since this action commutes with that 6f we get an action 0§ x H on U.

2.12. SetA = Q[q*!]. Following De Concini—Procesi [8] we defing, to be
the smallestA-subalgebra ofU that containsk, (A € P), (g — g He, @ —gHfi
(i € 1) and is stable under the action &f (i € |). It is a Hopf algebra oveA. Set

US=U,nU°% Uf=UsnU* UP=UsnU=, UL =U,NnU=~
Then we havel? = @, p Ak;, and the multiplication o, induces isomorphisms
UfeU)eU, 22U, @U®U, = U,,

Uf @Ul =Uf Ul =2U;°,
Uy ®U=U®U, =~ U;°

of A-modules. ForB € A* we defineag € U/, by € U, by
ag = (0 —zN)es, bp = (s — a5 ") fp.

Then{ag" ---ag" | m; € Z=o} (resp.{bg" ---bg" | m; € Z=}) is a freeA-basis ofU,"
(resp.Uy).
Set
Uaga =Ua NUaq, Uy, =UsNUy (0=0,20,=0).
Then we haveld;, = @, o Ak, and
Uf @U,®Ur U @UY, ® UL = Uaga,
Ul ®@U%, = U, ®Uy =UZ,,

_ — =0
Ur ® U =xUQ, ® Uy = UL,
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Denote byUadA the A-subalgebra otJ generated by the elemen{tq(“), fi(“), ks |
i €1, neZs, 2 Q}, and set
UadA - UadA N Uebld (b =0,20, = 0)1
Ug® = Uk, nU=
Then we have

Uk+®uadA®U1§_

Uk’+®ULO NUaLd’IO%®UL'+ NUL>O

> U @ULL ®Ust = Uk,

adA = adA
L— Lo . (L0 Li— o (L.=0
Uy™ ®@Ugga = Uggpa ®Uy = Uy

Moreover, UaLdg is generated by the elements of the fokm(ir € Q),

[K]-TT8=8 (eimzo
s=0

and {e(mN) . engl) | mj € Zzo} (resp.{fé:‘N) e f‘g“l) | mj € Zzo}) is a freeA-basis of
Ust (resp.Uf).
We defineU, to be theA-subalgebra of) consisting of elements of the form

dowLiu, (U Uy, U €U,
reP

For » € P™ we define anA-form L4 (1) of L(A) by
La(x) =Uv (LL(A) = Fv).

We defineV, to be theA-subalgebra oV consisting of elements of the form

Dl (e () HUED) v e ) UL
reP

We set
CUp =%U NU,, UL = TUNU,.

By [13], [14], [15] we have
v(efn e, bRy ) = w(ag g, fA e f5)

(2.10) N )
— 1_[ ams,ns(_l)msqg;S(ms l)/2’
s=1
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and hencer induces bilinear forms

g.L. 20 L,=0 L. L.20 =)
T, .UadAandA — A, 1, .UadA andA—>A.

It follows that o and w also induce perfect bilinear forms

GAIUAXVA—)A, a)AIeUAXUA—)A.

SetU, = U, ®A[G]. It is an A-subalgebra of). We also have an obvious-form
U, of ?U. By Proposition 2.7 the embeddiff) c U induces’U, — U,.

2.13. Letze C*, and set
(2.11) z3=2% (BeA), z=2z, (i€l

Set
Uz = Uz(A) = C ®4 Uy,

where A — C is given byq — z. We also set

U=C®U, (=9, +, -0 20, =0),

Usgz = C®aUpgps Ugg, =C®aUz, (0=10,0,20, 50),
Ub® =Cc o, Urs,

U,=C®aUa, V;=C®,Va,

eUZ:(C@AeUA, fUz:(C@AfUA.

Then we have

U, =U;eUleU;, U,=@u;y LU,
reP

SinceU, is a freeA-module, we havd U, c €U, c U,.

We denote by Mod{,) the category of finite-dimensiondl ,-modules M with
weight space decompositioM = @, _, 1,M. For » € Pt we define L (1) €
Mod(U,) by

Lz(2) = C ®4 La(d).
Note thatz)'", 1, o, andw, induce bilinear forms

g,L. 20 L,=0 LG, L.20 <0
T, 'UadeUad,z —-C, 1, .Uadz andz—MC,

0, U;xV, > C, w,;:%U,xU,—C.
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By (2.10) T/ [+t TZL’Q|UZL,+XU{, 05, w, are perfect.

SetU, = C ®4 Uy = U, ® C[G]. Then we have a natural embeddihg c U,,
which is compatible with thej-actions. Note that the embeddifiy, — U, also in-
duces an embedding_, c U,, which is compatible withG-actions. Hence setting

U ={ueU,|s)=u (b))
U7 ={xeU,|8(x)=x (8 €G)},
we obtain embeddings

U,cU,D>U, U9 cUf>US.

