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Abstract

Let (S, Bs) be the log pair associated with a projective completion aireoth
quasi-projective surfac®/. Under the assumption that the bounddy is irredu-
cible, we obtain an algorithm to factorize any automorphisirV into a sequence
of simple links. This factorization lies in the framework thie log Mori theory, with
the property that all the blow-ups and contractions invélie the process occur on
the boundary. When the completidh is smooth, we obtain a description of the
automorphisms ol which is reminiscent of a presentation by generators and re-
lations except that the “generators” are no longer autohisngs. They are instead
isomorphisms between different models f preserving certain rational fibrations.
This description enables one to define normal forms of autphisms and leads in
particular to a natural generalization of the usual notiohsffine and Jonquiéres
automorphisms of the affine plane. Wh&his affine, we show however that ex-
cept for a finite family of surfaces including the affine platiee group generated by
these affine and Jonquiéres automorphisms, which we callathe group ofV, is
a proper subgroup of AW).

Introduction

Smooth affine surfaces with a rich group of algebraic autg@miems have been in-
tensively studied after the pioneering work of M.H. Gizatuland V.I. Danilov in the
seventies. Affine surfaces whose automorphism group attsaniense orbit with finite
complement were first characterized by M.H. Gizatullin [12]terms of the structure
of their boundary divisors in smooth minimal projective quetions. Namely, except
for finitely many exceptional cases, these surfaces arésgtgchose which admit com-
pletions by chains of proper nonsingular rational curveleiil automorphism groups
have been studied by V.I. Danilov and M.H. Gizatullin in a esrbf papers [13, 14].
They established in particular that their automorphisnmugsocan be described as fun-
damental groups of graphs of groups attached to well-chdamilies of projective
completions. The vertices of these graphs correspond &sefaup to isomorphism of
suitable projective models of the affine surfaces under iderstion while the arrows
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are determined by certain birational relations betweesehdt is however difficult to
extract from them more concrete geometric properties obraatphisms or the exist-
ence of interesting subgroups due to the fact that they havgeneral uncountably
many vertices and uncountably many edges between any faugrtices.

Affine surfacesV as above have the nice geometric property that they come
equipped with families ofA -fibrationsz: V — A, that is, surjective morphisms with
general fibers isomorphic to the affine line. The originalrapph of M.H. Gizatullin
and V.I. Danilov has been recently reworked by J. Blanc aral fitst author [5]
with a particular focus on the interactions between autgimiems and these fibra-
tions. This led to introduce simpler graphs encoding edenee classes of rational
fibrations from which it is possible to decide for instancethié automorphism group
of V is generated by automorphisms preserving these fibratibiosvever the meth-
ods used inloc. cit. remain close to the ones introduced by M.H. Gizatullin and V.|
Danilov, depending in particular on properties of biratibmaps that are a priori spe-
cific to the 2-dimensional case.

As a step towards a hypothetical theory to study automommhisf higher dimen-
sional affine varieties by methods of birational geomethyisinatural to try to refor-
mulate these existing results in the framework of log Moriotlye Since every smooth
affine surface admitting a completion by a chain of smootlomal curves admits in fact
such a completion by a particular chaily, Cy, ..., C;, r > 1, whose self-intersections
are respectively Ggy, ..., &, wherea; < -1 andg < -2 foralli =2,...,r, we
see that after contracting the cun€s, ..., C;, we obtain a completion by a possibly
singular projective surfac8 with an irreducible boundarBs = Cy. So given a smooth
quasi-projective surfac¥, we would like more generally to describe the automorphism
group of V say when there exists a completi®@D V where S is a possibly singular
projective surface witt5\ V equal to an irreducible curve. More precisely, we look for
a factorization in the framework of the log Mori theory for amtorphisms ofV that
do not extend as biregular automorphisms®n

When 'V admits a completion into a (log) Mori fiber spa& and f: S--» S'is
the birational self-map associated to an automorphisid ,afhe (log) Sarkisov program
gives a factorization off into so-called elementary links between intermediate )(log
Mori fiber spaces. As already expressed in [6], the hope is ahagfinement of such
an algorithm could allow to understand the structure of pohgial automorphisms of
the affine 3-space\®. Here we have in mind to complete® by the projective space
P2, and to apply the algorithm to the birational map frdd to P2 induced by an
automorphism ofA3. It seems natural to expect an algorithm whichpisper, that is
where all the blow-ups and contractions occur on the boyndaisor.

A natural first step is to check if at least in the 2-dimensiarzse, the log Sarkisov
program satisfies this property, and so could be used to giyeod description of the
automorphism groups of quasi-projective surfadeadmitting completions into log Mori
fiber spaces. But maybe surprisingly it turns out that apglythe log Sarkisov pro-
gram to such a completio8 does not provide a satisfactory description: In general the
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links occurring in a factorization of a birational transfuation of S induced by an auto-
morphism ofV do not preserve the inner quasi-projective surfecésee Proposition 1).
This is not the case foA?, but it is worth noting that the phenomenon occurs for the
3-dimensional affine space: There exist some automorphi$ms for which the usual
Sarkisov factorization isiot proper (see [22, §1.2.3]).

This motivated the search for an alternative algorithm fdricl all the blow-ups
and contractions would occur on the boundary divisor. Itushsan algorithm, together
with applications and examples, that we propose in this pape main point being a
shift in focus from the existence of completions with a log Mfilber space structure
to the existence of completions by one irreducible dividdris last property might turn
out to be the right one for studying automorphismsAdt

Before stating our main result, let us introduce the classlibfcompletionsof a
smooth quasi-projective surfacé: These are divisorially log terminal pairsS,(Bs)
consisting of a projective completioB of V and a reduced boundary divis@s =
3" E;, such that the support d@s is exactly S\ V. Also, by astrictly birational map
of dlt completionasve mean a birational map: (S, Bs) --> (S, Bg) which induces an
isomorphismS\ Bs — S \ Bg and which is not a biregular isomorphism. With these
definitions, our factorization result reads as follows.

Theorem 1. Let f: V = V' be an isomorphism of smooth quasi-projective sur-
faces and let S S be dit completions of V and "Wvith irreducible boundary divisors
Bs, Bg. Then if the induced map :fS--> S is strictly birational we can factorize
f into a finite sequence of n links of the following form

Z

RN

S_1 S

where $=5S, S,..., S = S are dit completions of V with an irreducible boundary
Ziis foralli=1,...,n a dit completion of V with two boundary componerasd
Zi — S_1, Zi — S are the divisorial contractions associated with each onéhef two
K + B extremal rays with support in the boundary of. Z

The existence of the above decomposition, which was alreadgidered by the
authors in [9] (unpublished), is in fact a particular casenofre general factoriza-
tion results developed later on by Y.M. Polyakova: see [24kmhshe reformulates
the problem in terms of relations induced by certain clasgdsirational maps in suit-
able categories of 2-dimensional log-terminal pairs. Tpproach certainly provides a
nice theoretical framework for studying automorphisms oésj-projective surfaces in
general: for instance, one can recover from it the desoriptif M.H. Gizatullin and
V.l. Danilov in terms of fundamental groups of graphs of greuHowever, it remains
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too abstract to give precise handle on the properties oethesomorphism groups and
their subgroups. In our view, such a factorization resulordy a preliminary step for

the understanding of these groups, and a second cruciatstegists in extracting from

it some particular classes of birational maps which arevagiefor the study of precise
properties of these groups. For instance, in [5] the questias to decide whether the
automorphism group of an affine surface admitting a compieliy a chain of smooth

rational curves is generated by automorphisms preseniihéjbrations. The problem

was solved by introducing two classes of birational mapseddibered modifications

and reversions roughly characterized by the respective properties they preserve an

Al-fibration or exchange it to another one, and then by usingpgmogriate factoriza-

tion result to deduce that any automorphism can be decordpiosa finite sequence
of such maps.

Here, as an application of our factorization result, wedwlla similar strategy to
describe the structure of the automorphism group of a quagéctive surfacev ad-
mitting a smooth completiong, Bs) with irreducible boundarnBs ~ P!, a case which
is essentially complementary to the situations in which ¢benbinatorial methods de-
veloped in [5] give a satisfactory description. Affine seda of this type have been
first studied by Gizatullin and Danilov [14]: They establishin particular that their
isomorphy types as abstract affine surfaces depend only esdli-intersectiorBZ of
the boundaryBs in a smooth completiong, Bs) and not on the choice of a partic-
ular smooth completiorS or boundary divisorBs (except in the cas®2 = 4 where
there are two models). They described their automorphissopy in terms of the ac-
tion of certain groups on a “space of tails” which essenti@hcodes the isomorphy
types of smooth completionsS(Bg) of a fixed affine surfacéd/. Here we follow a
different approach based on a natural generalizations efctassical notions oAffine
and Jonquiéresautomorphisms for the affine plane. Roughly, for a given affimrface
V, affine automorphisms in our sense are characterized byrtpeqy that they come
as restrictions of biregular automorphisms of various sm@ompletions §, Bs) while
Jonquiéres automorphisms are automorphisms which peesmmain Al-fibration on
V. With these notions, we obtain a kind of presentation by geoes and relations
closely related to the one considered by Gizatullin and B&nin loc. cit. and rem-
iniscent of the usual description given by Jung’s Theoremadatomorphisms of the
affine plane.

It is classical that Aul) is generated by these two classes of automorphisms when
V is A? or a smooth affine quadric surface and we are able to provettisatolds
more generally for every affine surfadé admitting a smooth completiorS( Bs) with
rational irreducible boundary of self-intersecti@§ < 4. On the other hand, we show
that this property fails for those admitting smooth coniplet (S, Bs) with Bg >5. We
also derive from our description that B2 > 5 then Aut{/) is “much bigger” than the
automorphism group oA?, in the sense that the proper normal subgroup generated by
affine and Jonquiéres automorphismsvotannot be generated by a countable family of
algebraic subgroups (see Proposition 22).
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The article is organized as follows. In Section 1, we brieflyiew the log Sarkisov
program and we illustrate the reason why it does not providatisfactory algorithm
to obtain informations about automorphism groups of qpasjective surfaces. In Sec-
tion 2, we review the geometry of dlt completions, estabtish factorization Theorem 1
and discuss some of its properties. Then in Section 3 we applalgorithm to the case
of quasi-projective surface¥ admitting smooth completions with irreducible bound-
aries. We observe that our algorithm yields a kind of prestéort by generators and
relations for the automorphisms ®f (Proposition 16) and enables to define a notion of
normal forms for automorphisms. We then consider the sitnawvhereV is affine and
discuss the structure of the automorphism group (Propos2R). Finally, Section 4 is
devoted to the explicit study of various examples of affindamesV admitting smooth
completions with irreducible boundaries which illustrétte increasing complexity of the
groups Autl/) in terms of the self-intersection of their boundary diviso

1. Quasi-projective surfaces with log Mori fiber space commtions and the
log Sarkisov program

Many interesting quasi-projective surfaces with a rich mdgphism group admit
completions into dlIt pairs§, Bs) which are log Mori fiber spaceg: (S, Bs) — V, i.e.,
g has connected fiber¥, is a normal curve or a point, and all the curves contracted by
g are numerically proportional and of negative intersectigth the divisor Ks + Bs.
Examples of such situations include the affine plakfe or quasi-projective surfaces
obtained as complements of either a section or a fiber it#4undle over a smooth
projective curve. In this context, the log Sarkisov prograstablished by Bruno and
Matsuki [6] gives an effective algorithm to factorize a bioaal map f: S--> S be-
tween log Mori fiber spaces into a sequence of elementary fmksvhich we control
the complexity of the intermediate varieties in the sensg #t any step they differ
from a log Mori fiber space by at most one divisorial contrattids it was established
by Takahashi [23, p.401] for the case Af, it seems natural to expect in general that
given a quasi-projective surfacé and a log Mori fiber spac& completingV, apply-
ing this algorithm to birational map$: S--> S corresponding to automorphisms gf
would lead to a good description of the automorphism grou) olUnfortunately, this
is not the case as it turns out in general that the biratioaaisformations involved in
the algorithm do not preserve the inner quasi-projectivéase V. In this section we
briefly review the mechanism of the log Sarkisov program ofirier and Matsuki and
illustrate this phenomenon.

1.1. Overview of the log Sarkisov program for projective sufaces. Let
f: S--> S be a birational map between 2-dimensional log Mori fiber spd&eBs)
and S, Bg). We assume further that the latter are log MMP related, i.at ey can
be both obtained from a same palf,Bx) consisting of a smooth surface and a sim-
ple normal crossing divisoBx by running the log minimal model program. We denote
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Fig. 1. The four types of links of the log Sarkisov program.

by 7: X — Sthe corresponding morphism and By C X the irreducible components
of its exceptional locus.

The algorithm depends on two main discrete invariants of kimational map f
which are defined as follows. First, we choose an ample diisoon S. We denote
by Hs C S (resp. Hx C X, etc.) the strict transform of a general member of the lin-
ear systemH’|. The degreen of f is then defined as the positive rational number
Hs.C/(—(Ks + Bg) . C) whereC is any curve contained in a fiber of the log Mori
fiber structure onS. For the second invariant, the fact thatis obtained by running
the log MMP implies that in the ramification formulas

Kx+Bx=7T*(Ks+Bs)+ZajCi, szrr*Hs—ZmiCi

we haveg > 0 for everyi, which enables to define thmaximal multiplicity of f
as the maximum of the positive rational numbérs= m; /a;.

If A > u, then the algorithm predicts the existence of a maximalaetiton, that is,
an extremal divisorial contractiod — S whose exceptional divisor realizes the max-
imal multiplicity A. Then eitherZ is itself a log Mori fiber space, or there exists an-
other extremal divisorial contraction frord that brings us back to a log Mori fiber
space. These operations done, one shows that we have shgdlifin the sense that:
either © went down; oru remained constant but went down; oru and A remained
constant but the number of exceptional divisorsXnrealizing the maximal multipli-
city » went down. Otherwise, if. < u, the algorithm predicts that eith& is equipped
with a second structure of log Mori fiber space for which theoesded degreeg. is
strictly smaller, or there exists an extremal divisoriahtraction fromS to another log
Mori fiber space for whichu is again strictly smaller.

The four types of elementary links occurring in the factatian procedure can be
summarized by Fig. 1.
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The above program works for 2-dimensional dit pai& Bs). Bruno and Matsuki
[6] also established the existence of the analogue prognatimiension 3 for Kawamata
log terminal (klt) pairs Y, By) generalizing the original 3-dimensional version previ-
ously written down by Corti [7]. For kit pairs in any dimensioHacon and McKernan
[15] recently gave a proof of the existence of a factorizatid birational maps between
log Mori fiber spaces into sequences of links of types (1), (IV) (the definition of
these links is slightly more complicated in higher dimenslecause of the presence
of isomorphisms in codimension 1). However, their desmiptbased on the results in
[4], is much less effective and does not take the form of adi@kmlgorithm. In any
case, we shall see in the next subsection that anyone of taetsgization results is in
general inadequate to study the automorphism group of an spdaceV.

1.2. Inadequacy of the log Sarkisov program. The following criterion shows
that for a large class of quasi-projective surfabeadmitting completions into log Mori
fiber spaces §, Bs), any procedure which factors a birational m&p--» S into se-
guences of links of types (l), ..., (IV) between log Mori fibgrases will affect in a
nontrivial way the inner surfac¥ .