We denote byZ,: U_, — U, the restriction of the linear map, — U,, which sends
us, forue U, L € P tou.

Proposition 2.8. The linear mapZ, induces an isomorphism
(2.12) g,: U9, — U¢
of C-algebras which is compatible with thé{-actions.

Proof. SinceZ, is a linear isomorphism compatible with-actions, it induces a
linear isomorphismg,: U9, — UY. Note thatU¥ c UY = UJC[G]. For u,u’ € UZ,
3,8’ € G we have

E,((Us)(U'8")) = E,(uu'8s’) = uu = E,(us)E,(U's").

Hence &,|UJC[G]: USC[G] — UY is an algebra homomorphism. It follows that its
restriction E,: U9, — U¢ is also an algebra homomorphism. The remaining statement
about the action of{ is obvious. 0

2.14. LetG = G(A) be a connected, simply-connected semisimple algebraiggr
overC with root systemA. Take a maximal torusl = H(A) of G and Borel subgroups
B*, B~ of G such thatB* N B~ = H. SetN* = [B*, B*], and define a closed sub-
groupK = K(A) of BT x B~ hy

K={(ghgh™)|heH geN* geN}.
Setting

(2.13) KO={(h,h™)|heH}x~H,
(2.14) Kf={(@1)|geN"}, KT={(19d)|geN}=N,
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we obtain an isomorphism
KT xKx K~ — K ((ab,c) abo

of algebraic varieties. Denote hythe Lie algebra ofG. It is generated by the elem-
entshi, &, fi (i € 1) satisfying the fundamental relations

[hi,hj]=0 (,jel)
&, fil=8;hi (,jel),
ad@)" (&) =ad(f)* 1 (f)=0 (,jel,i#]j)
Then the Lie algebra of K is the subalgebra off @ g generated by elements =

(hi, =), X = (&,0), ¥ = (0, f)) (i € 1). Those generators satisfy the fundamental
relations

[H.51=0 G jel)
[, %] =a;%, [ y]l=a;y @ ]je€l),
(X, y1=0 (@,]el),
ad )" (%)) = ad@)"*(y;) =0 G, jel,i#j).
Let U(¢) be the enveloping algebra ¢f We can define the modified versidui()

of U(¢) similarly to V as follows. Fory € Q* setU(®), = {ue U@ | [, u =
(y,oq)u (i € 1)}. Fora, u e P we set

W), = U(O/(Z(fi — (G U + Y UEE — (1, aiv))),
iel iel

and Ietw,ﬁ: u() — AU(E)M be the natural map. Set

uE = P 0,

L ueP
Then U (t) is an associative algebra (without 1) by

_ famn(xy) (n =),
Anl}(x)k’n;}’(y) - {0 (M ?é )\/)

for x e U(E); ., y € U)o It is easily seen that we havé; = U (t).
RegardC[K] as aU (t)-module by differentiating th& -action

Kf)(K) = F(KK) (k K eC[K], f €C[K])
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on C[K]. Since C[K] is a sum of finite dimensional (£)-submodules with weight
space decomposition, we obtain a natural actionJ¢f) on C[K]. Cosider the bi-
linear form

G:CI[K]xU@E) = C (a(f, x) = (xf)Q)),
By Proposition 2.2 anK = K+ x K% x K~, we see easily that an isomorphism
(2.15) T:U; - C[K]
of coalgebras is given by
&(T(u), x) = o1(u, X) (ue Uy, x € V1 =U()).

SinceU; and C[K] are commutative, it is easily seen that (2.15) is an isommigm of
Hopf algebras (see [8], [9], [20]).

3. Harish-Chandra center

3.1. For a ring R we denote its center by (R).
Consider the composite of

ZU) > U =U-gU®u+ 2% yo~ F[p],
whereF[P] = @, pFe()) is the group algebra oP, and the isomorphisry® = F[P]
is given byk; <> e(1). By [5], [11], [19] this linear mapZ(U) — F[P] is an injective
algebra homomorphism whose image coincides with

F[2P]V° = {x e F[2P] |wox = X (w € W)},
where the action ofN on F[2P] is given by

woe(2r) = q**Pe2wi) (we W, A € P).
Hence we have an isomorphism
(3.1) 2 Z(U) — F[2P]We.

We recall here a description @(U) in terms of the characters of finite-dimensional
U-modules. ForM € Mod(U) we definety € U* by

(tm, X) = Tr(xks,, M) (x € U).
Then there exists uniquely an elemegte U satisfying

o(ty, X) = (v, x)  (x € U).
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More explicitly, we have

_ am . my my my
tm = > Cotmy ) (i, 8, - B K b - - b ),
A€2P, YL, (mj—m))p;=0

where
Cotmiy Ny N,

N
l_[( 1)m +m m,(ml 1)/2— m(m -1)/2

X Tr(rr{fé;nl) . f(mN)l 12(€g (mN) eg?l))kzp}, Loy mp M).

We can showty € Z(U) using k; uky, = Sfu (u € U), Z(U) = {v € U |
ad)(v) = e(u)v (u € U)}, and Proposition 2.3 (see [19]). We have

((tw) =Y _(dim 1, M)g*?)e(—2x).

reP
Proposition 3.1. (i) Z(U) c U9Y.
(i) We have
Z(°U) = z(U) = Z(U)

as subalgebras off. Moreover the composite of
F[2P]W° =~ Z(U) = z("U) = ?Z(U) = *(F[2P]"°)
is induced by thé -linear isomorphism
F[2P] > e(21) — “e(2)) € °F[2P].

Proof. (i) Letd € G. Sinced acts onU as an algebra automorphism, we have
3(Z(U)) = Z(U). It is easily seen from the definition df that ((6(z)) = «(2) for any
ze Z(U). Hences acts as identity orZ(U).

(i) By (i) we haveZ(U) ¢ Z(U). Let us showZ(U) D Z(U). Letz=3";_;Us8 €
Z(L]), whereus € U. By uz= zufor u € U we haveuu; = us3(u). By considering the
corresponding identity in the associated graded algebrid @Gtroduced in [7] we see
easily thatus = 0 for § # 1. Hencez € Z(U). The proof ofZ(?U) = Z(U) is similar.
The remaining statement is a consequenceékef = kp;, for A € P. 0

3.2. By Z(U,) = Uy N Z(U), ¢ induces an injective algebra homomorphism

s Z(Uy) — A[2P]We.
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Proposition 3.2. 14 is an isomorphism ofA-algebras.

Proof. Fori e P* we havet ;) € Uy, andA[2P]W° is spanned oveA by u(t, ;)
for L € P*. ]

3.3. Letze C*. We denote byZy,(U;) the image ofZ(U,) — Z(U,), and call
it the Harish-Chandra center &f,. We can similarly consider the composite of

ZuaUy) = U, = U; @ U9 @ U <2225 0 ~ c[P].

We define an actior, of W on C[2P] by
w o, &(24) = ZW42e(2wr) (w e W, A € P).
Proposition 3.3. The above linear map %/(U;) — C[P] induces an isomorphism

tz2: Zna(Uz) — C[2 P]WOZ
of C-algebras.

Proof. By Z(Uy) =UsNZ(U) the canonical malt ®,4 Z(Uy) — U, is injective.
Hence Zya(U,) = C ®4 Z(Uy) = C[2P]We-. O

For M € Mod(U,) we can similarly defingy € €U, by
woltm, X) = Tr(xke,, M) (x € Uy).

By our construction{t, ;) | A € P*} is a basis 0fZya(U;). Indeed forM e Mod(U 2)
we can write

[M] = )" mLW)] (m, €Z)

reP+

in an appropriate Grothendieck group, and in this case we hav

tm = Z mMitL,p) € Zhar(Uz).

rePt

Note that forz € C* the two actionso, and o_, of W on C[2P] are the same.
By Proposition 3.1 we have the following.

Proposition 3.4. For z € C* we have lj D Zua(Uz), and the isomorphism
E,: UY, — UY induces the isomorphismpZ(U_,) =~ Zpa(U;) given by

ZuaU_5) = C[2P]Wos = C[2P]W: <& Zpya(U,).
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3.4. We consider the case where= 1. Since the action; of W on C[2P] is
nothing but the ordinary one, we have

Zua(U1) = C[2P1W =~ C[P]W =~ C[H]W =~ C[H /W].
Here the second isomorphism is induced@®@2 P] > e(21) <> e(1) € C[P]. Recall also
that we have an isomorphism
Up (C[K].

Hence the inclusiorZp,(U;) — Uy induces a morphisnf : K — H/W of algebraic
varieties. Let us give an explicit description of this madgoh. Define a morphism
x: K — G of algebraic varieties by ((g1, 92) = 019;*. We also definev: G — H/W
as follows. Letg € G. Let gs be the semisimple part af with respect to the Jordan

decomposition. Then A®&)(gs) N H consists of a singléV-orbit. We defineuv(g) to
be this W-orbit.

Proposition 3.5 ([8]). The morphism fK — H/W is the composite of: K —
G andv: G - H/W.