Proposition 1. Let V be a quasi-projective surface admitting a completitto ia
log Mori fiber spacep: S— C over a smooth projective curve C. Suppose further that
each irreducible component of the boundary\ § has nonnegative self-intersectjon
and is not contained in a fiber of any log Mori fiber space stmoeton S. Then a
strictly birational map¢: S --» S, cannot admit a factorization into a sequence of
Sarkisov links of typdl), ..., (IV), each restricting to an isomorphism on V.

Proof. Sincep: S— C is a log Mori fiber space over a curve, an elementary
link starting from S is necessarily of type (I), (lll) or (IV). Links of type (IVonly
change the considered log Mori fiber space structureSdn another structure of the
same type. Sincé is strictly birational, it cannot be factored into a sequent links
of type (IV). Therefore, after a sequence of links of type)(I'¥ne has necessarily to
perform a link of type (ll) or (Ill) with respect to the log Moffiber space structure
o'+ S— C at this step. Since by assumption the components of the lboyrithve
non-negative self-intersection hence cannot be conttaste see that a link of type
(I never restricts to an isomorphism ovi. Consider now the possibility of a link
of type (ll). After performing the extractio — S with center at a poing] € S, the
morphismZ — S is the contraction of the strict transform of the unique fibeof the
log Mori fiber spacep’: S — C passing thoughy. Our hypothesis implies thdE is
not an irreducible component of the bound@y V, and so, the link does not restrict
to an isomorphism orv. ]

1.3. Example. As an illustration of Proposition 1, let us consider the case
the smooth affine surfacé defined as the complement of the diagoBain P! x P2,
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Fig. 2. Resolution off and coefficients in the ramification formulas.

The birational map

1 1
) 2 __ - 2
f:(x,y)eA >(x+x_y,y+x_y)eA

preserves the levels — y = constant and extends via the embedding, §) € A2 —
([x : 1], [y : 1)) € P! x P! to a birational map fromS = P! x P! to S = P! x P!
inducing an isomorphism oW = P! x P\ D, whereD is the closure of the diagonal
x—y =0 in A2 The unique propérbase point off is the pointp = ([1: 0], [1: 0]),
and the unique contracted curve is the diagdbalStraightforward calculations in local
charts show that we can resolfeby performing 4 blow-ups that give rise to divisors
Ci1,...,C4 arranged as on Fig. 2. We denote @y the strict transform of the diagonal
D. Note thatC, is the strict transform of the diagonal &.

ChoosingH’ = D as an ample divisor o8, the coefficientsy; in the ramification
formulas

Kx +Bx =7*(Ks+ Bg) + Y _aCi, and Hx =m*Hs—) mC;,

are easy to compute. For time, one exploits for instance the fact that the strict trans-
form Hs of a general member dD| is a rational curve of bidegree (3,3) with a double
point at p and at each of the infinitely near base pointsfofThe results are tabulated
in Fig. 2.

The maximal multiplicity is thus realized by the divis@s and a maximal extrac-
tion Z — S is obtained by first blowing-up three times to produeg C, and C; and
then contractingC; and C, creating a cyclic quotient singularity. The boundaty, V
consists of two irreducible curveSy and Cs, the latter supporting the unique singular
point on the surface. Furthermore, there exist 4 irredeciirves onZ that correspond
to K + B extremal rays:

e Cg3, which is the exceptional divisor associated with the maimultiplicity;
e Cy, which is the strict transform of the diagonal &

1By proper we mean a base point which is not an infinitely near point.
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e The strict transforms of the 2 rulé®, and D_ of P! x P! crossing atp.

Now the log Sarkisov program imposes to contract one of the cwrvesD, or D_
above (precisely: the one that was a fiber for the chosentsteuof log Mori fiber
space onP! x PY) to reach a new log Mori fiber space. But this birational carttca
does not restrict to an isomorphism on the affine surfdce

However, the above computation shows that we are left withira toption which
consists in contracting the strict transfo®g of D. This is precisely the curve that our
alternative algorithm will impose to contract to get a newjective surfaceS, support-
ing a cyclic quotient singularity along the new bounddy, = C;. By construction,
the corresponding birational m&p--»> S induces an isomorphism on the inner affine
surfaceV but it turns out thatS; is no longer a log Mori fiber space. Indeed, its div-
isor class group is isomorphic ®?, generated by the strict transforms Bf, and D_.
On the other hand, one checks that these curves generatalth& a- B extremal rays
on S, each of these giving rise to a divisorial contracti&n— P2. Note in particular
that even though it consists of a maximal extraction— S followed by a divisorial
contractionZ — S, the birational ma5 --> S just constructed is not a Sarkisov link
of type (Il).

Summing up, Proposition 1 and the above example show thaguasi-projective
surfacesV admitting completions into log Mori fiber spaces, there does exist any
factorization process for which each elementary step iuls@meously a link of type
M, ..., (IV) between log Mori fiber spaces and a birationalpmastricting to an iso-
morphism onV. So we cannot escape the dilemma that inevitably we have andaimn
one of these properties.

2. The factorization algorithm

Here we first review basic facts on 2-dimensional dit paird discuss the geom-
etry of the boundaries of dlt completions involved in our matatement. Then we
prove main theorem 1 and discuss some additional propesfitise factorization.

2.1. Singularities and geometry of boundaries. The fact that an automorphism
of a normal quasi-projective surfacé extends to an automorphism of its minimal
desingularisation enables to restrict without loss of galitg to the case of a smooth
quasi-projective surface. On the other hand since an eatreomtraction starting from
a smooth log surface may yield a singular one, it is necessaaflow some kind of
singularities on the projective completiorsof V. Following recent work of Fujino
[11], the widest framework where the log Mori Program is esaled in dimension 2
is the one of pairs$, Bs) with log canonical singularities. However, it is enough fo
our purpose to work with the subclass of dit pai& Bs).

2.1.1. Hirzebruch-Jung singularities. Before giving the characterization of
these pairs that will be used in the sequel, let us first retet an isolated singu-
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lar point p of a surfaceS is called a Hirzebruch—Jung cyclic quotient singularity of
type Ang, N>2, 1<qg=<n-1, gedf,,q) =1 if it is analytic locally isomorphic
to the quotient ofA? by the action of the groupe, ~ Z/nZ of complexn-th roots

of unity defined by X, y) — (ex, ¢%y). As it is well-known (see e.g. [2, p.99]),
the exceptional locus of the minimal resolutian S — S of p consists of a chain
of rational curvesEy, ..., Es with seh‘-intersectionsEi2 = —g < —2 determined by
the expression

n
—=a; —
ap —

az—---

as a continued fraction. Recall that cyclic quotient siagties are log terminal, i.e.,
in the ramification formulaKg = 7*Ks+ >_ G Ej one has—1 < ¢ for everyi. For
such singularities, one has in faetl < ¢; < 0. Indeed, otherwise, we can writes =
7*Ks + A— B where A and B are effectiveQ-divisors supported on the exceptional
locus of x and without common components. Singé < 0, it follows thatKg- A =
(A—B): A< 0 and hence, there would exist an indesuch thatKs- E; < 0. But
then E; would be a ¢1)-curve which is absurd.