Proof. For the convenience of the readers we give a sketcheopitoof using the
bilinear formsw; ant 9. First note that

Zha(U1) € UL c ®U; C Uy,

Via w;: ®U; xU; — C we obtain embeddingSU; C €U; c (U1)*. Identifying U; with
the modified enveloping algebra of L@®) we havefU; =~ C[G] (see [3]). On the other
hand we see frontJ; = @,., Uy "L, U that ®U; is identified with C[N~ x H x
N*]. Consequently we obtain a sequence

C[H/W] = C[G] — C[N~ x H x N*] = C[K]

of algebra embeddings. We can easily check that the comesmmp morphisms of al-
gebraic varieties are given by

K>(9:00,9-95 ) — (9-, %% 9;) € N" x Hx NT (g € N*, go € H),

N~ x H x Nt 3 (Xx_, Xo, X) = X_XoX+ € G,

G>g v(g)te H/W. O
4. Frobenius center

4.1. Fix a positive integet. If | is odd (resp. even), then we get= 1 (resp.r =
1/2). Note thatr is the order ofz2. We assume

(4.1) r>d
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in the following. We take; € C to be a primitivel-th root of 1. Definess (B € A),
G (i el)asin (2.11) forz=¢. For B € A we denote the orders af, ;g by lg, g
respectively. Foii € | we setl; =1, ri =1y

4.2. Fora e A seta’ =r,a € hg. ThenA’ = {r,a | @ € A} is a root system with
{of |1 €1} a set of simple roots. Note that as an abstract root systesnegdirding
the inner product) we hava’ = A or A’ = AY. Set

P'={nebgl(ma’)erZ (YaeA)

Then P’ is the weight lattice forA’, and we haveP’ C P.
Set

(4.2) e=¢l (@eA, o e(A)smon).

Then we havee = +1. Furthermoreg = —1 if and only if we have either
(@) r is odd andl = 2r,

or

(b) d =2, r is even withr /2 odd.

Set

g = eV ER) (/€ A, B € (A)shond-
Then we have
4.3) b = (a € A).
An explicit description of £, ¢) in each case is given in Table 1.
4.3. Similarly to the Frobenius homomorphism
(4.4) Fr: Uz (A) - U.(A)
given in [17, Theorem 35.1.9] we can define an algebra homphigm
(4.5) £V (A) = V(A
such that

o for 1 ¢ P’ we havet(x"1,) = £(y"1L,) =0 (i € I, n € Zxy),
e for A € P" we have
(n/ri)
My )X L (),
50671 {O (otherwise),

(n/ri)
Mmqy )Y "L (),
SO = {O (otherwise).
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Table 1.
type of A [ r A' £
le2Z +1 I rA 1
An, Dn, Eg, E7, Eg | € 4Z |/2 ra 1
ledzZ +2 |1/2 rA -1
le2Z +1 I rA 1
Bn, Ch, F4 leanr2 /2 r = =
| € 82 /2 E(ZAshortU AIor'lg) 1
r
le8Z+4 |1/2 E(ZAshortU Ajong) | —1
lebzZ £1 | rA 1
r
|l e6Z +3 | ‘,.—))(3AshortIJ AIong) 1
Gy .
| € 127 /2 5(3Ashortu Ajong) | 1
lel2z+4|1/2 raA 1
r
l€e12Z +6 | 1/2 §(3AshortIJ AIong) -1
lel2Z +2 | 1/2 raA -1

The fact thatt is well-defined follows easily from the corresponding faot Fr. More-
over, fora € P and g € A™

X/(Sr;l/rﬂ)l)x (rﬂ | n)l
0 (otherwise),

E(Xén)l)\) = {

(n/rp)
myy= )Y L (s ln),
50 1) {0 (otherwise)

by [17, 41.1.9].

Proposition 4.1. There exists uniquely an injective homomorphism

L U (A) = U (A)

of coalgebras satisfying

(4.6) e (E(U), v) = 0c(U, 5(v)) (U € Ue(A), v e V().
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Moreover we have

(al - alpk, (b -+ b))

4.7 nﬁ-n1 nN+ny AFan N . r,,lnl Iy N . rﬁlnl
( ) - Cﬂl CﬂN aﬁN K S(b /31 )
(weP,ng...,nN, N, ..., Ny € Zxg),

where

¢y = (<1)r+1g, " (e at).

Proof. It is easily seen from (2.10) that there exists urlgue linear map
te: U (A") - U (A) satisfying (4.6), and it is given by (4.7). Then we conclddem
Proposition 2.2 that¢ is a homomorphism of coalgebras. 0

Similarly we have the following.

Proposition 4.2. We have'&(°U,(A")) C ®U.(A), and

w (E(U), X) = @ (U, Frix)) (U € ®U.(A), x € Ug(A)).

4.4, For B e A we setng = ;;f. We haveng = £1, andng = —1 if and onlylg
is even.

Proposition 4.3 (De Concini—Kac [5]) For a, B € AT, A € P, u € P’ we have

alrag = & Pagaly, (SH)(Sky) = n P(Sh)(SH),
als(Sky) = 0 Pl(Shy)alr, (SH)ags = nl Pag(SHf),
keale = nalek,, ki (SHe) = n*<)(SH)k;,
Kude = 0 Veak,, k. (Sh) = nie(Sh)k,
in U (A).
Proposition 4.4. For o/, B’ € (A")*, n € P’ we have

avay = @ Maga,, (Sh)(Shy) = ) (sh,)(Shy),

2w (Sly) = P (shy)a,,  (She)ag = e Paz(Sh,),

Ky8y = 8(1/1 (@)Y )aa k., k.(Sh/)= 8(# (@)Y )(SQ’)kﬂ

in U, (A).
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Proof. Let
( )/5hQXhQ—>Q

be theW-invariant non-degenerate symmetric bilinear form sucit (&' | ') = 2 for
o' € (A)shor Then we haves ) #) = ¢@I8) for o, B’ € (A)*.

In order to show the first formula,as = ¢@1#Vaga, for o, p/ € (A)*, it is
sufficient to show

' (awag, y) = @ PVl (aga,, y)

for anyy e Ut~ = UL~ (A"), wheret/t is defined forA’. Write

AW = Y wilktel) W, eUls ®uly),
7.6€(Q)*

where fory =Y., mief € (Q")* we set

Uts = Y cf™e (M cub

ij =i Nj=m

Then we have

P awag, y) = (P @ 1)y ® aw, A(Y))
= (@2 @ PN ® ag, P(U} )

whereP(y; ® ¥2) = Y2 ® yi1. Similarly, we have

P @ ar y) = (1 @ 1 )aw ® 3y, Ul ).
Hence it is sufficient to show
(4.8) P, =e"ul (yeUs™, v, 8 €(Q)).

We can easily check that if (4.8) holds fgr= vy, y», then it also holds foy = y;v».
Hence the assertion follows from (4.8) fgr= £, which is easily checked.

The second formula is equivalent by = ¢©@#Vby b, for o', g/ € (A")*, and
is proved similarly to the first formula.

Let us show the third and the fourth formula. They are eqaivalto a, by =
bgay for o, B’ € (A)*. Take 1= j,k = N such thate’ = Bj. B' = By- If j =k, then
the assertion is a consequenceagf,, = bya, in U.(A') for i € 1. Assumej > k.
Setting

W=S, S, Y=S S ij=m ix=n
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we have
Ay = TwTy(aar’n)u bﬂ’ = Tw(bar");

and hence it is sufficient to show

ba/{]Ty(aa,’n) = Ty(aa/ﬂ,)ba’n

By s,y < y this is equivalent to
T, (b)) Tsy(Ber,) = Ty (@ar )Ty H(bey)-

By Tnfl(bo,fn) = —ay Ky this is again equivalent to

aaqu%y(aa(-n) — S(aél%Y(a%))/TSny(aar,n)aaé_

By sy < shysn we haves,y(ey,) € (A")* and Ts,y(ay, ) is a linear combination of the

elements of the fornagLN .- -agzl with Zj m;j B = shy(ar)- Hence the assertion follows

from the first formula. The cas¢ < k can be handled in a similar way.
The remaining formulas are obvious. O

We see easily from Proposition 4.3, Proposition 4.4 theo¥alhg.
Proposition 4.5. '¢ is a homomorphism of Hopf algebras.

4.5. We define the Frobenius cent&t(U;) of U, by Zg(U;) = Im(€) N
Z(U;). Note

Im('€) = <® Cla', Stj;]) ® C[P].

aeAT

Namely, the image of¢ consists of the linear combinations of the monomials of
the form

(4.9) z=a/ "™ a "k, (Sl ) - (SBETY) (e PY).

If | is odd, then we haveg, = 1 for anya € A", and henceZg(U,) = Im(*€) by
Proposition 4.3.

Assumel is even. By Proposition 4.3 we see easily tl&a(U,) consists of the
linear combinations of the monomials of the form (4.9) dwitig)

(4.10) > (M + m)a” € 2Q,

+
a€A]

(4.11) (,y")/ry €22 (Vy € A7),
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where

Ashot NAT  (r ¢2Z,1 =2r,d =2)
+ + — 1 — short ’ ’ ’
Ay =le €A ne =1 {A+ (otherwise).
Note that (4.11) is equivalent ta € P”, where

2P, (r ¢22,1=2r,d=2),

(4.12) P" = {ZP/ (otherwise).

Here
Py={reby | de(h @) €rZ (@ € A)}.
Define subgroup$™y and T, of G(A’) and #(A’) respectively by

. {{1} ( ¢ 22)

gAY (I €2z),
{1} (I ¢ 22),
Iy = 3 ( QGor/ 2@V ( €2Z, 1 ¢ 2Z, d = 2),
H(A) (otherwise),
where
Qo= Y. Z()".
a'€(A )short
Set
I' = Fl X Fz.

By the above argument we have the following.

Proposition 4.6. Under the identificationm(£) =~ U,(A’) we have

Zr (U (A)) = (U(A) ® SUZ(A) ™ ® C[P”]
= (U;F(A) ® SUZ(A)™ @ ud(AN™
= U, (A)".

Proposition 4.7. We have an isomorphism
(4.13) Zr(U;(4)) = CIK(A)]" (= C[K(A)/T])

of algebras.