2.1.2. DIt pairs. For a definition of such pairs in general, we refer the reader
to [18, Definition 2.8]. In our situation, [19, Propositiom42] combined with the local
description of log terminal singularities of surfaces whican be found in [17, see in
particular p.57, case (3)] leads to the following equivaldefinition:

DEFINITION 2. A pair (S, Bs) consisting of a projective surfac@and a nonempty
reduced divisoBs = ) B; such thatS\ Bs is smooth is called divisorially log terminal
(dlt) if the following conditions are satisfied:

e The B; are smooth irreducible curves with normal crossings, thatach common
point of two components is a normal crossing at a smooth pufir;

e A singular pointp of Sis a Hirzebruch—Jung singularitf, q and the strict trans-
form of Bs in the minimal resolutionz: S— S of p meets the exceptional chain of
rational curvesEy, ..., Eg transversally at a unique point of the initial or final curve
E; or Es.

In particular, a dit pair § Bs) with irreducible boundary divisoBs is a purely log
terminal (plt) pair.

Note that the above conditions guarantee in particular thattotal transform of
Bs in the minimal resolutionz: S — S of the singularities ofS is a simple normal
crossing divisor.

2.1.3. Geometry of the boundary. Let us first introduce notations and termin-
ology that will be used in the sequel. Given a strictly bwatl map of dit comple-



AUTOMORPHISMS OFOPEN SURFACES 757

tions f: (S, Bs) --> (S, Bs) with irreducible boundaries, we denote by S— S and
7' § — S the minimal resolutions of the singularities &fand S respectively. We

denote byéf— X 1> S the minimal resolution of the base points of the birationalpm
f: S--» § induced by f. Recall [1, Theorem 1.3.7] thaX and the birational mor-
phismso, ¢’ are uniquely determined up to isomorphism by the followirgversal
property: given another resolutici <~ X’ — S, there exists a unique birational mor-
phism X’ — X such that the obvious diagram commutes. In particuXardoes not
contain (1)-curves that are exceptional for bathoco: X - Sandn’oo’: X — S.
This implies that if the sequence of blow-ups X — S is not empty, the £1)-curve
produced as the last exceptional divisor of the sequenckeistrict transform ofBs.
Note also that by construction the boundary $fand X are simple normal crossing
divisors, with each irreducible component a smooth ratiaoave.

The following result shows that the existence of strictlygbbonal maps of dIt com-
pletions f: (S, Bs) --> (S, Bg) imposes strong constraints on the boundaries:

Proposition 3. Let f: (S,Bs) --» (S, Bg) be a strictly birational map of dIt com-
pletions with irreducible boundaries. Then the followinglds
(1) The boundaries Band By are both isomorphic td®?;
(2) S admits at most two singularities
(3) f admits a unique proper base poi( f), and if S has exactly two singularities
then B(f) coincides with one of these singularities.

Proof. Recall (see e.g. [16, Theorem 5.2 p.410]) thah:ifM --> M’ is a bi-
rational map between normal surfaces, gn& M is a proper base point dif, then
there exists a curv€ C M’ such thath=3(C) = p. In our situation, sinceBg is the
only curve that can be transformed to a point by, it follows that f has a unique
proper base poinB(f) = f~1(Bs) € Bs. This implies in turn thatf (Bs) cannot be
equal toBg and so must be equal to a poipt = B(f~1) € Bg. In particular, with
the notation above, the strict transforms on the minimabltg®n X of Bs and Bg
are smooth rational curves (they come either from the réisolwf a A, 4 singularity,
or from the blow-up of a smooth point), and they are not equilis gives (1).

Now suppose that the union of the singularities ®find of B(f) consists of at
least three distinct points supported Ba. Then onX, the strict transform oBs is a
boundary component with at least three neighbors:’I§£ id then the first contraction
must be the one of the strict transform BE, which is impossible since the boundary
divisor is simply normal crossing for all surfaces betweérand S. Henceo’ = id,
but again this gives a contradiction, since 8hall divisors except maybe the strict
transform of Bg which is distinct from that ofBs must have at most two neighbors.
This proves (2) and (3). U



758 A. DUBOULOZ AND S. LAMY

2.2. Proof of the factorization Theorem 1. The proof relies on the following
lemma which characterizes the possible extremal rays stggpon the boundaries of
dit completions §, Bs).

Lemma 4. Let(S,Bs) be a dit completion of a smooth quasi-projective surface V.
(1) A (smooth rational curve CC Bg with at least two neighboring components in
Bs is not a Ks + Bg extremal ray.
(2) If C C Bs is a smooth rational curve with only one neighboring comprie Bs
and supporting at most one singularity of then (Ks + Bs).C < 0.
(3) Let C C Bs be a curve supporting exactly one singularity p ofa®d denote by

C the strict transform of C in the minimal resolution of p.af < 0 then G < 0.

Proof. Letn be the number of neighbors @f in Bs and letps,..., pr the singular
points of S supported alongC. By the adjunction formula (see e.g. 2.2.4 in [25]),
we have

(Ks+ Bs):C =(Ks+ C)-C +n=degKc + Diffc(0)) + n

=—2+r2(1—$)+n,

i=1 !

wherem; > 2 is the index of the singular poinp;, i = 1,...,r. This implies (1)
and (2). For (3), letr: S— S be a minimal resolution op and letE = E; be the
unique -exceptional curve that intersects the strict transf@nof C. We write C =
7*C —bE—- R, Kg=n*(Ks) + cE+ R whereb >0, 0>c > —1 (see §2.1.1) and
where R, R’ are w-exceptional divisors whose supports do not m@etThe fact that
(S, Bg) is a dIt pair implies that —b > —1 whence that - b. The assertion follows

sinceC2=7*C-C=(C+bE+R).-C=C +b<C +1. O

Proof of Theorem 1. Recall that we have a strictly biratiomalp f: (S, Bs) --»>
(S, Bg) restricting to an isomorphisn¥ = S\ Bs ~ V' = S\ Bg. As in Sub-
section 2.1.3, we letr: S— Sandn’: § — S be the minimal resolutions of singu-

larities and we letS < X 5 § be the minimal resolution of the base points of the
induced birational mapf. By Proposition 3 (1) and the description of Hirzebruch—
Jung singularities given in 8§2.1.1, the divisBk is then a tree of rational curves. The
irreducible components oBy are exceptional for at least one of the two morphisms
m oo or ' oo’, thus they all have a strictly negative self-intersecti®mce By is a
tree, there exists a unique sub-ch&g E1, ..., E, = E¢’ of By joining the strict trans-
forms Eg and Eq’ of Bs and By respectively. We proceed by induction on the number
n+ 1 of components in this chain. The integer 1 will also be the number of links
needed to factorizéf. We use the same notation for the curdés i =0,...,n and
their images or strict transforms in the different surfatiest will come into play.
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Fig. 3. The boundary divisor of.

To construct the first linkS= & --> S, we consider the minimal partial resolution
S« Y --> S of f dominated byX and containing the divisoE; defined as follows:

— If f: S--> S is either a morphism or has a proper base point supporteddeuts
from Eop, then E; is one of the exceptional divisor of, and the boundanBg is a
chain of rational curves wittEg, E; intersecting in one point. In this case we put
Y=S

— Otherwise, iff : S--> S has a proper base point df, then by definition of the
resolution X, the divisorE; is produced by blowing-up successively the base points of
f as long as they lie orEy, E; being the last divisor produced by this process. We
let Y — S be the intermediate surface thus obtained. By constructienimage of the
curves contracted by the induced birational morphiXm— Y are all located outside
Eo and the self-intersections d, in X andY are equal. The divisoBy is a chain
that looks as in Fig. 3. The wavy curves labeled “Sing” cqoesl to the (possible)
chains of rational curves obtained by desingularisatios,cind the wavy curve labeled
“Aux” corresponds to the (possible) chain of auxiliary catal curves, each with self-
intersection—2, obtained by resolving the base points fofoefore gettingE;.

In both cases, we havEZ < 0 onY, since this self-intersection is the same as the
one onX. So all irreducible components &, have a strictly negative self-intersection.
By running the K + B)-MMP on Y we can successively contract all the components
of the boundaryBy exceptEg and E;. Indeed at each stey is a minimal resolution
of the intermediate surface, and each extremity compofemtf the boundary chain
supports at most one singularity: Lemma 4 ensures ¢haa K + B negative and has
negative self-intersection whence generatds & B extremal ray giving rise to a divi-
sorial extremal contraction. We not& (Ep + E;) the dit pair obtained from the pair



760 A. DUBOULOZ AND S. LAMY

(Y, By) by this sequence of contractions.

By construction,Z dominatesS via the divisorial contraction of th&k + B extremal
curve E;. Again by Lemma 4,E; generates & + B extremal ray inZ, and Eg <0
on Z. So there exists & + B divisorial extremal contractio — S, contracting Eqg
and yielding a new dlt pairg, Bs) with reduced boundars consisting of the strict
transform of E;. We obtain the first expected link and the mép S--> S factorizes
via a birational mapf;: § --> S.

Furthermore, the minimal resolutiod; of the induced birational mapfl: SHEEN
S between the minimal desingularisations $f and S induced by f; is dominated by
X. More precisely, sincé&, is the only possible<{1)-curve onX which is exceptional
for both induced morphisnX — S and X — S, X, is either equal toX if Eg <2
or is obtained fromX by first contractingEy and then all successive-{1)-curves oc-
curring in the minimal resolution of a singular point 8fsupported orBs and distinct
from the proper base point of (see Fig. 3 above). It follows that the chain associ-
ated to f;: § --» S as defined at the beginning of the proof consists of the curves
E1, ..., En = E¢’ hence has length. We conclude by induction that we can factorize
f into exactlyn links. ]

REMARK 5. A by-product of the proof above is the following propertf tbe
intermediate surface&; with two boundary components that appear in the theorem:
each one of the boundary component supports at most onelaiiiguNote also that
neither Lemma 4 nor the above proof tell something about thesiple Kz + Bz, ex-
tremal curves on these intermediate surfaces that do nohgpeéb the boundary: in the
example given in 81.2 above, we have fdr+ B extremal rays but only two of them
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were supported on the boundary.
We introduce a concept that will prove useful in the nextisect

DEFINITION 6. If f: (S Bg)--> (S’,Bg) andg: (S’,Bg) --> (S, Bg) are strictly
birational maps of dit completions, we will say th&tand g are in special positionif
B(f~') = B(g) and ingeneral positionotherwise.

It follows in particular from the construction of the fadation f =
fn- - f1: (S, Bs) --> (S, Bg) given in the proof above that for every=1,...,n—1, f;
and fj,, are in general position. In general, see Remark 8 below, dletoffization
into elementary links of a composition of two strictly biatal maps of dit com-
pletions with irreducible boundaries does not coincidehvitie concatenation of the
factorizations of these maps. The following corollary pdas however a sufficient
condition for this property to hold. In particular the cotiol is satisfied when all
the surfaces into play are smooth.

Corollary 7. Let f: (S, Bs) --> (S’, Bg) and g: (S, Bs) --> (S, Bg) be bi-
rational maps of dlt completions with irreducible boundsgi If f and g are in general
position and at least one of the two poirigég) or B(f 1) is a smooth point of ‘Sthen
the factorization of @ f into elementary links given byheorem 1lis equal to the con-
catenation of the factorizations of f and g. Furthermavae has ther3(go f) = B(f)
and B((ge f)™) = B(g™.

Proof. Up to replacingf and g by their inverses, we may assume th&{p) is
a smooth point ofS’. As before we denote b the minimal desingularisation o
(same withS, S’) and by f, § the induced birational maps. The hypothesis implies
that all the base points of 1 and § including infinitely near ones are distinct so that

a resolutionS < X ° S of the birational mapS --> S induced bygo f is obtained
from §’ by simultaneously resolving the base points foft and §:

X
é -——z > é” —-——=> é’
R
S--r g -5~ S
The surfaceX dominates the minimal resolutioX; of f and Xy of §. We denote

by Eo, Ej, Ej the strict transforms oBs, Bg and BE in X (or in Xs, Xg). By con-
struction the chain joininggg to Ej in X is the union of the strict transform of the
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xX=35"
E __E E __E
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Fig. 4. The counter-example in Remarks3denotes a singularity,
numbers are self-intersections).

chain joining Eq to EJ in X; with the strict transform of the chain joining; to E;
in Xg. Since By is contracted byf -1 jts strict transformE( in X; has negative self-
intersection. Furthermore sind&(g) is a smooth point ofS’, the lift of g to X; has
a proper base point okj and so the strict transform d&j in X has self-intersection
< —2. SinceEj is the only curve that could have been(-al)-curve simultaneously
exceptional foro ando’, we conclude thaiX is a minimal resolution ofyo f.

Now the first part of the assertion follows directly from thenstruction of the fac-
torization. The second part follows from the fact that sitioee image53(g) € Bs of Bg
by gt is distinct fromB(f 1), the imageB(go f) of Bg by (go f)™* coincides with
the imageB(f) € Bs of Bg: by f~1. For the same reasoB((go f)™!) = B(g™%). O

REMARK 8. The assumption tha8(f 1) or B(g) is a smooth point ofS’” im-
plies in particular thaBs supports at most a singular point 8f (Proposition 3, as-
sertion (3)). So the only situation in which the conclusidrtte Corollary above could
fail is when Bg supports exactly two singular points which are the propesehbaoints
of B(f~1) and B(g) respectively. The following example, which was pointed tmius
by the referee, shows that this phenomenon can indeed occur.

ConsiderS = P?, with boundaryBs equal to a line. We construct a surfa¥eby
blowing-up three points: first a point o8 producing an exceptional divisdg; then
the intersection poinE N Eg (where Eq is the strict transform oBs) producing the
exceptional divisorEy; and finally blowing-upEq N Ej producing Ej.

We construct a surfac&” from X by contracting the curveg, Eo and Ej; simi-
larly we constructS by contractingE, Eq and Ej. These surfaces are singular, we
haveS’ = X, andS is the surface obtained from{ by contractingEq and E;. Denote
by f, g the birational maps-->» S” and S’ --> S (see Fig. 4). Then the factorization
of go f is not the concatenation of the factorizations fofind g. What's going wrong
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here is thatX is not a minimal resolution of o f, indeedEj is a (~1)-curve onX
which is exceptional for botlas ando’.

2.3. Additional properties of the factorization. Noting that the definition of
the maximal multiplicity 2 (see 8§1.1) makes sense even wieis not a Mori fiber
space, we observe that our algorithm retains one aspecteofoth Sarkisov program
of Bruno and Matsuki [6], namely the fact that the first diviabicontraction involved
in each link is a maximal extraction:

Proposition 9. The birational morphism Z» S with exceptional divisor £con-
structed in the proof of the theorem is a maximal extraction.