73
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Proof. Assumes = 1. Then the action of the group on the algebraJ;(A’)
induces the action of® on the algebraic variet)K (A") via the algebra isomorphism
(2.15) for A’, and hence we havd,(A)" = C[K(A)]" = C[K(A")/T]. Assumee =
—1. In this case we havd_;(A") =~ U;(A")" by Proposition 2.8. Hence we have also
U (A" = C[K(AN]" = C[K(A")/T]. O

By Proposition 4.6 and [10] we obtain the following.

Corollary 4.8. Zg(U,) is Cohen—Macaulay.

5. Main result

Since the actioro, of W on C[2P’] is the ordinary one, we have

(5.1) Zpa(Ue(A)) = C2PTW = C[PTV = C[H(A")/W],

where the second isomorphism is induced @jP’] = C[2P’] (e(X) <> e(21)). Simi-
larly, we have

(5.2) Zrar(U; (A)) = C[H(A)/W].

Note that the action ofV on H(A’) in (5.1) is the ordinary one, while that oA (A)
in (5.2) is the twisted one given by

w: h > whih)hi* (we W, h e H(A)),
whereh; € H(A) is given byi(hy) = ¢2*?) (x € P = Hom(H(A), C%)).
Proposition 5.1. We have

ZFr(U:(A)) N ZHar(Ug(A)) = té(ZHar(Us(A/)))a
and hence

(5.3) Zr(Ug (A)) N ZhalU, (A)) = C[H(A")/W].

Proof. Note thatZya(U.(A")) is spanned byt, )}iepy+. By Proposition 4.2 we
have ‘é(tLF(x)) = trr L) Where FfL.(X) is the U((A)—module induced via
Fr: U,(A) — U.(A"). Hence we have

Ze(Ue (A)) N ZpalU, (A)) D '6(ZnalU:(AY))),

and t; (*€(Znar(U:(A")))) = C[2P']W. On the other hand by Proposition 4.6 we have
te(Zrr(Ue (A)) N Zia U (A))) € C2P1Y N C[P"] = C[2PTY. [
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By the definition of the Harish-Chandra isomorphism we hée fbllowing.

Proposition 5.2. The morphism KA)/W — H(A’)/W, which is associated to
the inclusion £(U;(A)) N Zpar(U;(A)) C Zna(U,(A)) together with the isomorphisms
(5.2) and (5.3), is the natural one induced from the canonical morphisnAH —
H(A’) associated to the embedding € P.

Note that we have the following commutative diagram

Ze(Ug(A)) N Zha(Ue (A)) —— Zr(Uc (D))

I I

Zpa(Ue(A) ————— U, (A/)r

I I

Zpa(U1(A)) ——————— Ui(A)" ——— Uy(&)

I [ I

C[H(A")/W] —— C[K(A")/T] —— C[K(A')]
where horizontal arrows are inclusions, and vertical asrane isomorphisms. Note also
that the inclusionC[H (A")/W] — C[K(A’)] is induced byv o x, wherex: K(A’) —

G(A') andv: G(A") - H(A")/W are morphisms of algebraic varieties we have already
defined. Hence we have the following.

Proposition 5.3. The morphism KA')/T — H(A’)/W, which is associated to
the inclusion Z(U,(A)) N Zpar(U,(A)) C Zr (U, (A)) together with the isomorphisms
(4.13)and (5.3), is induced byv o x: K(A") - H(A)/W.

The main result of this paper is the following.

Theorem 5.4. The natural homomorphism

Zri(Ur) ®ze (U Zuatty) ZHar(Ue) = Z(U¢)
is an isomorphism. In particulawe have

Z(U;) = C[(K(A")/T) Xpayw (H(A)/W)].

The rest of the paper is devoted to the proof of Theorem 5.4 arjuments below
mostly follow that in De Concini—Kac—Procesi [6] (see alse Doncini—Procesi [8]).
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We set for simplicity

Z=2Z(Uy),
Zee = ZeU;) = CIK (2T,
ZHar = ZHar(U;“) = (C[H(A)/W],

so that
Zpr N Zyar = C[H(A)/W].

We are going to show that the canonical homomorphism

11 ZF @260 240 ZHar = Z

is an isomorphism.
Proposition 5.5. Zg ®z.nz., ZHar iS @ Normal domain.

Proof. By Serre’'s criterion it is sufficient to show that thecheme
(K(A)/T) xnay,w (H(A)/W) is smooth in codimension one and Cohen—Macaulay.