Proof. A maximal extraction (see [23, Proposition 13-1-8H46, p.485] for the
logarithmic case) is obtained from a smooth surface whicimidatesS and S by a
process of the K 4+ B)-MMP. So we may use the surfacé from the proof of the
theorem. The precise procedure consists in two steps (wehesaotationsh and H
that have been defined in 81.1): Running firstka+{ B + (1/A)H)-MMP over S until
we reach a log minimal model, then running k& ¢ B)-MMP over S; the last contrac-
tion gives a maximal extraction. The crucial observationthiat each extremal diviso-
rial contraction of the log MMP in the first step is also a contirat for the genuine
(K + B)-MMP. The fact that we are running a log MMP ov&rguarantees that the
only curves affected by the procedure are contained in thmdery. By Lemma 4, as
long asE; admits two neighboring componentEyand another one), it cannot corres-
pond to aK + B negative extremal ray. Remark also thatBi§ supports a singularity
g which is not a proper base point fdr, then all exceptional divisors of the resolution
of g have multiplicitiesA; = 0 and thus are contracted in the first step. It follows that
the maximal extraction we constructed, which is the lasisdival contractionZ — S,
must haveE; as exceptional divisor. O

REMARK 10. In contrast with the log Sarkisov algorithm of Bruno andt$dii,
we did not assume from the beginning that the pag$8¢) and S, Bs) were log-MMP
related. In our situation, this property is automatic: tisigrobably a well-known fact,
but we can also obtain it as a by-product of the proof of Theofe Indeed, letting
againkEy, ..., E, be the subchain of rational curves in the boundBgyof X defined in
the proof, Lemma 4 guarantees that all the irreducible corapts ofBx except the ones
contained in that chain can be successively contracted bgaegs of theK + B)-MMP.
The surfaceW obtained by this procedure has bound&y = Zin:o E; and dominates
both Sand S by a sequence oK + B divisorial contractions.

On the other hand, the elementary example of the identity ofap? viewed as
a rational map froniP! x P! --> P2 with a unique proper base poimt located at the
intersection of the two rules at infinity and for which thevsap of p is not aK + B ex-
tremal contraction shows that arbitrary dIt completiong gfiven quasi-projective surface
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need not be log-MMP related in general. So if one wants to extemdactorization re-
sult to pairs with reducible boundaries, it becomes necggsaat least require from the
very beginning that the pairs under consideration are log-MBlRted.

3. Quasi-projective surfaces with smooth completions

In this section we derive from our factorization theorem aegal description of the
automorphism group of whenV admits a smooth completiors(Bs) with irreducible
boundaryBs ~ P1. In what follows, such pairsg, Bs) are simply referred to asmooth
completionsthe inner smooth quasi-projective surfade= S\ Bs being implicit.

Smooth completionsS, Bs) for which Bg < 0 can be quite arbitrary since for in-
stance any blow-up: S— S of a point on a smooth projective surfaewith excep-
tional divisor Bs gives rise to such a paifS( Bs). In contrast, the possible structures
of pairs (S, Bs) with BZ > 0 are much more constrained, as summarized by the follow-
ing proposition:

Proposition 11. If (S, Bs) is a smooth completion with ng 0, then after the
contraction of finitely many—1)-curves contained in Ywe reach a pair of the follow-
ing type
(1) (P2, B) where B is either a line or a smooth conic
(2) (F,B) where p F — D is a ruled surface over a smooth projective curve D and
where B is either a fiber or a section. FurthermpieB? # 0 thenF is a Hirzebruch
surfacel,, for some n> 0, and B is a section.

Proof. Up to replacing$, Bs) by a pair obtained by successively contracting all
possible £1)-curves inS\ Bs and having the strict transform d@s for its boundary,
we may assume from the very beginning tt&t Bs does not contain a—1)-curve.
Since Ks + Bs): Bs = —2 by adjunction formula, it follows thaKs + Bs is not nef
and so there exists Ks + Bs-negative extremal rational cur@ on S. Since Bg >0,
the conditions Ks+ Bs)-C = (Ks+C)-C+Bs-C—-C?=-2+Bs-C-C?<0
and C? < 0 would imply thatC is a (~1)-curve disjoint fromBs, which is impossible.
Thus (S, Bs) is a log Mori fiber spacey: S— D. If D is a point thenS is smooth
log del Pezzo surface of rank 1, whence is isomorphi®fcand Bs ~ P! is either a
line or a smooth conic. Otherwise, sin&is smoothg: S — D is a P-bundle and
the condition Ks+ Bg)- F = (Ks+ F)-F + Bs- F = -2+ Bs- F < 0 for a fiber
F ~ P! of g implies thatBs- F = 0 or 1. ThusBs is either a fiber ifBs- F =0 or
a section otherwise. This immediately implies the remarassertions. 0

3.1. Triangular birational maps between smooth completios. Let us first ob-
serve that if §, Bs) is a smooth completion witfB3 < O then every birational map of
smooth completiond : (S, Bs) --> (S, Bg) is in fact an isomorphism. Indeed, otherwise
it would have a proper base point &3, and sinceBé < 0 it would follow that the total
transform ofBs in the minimal resolution off contains no {1)-curve except the strict
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transform ofBg, in contradiction with the fact tha® is smooth. It follows in particu-
lar that if a smooth quasi-projective surfa¢eadmits a smooth completiors(Bs) with
BZ < 0 then the automorphism group ®f coincides with the subgroup A( Bs) of
Aut(S) consisting of automorphisms preserving the boundagy In contrast, if §, Bs)
and @, Bg) are smooth completions witBZ > 0 or B > 0, then strictly birational
maps of smooth completion§,(Bs) --> (S, Bg) may exist in general.

3.1.1. Structure of intermediate pairs. Given such a strictly birational map,
we prove in the next lemma that the dit paif$,Bs) which appear in the factorization
of f as in Theorem 1 have at most one singularity. So the follovdefinition makes
sense: IfS is singular, then we say that it hasdex kif in the minimal resolution of
its singularities the exceptional curve which intersetis strict transform ofBg has
self-intersection—k. Otherwise, if§ is smooth then we say th& has index 1. We
note indQ) the index of §.

Lemma 12. Let f: (S, Bs) --> (S, Bg) be a strictly birational map of smooth
completions and let & § --» § --> --- --> §, = S be its factorization into elem-
entary links given by Theoreth Then the following holds
1) If B4 =0 then each Sis smooth with B = B =0,

2) If BZ> 0then each Shas at most one singularity. Furthermore

a) If S is smooth then g = Bg whereas if Sis singular the boundary of a

minimal resolution of Sis a chain of B+ 1 rational curves with self-intersections

0, —ki, =2, ..., =2) where k =ind(S);

b) Foralli =0,...,n—1the indexes of ;Sand $,; differ exactly byl and if

ind(§) > 2 and ind(§) = ind(§-1) — 1 thenind(S 1) = ind(S) — 1.

Proof. Let @, B;) be one of the intermediate dit completions, and let
fi: (5, Bj) -—> (S, Bg) be the induced birational map. SuppoSeis smooth, with
ng = BZ =d > 0 and consider as in the proof of Theorem 1 the surféceon-
taining the strict transform&; and E;j;, of the boundaries of5; and S;;;. SinceS
is smooth, the strict transform d8; in the minimal resolutionX; of f; is a (~1)-
curve. It follows that the boundary of is equal to a chain ofl + 2 curves with self-
intersections 41,—-1,-2,...,-2). If d =0 thenSj,; is again smooth Witngj+1 =0
and so, 1) follows by induction. Otherwise,df> 0 thenSj;1 has a unique singularity
and the boundary of the minimal resolution 8f,, is a chain ofd + 1 curves with
self-intersections (0:-2,...,—2). In particular,S;+1 has index 2 (see Fig. 5, (a), with
k = 2). Now we proceed by induction, assuming tt&thas exactly one singularity,
and that the boundary of the minimal resolutinof S is a chain ofd + 1 rational
curves with self-intersections (8y(k — 1), -2, ..., —=2), wherek — 1 = ind(§) > 2.
We denote byC the second irreducible component of this chain which has gelf-
intersection—(k — 1). Let S <« X; — S be the minimal resolution of the induced
birational mapS --> S. Since the strict transfornk; of Bg is a O-curve onS and
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(a)

E; Eit
Fig. 5. Boundary ofY in the proof of Lemma 12.

a (—1)-curve onX; as S is smooth, we see that there is exactly one blow-upEpn
which by definition produces the divisdf; ;. Then there are two cases:

a) If the proper base point oB; coincides with the intersection point &; and
C, then the boundary o¥ is a chain of curves with self-intersections1| —1, —Kk,
—2,...,—2), where the first three arg; and E;; andC. Thus in this case&s.; has
again exactly one singularity and has indeXthe picture is again Fig. 5, (a)).

b) Otherwise, if the proper base point &p is any other point, then the boundary
of Y is a chain of curves with self-intersectionsy;, ..., -2,—(k—1),—1,-1), where
the last three ar€, E; and E; ;. In this caseS,1 has again at most one singularity
and has index — 2 (see Fig. 5, (b)). It is smooth if and only if—1 = 2 and in this
case its boundarfs,,, which is the strict transform oE;, has again self-intersection
BéH—l =d.

The last assertion follows from the fact that by constructioe center of the blow-
up on Ej, 1 producing the next divisolE; ., does not coincide with the intersection
point of E; and Ej ;. ]

3.1.2. Triangular birational maps.

DEFINITION 13. A strictly birational map of smooth completiogs (S, Bs) -->
(S, Bg) is calledtriangular if all the intermediate surface§ that appear in the fac-
torization produced by Theorem 1 are singular.

Given a smooth pair§, Bs) with BZ > 0, it follows from Proposition 11 thas
dominates birationally a surfade which is eitherP? or a ruled surface.

First we discuss the case wheB% = 0. Then the strict transform oBs in F
still have self-intersection 0, sB is a ruled surfacep: F — D and the strict trans-
form of Bg is either a fiberF or a section ofp. Note that in the second ca%is
isomorphic toP? x P! in such a way thaip coincides with the first projection while
the strict transform ofBs is a fiber F of the second projection: up to changing the
projection we can assume thBt is a fiber, as in the first case. Then, it follows from
Lemma 12 that the notion of a triangular map coincides witht thf a link and that
every such link consists of the blow-up of a point &nfollowed by the contraction
of its strict transform. Assume now thdt: (S, Bs) --> (S, Bg) is a strictly birational
map of smooth completions, wher&, Bs) and &, Bg) dominate some ruled surfaces
p:F — D and p’: F' — D’ respectively. TherB3 = 0, we can assume that the strict



AUTOMORPHISMS OFOPEN SURFACES 767

P

d—1

Fig. 6. Minimal resolution of a triangular map.

transforms ofBs and Bg are fibers ofp and p’ respectively, and the birational trans-
formation --> F’ induced by f consists of elementary transformations between ruled
surfaces. It follows thatf preserves thé!-fibrationsp: S— D andp’: S — D’ in-
duced by these rulings hence induces an isomorphisty = S\ Bs - V' = S\ Bg

of P*-fibered quasi-projective surfaces

V=S\Bs—?>v/=g\Bg

p\vl lp’lv/

D\ p(Bs) —— D"\ p'(Bs).

Next we consider the case of a triangular map(S, Bs) --» (S, Bg) between
smooth completions witrBé = Bé =d > 0. Note that sinceBs and Bg are smooth
rational curves, it follows form Noether's lemma that thefacesS and S are rational.
We deduce from the description given in the proof of Lemma Hat the total trans-
form of Bs in the minimal resolutionX of ¢ is a tree of rational curves with the dual
graph pictured in Fig. 6.

Here Eq and E¢’ = E,, denote the strict transforms ds and By respectively, the
two boxes on the left represent chains lof 2 rational curves with self-intersection
(—2), and the one on the right a chaid of d — 1 such curves. Note also that the
proper base point of coincides with the proper base point of the first elementary
link S= & --> § while the one of its inverse coincides with the proper basetpaf
the inverse of the last on&, ; --» S, = S (see Corollary 7).

Let §: X > Sands’: X — S be the morphisms given by the smooth contractions
of the sub-treeH UH' U Ey andH U H' U Eg ontoq = EoNC andqg = Ey' N C.
Since S and S are rational andE? = 0 and Ej? = 0 on S and S, it follows from
Riemann—Roch theorem that the complete linear systd&gisand |Ey’| are base point
free and defineP-fibrations 5: S — P! and 5’: § — P! both having the image of
C as a section. Note further that the image®fin S and § is a proper subset of a
fiber of 5 and o’ respectively: indeed, if not empty, the image @Bfhas negative defi-
nite self-intersection matrix and hence cannot be equal fidl diber of a PX-fibration.
By contracting the remaining exceptional divisors, we dedt tEq| (resp. |Eq’|) co-
incides with the strict transform o8 (resp.é’) of the rational subpenciPz) C |Bsg|
(resp.P'p-1) C |Bgl) consisting of curves having local intersection numberhwBis
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(resp.Bg) at B(¢) (resp.B(¢~1)) equal tod. Equivalently, the fibrationg and p’ co-
incide respectively with the minimal resolution of the caial mapsp: S --> P! and
p': S --> P! defined byPpy) and P'sy-1). These two maps restrict o = S\ Bs
and V' = S\ Bg to quasi-projectiveA!-fibrations p|y: V — A = P!\ p(Bs) and
oV — Al =P\ p/(Bg), i.e., surjective morphisms with general fiber isomorphic
to the affine lineAl.

The birational mapp: S--> S lifts to ¢: S--> S mappingS\ Eq isomorphically
onto S\ Ey/, havingq as unique proper base point while its inverse haas a unique
proper base point. Since the total transforms$Egfand E;, in X coincide, the liftedP*-
fibrationspos and 3’08’ on X coincide. This implies thap restricts to an isomorphism
of Al-fibered quasi-projective surfaces

V =S\ Bs= 5\ r1(By) ? V' =S\ Bg = 9§\ 17 Bs)

ﬁ\vl lf”\v'

Al = Al

wheret: S— Sandt’: § — S denote the contraction & and the right chairD of
d — 1 curves with self-intersectior2 pictured in Fig. 6 above.

A birational mapé: S--> § restricting to an isomorphism of!-fibered surfaces
as above is called &ibered modification(see also [5, 2.2.1]).

In general, if §, Bs) is a smooth completion witﬂBg =d> 0 andp is a point of
Bs then the base locus of the linear subsystBpC |Bs| consisting of curves having
a local intersection number witBs at p equal tod is solved as follows. We perform
d successive blow-ups with centers on the successive staicsforms ofBs, until we
reach a surfacé& on which the strict transform 0P is equal to the complete linear
system|Eg| generated by the strict transforBy of Bs. Since Eg is a smooth rational
curve with E2 = 0, P, defines a rational pencjpp: S--> P! which restricts onV =
S\ Bs to a quasi-projectived>-fibration pply: V. — Al. This leads to the following
alternative characterization of triangular maps:

Lemma 14. For a strictly birational map of smooth completiogs (S, Bs) --»>
(S, Bs) with B = B3 > 0, the following are equivalent
a) ¢ is a triangular map
b) There exist points g Bs and g € Bg such that¢ maps the penciiP, onto the
pencil Py; If so, the points p and pare equal toB(¢) and B(¢™1) respectively.
c) ¢ maps the pencilPg) onto the pencirPg( 1)’
d) ¢ induces an isomorphism af!-fibered quasi-projective surfac€S\ Bs, p5(s)) >
(S \ BS! ’O/B(zb’l))'

Proof. Properties c) and d) are clearly equivalent. If b)Jdeadnd the proper base
point of ¢ is distinct from p then all infinitely near base points @f are also distinct
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from p. Since¢ contractsBs, the strict transform inS of a general member oP,
has self-intersection strictly bigger th@% = B3 hence cannot be a general member of
a pencil of the formP’,. So B(¢) = p and for the same reasdf(¢~) = p’ which
proves the equivalence of b) and c¢). The fact that a triamgolap ¢: (S, Bs) --»
(S, Bg) mapsPg(4) onto Pz, follows from the above discussion.