We first show that K (A’)/T) xpnay,w (H(A)/W) is smooth in codimension one.
Since H(A)/W is smooth andH(A)/W — H(A")/W is a finite morphism, it is suf-
ficient to show that there exists a subvarietyof K(A")/T" with codimension greater
than one such thatk((A")/T) \ X — H(A")/W is smooth. Consider firsK (A’) —
H(A")/W. Then there exists a subvariei; of K(A’) with codimension greater than
one such thakK (A")\ X; — H(A")/W is smooth since a similar result is known to hold
for G(A’) - H(A)/W and K(A") — G(A") is smooth. Hence it is sufficient to show
that there exists a subvariel, of K(A’) with codimension greater than one such that
K(A)\ X2 = (K(A")/T" is smooth sinceK(A") — (K(A")/T is a finite morphism. We
may assumd” # {1}. In this case we have

K(A') =Y x SpecC[P’], K(A")/T =Y/P’' x SpecC[P"],
whereY = [],.,+ C2 and the action of’ on Y is given by

A (X)aens > (1)@ R@Dx )ocns (L€ P, Xq € C).

Since Spe€[P’] — SpecC[P”] is smooth, it is sufficient to show that there exists
a subvarietyZ of Y with codimension greater than one such tat Z — Y/P’ is
smooth. Note that the obvious action [of, . ,+ GLx(C) on'Y commutes with the action
of P”. HenceY — Y/P’ is smooth on the open orb¥y = [],.,+(C?\{0}). Our claim

is a consequence of diM(\ Yp) = dimY — 2.
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Let us show thaZg(U;) ®cppyw C[2P]W°r is Cohen—Macaulay. By [18F[2P']W
and C[2P]W° are both isomorphic to the polynomial ring ii|-variables. Hence
we have

Zr(U) ®cpeppw CR2PIV = Ze (U)X, .oy X/ (e ooy )
for some fy, ..., fji; € Ze(U)[ X1, ..., Xyl Moreover, we have obviously
dim Zg(U;) ®cpzpw C[2P]Wes = dim Zg(U,). Hence our claim is a consequence of
Corollary 4.8 and well-known results on Cohen—Macaulay ging ]

Lemma 5.6. Zg ®z.nz. ZHar IS @ free Z-module of rank PP’

Proof. It is sufficient to show thaZy,, is a free Zg, N Zpya-module of rankP /P’
Namely, we have only to show th@2P]WV*: is a freeC[2P’]"Y-module of rankP/P’.
We may replaceC[2P]We: with C[2P]W by applying an automorphism &|[P] which
sendsC[2P]W°: and C[2P"1V to C[2P]W and C[2P']W respectively. By Steinberg
[18] C[2P] (resp.C[2P']) is a free C[2P]W-module (respC[2P'1W-module) of rank
|[W|. SinceC[2P] is a freeC[2P’]-module of rank|P/P’|, C[2P] is a freeC[2P"]W-
module of rank|W| x |P/P’|. Note thatC[2P]V is a direct summand of the free
C[2P]™-module C[2P] by [18]. HenceC[2P]YW is also a direct summand of the free
C[2P’1"-module C[2P]. It follows that C[2P]W is a projectiveC[2P’]W-module of
rank |P/P’|. SinceC[2P’]V is isomorphic to a polynomial ring by [18], we conclude
from the Serre conjecture th@[2P]¥W is a freeC[2P’]W-module of rankP/P’. [

Set
1 ( ¢ 22),
(5.4) m= {28l (| c 27 ¢ 27, d=2),
2/ (otherwise).

For a commutative domais we denote byQ(S) the quotient field.

Lemma 5.7. U, is a finitely generated g-module and we have

2
dimQ(ZFr) Q(Zr) ®z, Uy = (m H ra) x |P/P|.

aeAt
Proof. Denote byC the image oft¢: U.(A’) — U,(A). Then we have

Zrr C C C U,

SinceU, is a freeC-module of rank([ ], ra)2x|P/P’|, it is sufficient to show that
C is a finitely generatedg-module and

dimQ(zF,) Q(Zr) ®z., C = m?.
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If I is odd, we haveC = Zg, and hence we may assume thas even. By the explicit
description ofZg, given by (4.10), (4.11) we have

C=C[P1®C[(Z%)"], Zr=C[P"]®CI[L],
where

L = {(mlg, m;S)BeM S (ZéO)A+ Z (mﬂ =+ mjg),BV S ZQV},

Beaf

and(C[(Z%O)A*] and C[L] are the semigroup algebras of the semigro@glA+ andL
respectiv:ely. Note that[P’] is a freeC[P”]-module of rank P’/ P”|. Since_(C[(Zgo)A*]
is a finitely generate@:[Z(Zéo)y]—module, it is also a finitely generatdd[L]—n;oduIe
by Z(Zéo)A+ C L. HenceC is a finitely generated@g-module.

Set

L = {(Mg, My)pear € (D™ | D (mp +m))BY € 2Q"}.

peaf

Then we have 2)*"/L = Qy/(Qj N 2QY), where Qy = Y ,.,: ZB". Hence
C[(z»*"] is a free C[L]-module of rank|Qy/(QY N 2QY)|. Since C[(z?)*"] and
C[L] are localizations ofC[(Zgo)N] and C[L] respectively with respect to the multi-
plicative setS = 2(Z2,)*" of C[L], we obtain thatSC is a free S1Z¢-module of
rank |[P’/P”| x |QI/((_Q{02QV)|. Therefore,Q(Zg) ®z., C is a free Q(Zg)-module of
rank |P’/P”|x|QY/(QYN2QY)|. It remains to shown? = |P’/P"|x|Q} /(Q} N2QY)|.

In the caseA] = AT we haveP” = 2P/, Q = QV, and hence the assertion is obvi-
ous. In the case&l+ = AT N Aghort We haveP’ =rP, P” =r(P N 2P,), where

Pr={ue ha | (e, av) €Z (x € Ashord},

and henceP’/P” = P/(P N 2Py;). On the other hand we have
1
QI/(Qf N2Q) = (Qf +20/2Q" = (501 + Q') [

Since P and P N 2Py are lattices inhg, dual to Q¥ and (¥2)Qy + Q respectively, we
obtain |P’/P”| = Q7 /(Qy N2QY)|. It remains to checkn = [(Q] +2Q")/2Q"|. For
that it is sufficient to show

QY +2Q"= Y  ZaY+2Q".

€ Ashorf 1TT

In order to prove this we have only to show that the right-haini# is stable under the
action of the Weyl group. Hence it is sufficient to sheye,’) € 3, ca, om Za” +
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2QY for anyi, j € | satisfyinga; € Aspore This is obvious ifaj € Aghore In the case
where o € Ajong We haves;j() = o' — (o, j)er with (o, «j) € {0, -2}. We
are done. 0

In general letR be aC-algebra. Assume thaR is prime (i.e.x,y € R, xRy= {0}
implies x = 0 or y = 0), and is finitely generated as Z(R)-module. Then
Q(Z(R)) ®z(r) R is a finite-dimensional central simple algebra over the fR(&(R)).
Hence Q(Z(R)) ®z) R is isomorphic to the matrix algebri,(Q(Z(R))) for some
n, where Q(Z(R)) denotes the algebraic closure @{Z(R)). Then thisn is called the
degree ofR. Namely, the degree of R is given by

dimoz(r) Q(Z(R)) ®z(r) R = n?.

Note that U, is a finitely generatedZ(U.)-module by Lemma 5.7. In [5]
De Concini—-Kac have shown that, has no zero divisors using a certain degenera-
tion GrU, of U,. In particular, it is a prime algebra. Hence we have the motd
the degree ofJ;. In [7] De Concini—Kac—Procesi proved that the degredJpfis less
than or equal to that of GJ,. They have also shown that the degree ofUgrcan be
computed from the elementary divisors of a certain matristhwitegral coefficients.
The actual computation of the elementary divisors was dan@]iwhen! is odd, and
in Beck [2] in the remaining cases. From these results we taedollowing.

Proposition 5.8. We have

2
dimgz) Q(Z) ®2 U, = (m I1 ra> :

aeAt

Let us show thafj is injective. By Proposition 5.%g ®z.,nz,. ZHar IS @ domain.
Note also thatZ is a domain sincdJ, has no zero divisors. Hence we have only to
show that

j*: SpecZ — SpecZg ®z N7y LHar

has a dense image. Consider the embeddingZs, — Z. Since |’ is injective,
(j)*: SpecZ — SpecZg has a dense image. Note that){ is the composite ofj*
with the natural morphism

@ SPeCZer ® 7.7y LHar — SPECZEy.

Since Spe@g ®z.nz,, ZHar IS irreducible andy is a finite morphism by Lemma 5.6,
we conclude tha* must have a dense image. The injectivity jofs verified.
Set for simplicity

7
Z' = Zrt ®7¢0Zy LHar
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Then we have
Ze,CZ'CZC U,

We need to show?’' = Z.
Assume that

(5.5) Q(2) = Q(Z)

holds. SincelJ, is a finitely generatedr-module, Z is a finitely generated’-module.
It follows that Z = Z’ by Proposition 5.5. Hence it is sufficient to show (5.5).

SinceZ’ is a freeZg-module of rank| P/ P’|, we have R(Z') : Q(Zg)] = |P/P/|.
Hence it is sufficient to show

(5.6) [Q(2) : Q(Zr) = P/P.

Note that we haveQ(Zg) ®z., Z = Q(Z) since Z is a finitely generatedZg,-
module. Hence

Q(Zrr) ®z, U; = Q(Zrr) 2z, Z®7z U, = Q(Z) ®2 U,

Hence we obtain (5.6) by Lemma 5.7, Proposition 5.8. The fpofoTheorem 5.4
is complete.

Corollary 5.9. The degree of Uis equal to m[,.,+ re, Where m is as in(5.4).

REMARK 5.10. Corollary 5.9 was proved by De Concini—Kac—Procekirjthe
casel is odd and by Beck [2] in the cadeis divided by 4.
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