It remains to prove that c) implies a). If c) holds then sireeand S are both

smooth, the strict transforms @s and Bg in the minimal resolutionS <- X 2 S of
¢ are both £1)-curves. Sap and ¢~* both have at leasti + 1 base points including
infinitely near ones and their firgt + 1 base points are supported & and Bg re-
spectively. This implies in turn that ando’ factor respectively through the minimal
resolutionsz: S — S andx’: § — S of the base points 0Pz and P51 and
that the induced birational map: S--> § is a fibered modification. By virtue of [5,
2.2.4], the dual graph of the total transform B§ in X looks like the one pictured in
Fig. 6 for which it is straightforward to check that all imteediate surfaces occurring
in the decomposition are singular. Thesis a triangular map. ]

The following corollary, which is an immediate consequeatéhe previous lemma,
will be frequently used in the sequel:

Corollary 15. If ¢: (S, Bs) --» (S, Bg) and ¢”": (S, Bs) --> (S, Bg) are tri-
angular maps of smooth completions wit§ B 0 and ¢, ¢” in special position then
the compositionp’ = ¢” o ¢: (S,Bs) --> (S, Bg) is either an isomorphism of pairs map-
ping B(¢) on B(¢” 1) or a triangular map withB(¢') = B(¢) and B(¢' ) = B(¢" ™).

3.2. Automorphisms of quasi-projective surfaces with smab completions.

3.2.1. Decomposition into triangular maps and normal forms Given a
strictly birational mapf: (S, Bs) --» (S, Bg) of smooth completions witiB3 = BZ >
0, Lemma 12 provides a decomposition bfinto a finite sequence

f = e p1: (S Bs) = (S Bg) —> (S, Bg) ~=> +++ -2 (S, Bs)) = (S, Bs)

of triangular maps between smooth completions. Such a deesition of f is called
minimal if there does not exist any other decomposition with sfritks tham terms.
The following proposition provides a characterization loége minimal decompositions.

Proposition 16. A composition

f = p1: (S Bs) = (S Bg) —> (S1, Bg) 2> -+ -2 (S, Bs)) = (S, Bs)

of triangular maps between smooth completions wi@szBg > 0 is minimal if and
only if for every i=1,...,n—1, the mapsy; and ¢;,, are in general position.
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Furthermoreg if these conditions are satisfiethen the following holds
a) The map f is strictly birational with3(f) = B(¢1) and B(f 1) = B(¢, 1),
b) For every other minimal decomposition

f =)0, (S Bs) = (S Bg) > (S, Bs) —> -+~ (), Bg) = (S, Bs)

of f there exists isomorphisms of pairs = ids, «;: (S, Bg) > (§,Bg),i=1,...n-1
and o, = idg, such thataj¢; = ¢ja;_1 for every i=1,...,n.

Proof. First note that by virtue of Corollary 15, the compiosi of two triangular
maps in special position is either triangular or an isommphof pairs. Therefore a
compositiongy, - - - ¢1 in which for somei the mapsp; and ¢; 1 are in special position
cannot be minimal.

Next assume thaff = ¢,--- ¢, is a composition for which any two successive
triangular maps are in general position. To prove a), up tnghmg f with its inverse,
it is enough to check that is strictly birational withB(f 1) = B(¢,1). We proceed by
induction onn, the casen = 1 being obvious. Ifn > 1 then by induction hypothesis
fno1 = ¢n_1---¢1 is a strictly birational map which contracts the cur8g to the
proper base poinp € Bg, , of ¢;%,. The curveBs, , is contracted in turn by, onto
the proper base point af,. But since¢,_; and ¢, are in general positionp is not
a base point ofp, and so, f = ¢nfn_1 contractsBs, onto ¢n(Bs, ,) = B(¢;1). This
shows thatf is strictly birational and thaB3(f 1) = B(g, ).

Now let f = ¢p,---¢1: (S, Bs) --> (S, Bg), m < n, be a minimal decompos-
ition of f into triangular maps. By Corollary 15 again, any two suciessiangu-
lar maps must be in general position. df* and ¢, were in general position, then by
a) ¢ it - oot would be a strictly birational map restricting to the identon
S\ Bg, whence orS, which is absurd. Therefore,* andg; are in special position and
it follows from Corollary 15 thaty; = ¢;¢;1: (S, Bg) --> (S, Bg) is either a triangu-
lar map or an isomorphism of pairs. Butdf is triangular, then, again by Corollary 15,
we would haveB(a;) = B(¢r?) and Bagt) = B((¢;)~1). The pairs of mapss, ¢, and
#51, a1 would then be both in general position apfl - - - g5t - - - ¢, 1 would again
be strictly birational. Sav; is an isomorphism of pairs and writing, = ¢501, which is
again a triangular map, we deduce in a similar way thgt,*: (S, Bs,) -—> (S, Bs)
is an isomorphism, that we denote by. By induction, we define)/ = ¢/a,_1 and
obtain an isomorphismy, = ¥/¢,1: (S, Bg) --> (S, Bg) forr =2,..., m. The last
relation obtained ism¢t; - ¢, =ids: (S, Bs) --> (S, Bs) from which we deduce
thatm = n, anda, = idg. Choosingag = ids we find thata¢; = ¢/ai_1 for every
i=1,...,n.

This proves on the one hand that the decompositiog: ¢ - - - ¢1 was minimal
and that b) holds for this decompaosition. ]
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DEFINITION 17. The numbet(f) of triangular maps occurring in a minimal de-
composition of a birational mag: (S, B) --> (S, Bg) of smooth completions is called
the length of f.

Corollary 18. Let f = ¢n---¢1: (S, Bs) --> (S, Bg) be a strictly birational
composition of n> 2 triangular maps. IfB(f) # B(¢1) then there exists an index
i €{2,...,n—1} such thatg; - - - ¢1 is an isomorphism.

Proof. We proceed by induction on the number of triangulapsnen the com-
position. If n = 2 then if ¢, and ¢, are in general position or i, and ¢, are in
special position and¢, is triangular then5(¢2¢1) = B(¢1) by Proposition 16 and
Corollary 15. SoB(¢2¢1) = B(¢1) unlessgp,p; is an isomorphism.

Now suppose thah > 2.

If ¢, and ¢, are in special position then eithérg, is an isomorphism and we
are done, orp, = ¢¢1 is a triangular map with proper base point equal to that of
¢1. Since f = ¢n - - @5 with B(f) # B(¢5) the induction hypothesis implies that there
existsi € {3,...,n—1} such thatg; - -- ¢, = ¢; - - - p2¢1 is an isomorphism.

If ¢, and ¢1 are in general position and eithex, - -- ¢, is an isomorphism or
B(¢n - - - ¢2) = B(p2). Then in both case® (¢ - - - pop1) would be equal toB(¢,).
S0 ¢, --- ¢2 iS not an isomorphism and its proper base point is differeamf that

of ¢,. By induction hypothesis, there exists an indgx {3,..., n — 1} such that
o = ¢j---¢2 is an isomorphism. Replacingj, by the triangular mag; ., = ¢j+1c,
we havef = ¢, - --¢j+1¢1 and we are done by induction. L]

One can think of Proposition 16 as a kind of presentation byeggors and rela-
tions, the second part saying in particular that there isrggly no relation except the
obvious ones given by Corollary 15. However, evenSf Bs) = (S, Bg) and f is the
birational map induced by an automorphism\6f= S\ Bsg, in general the triangular
maps¢; are not birational transformations between isomorphic @ma@ompletions of
V (see 84.3 and 4.4 for illustrations of such situations). né ansists in having gener-
ators that live on a particular model, one possibility is to di rule to pass from each
possible model to the distinguished or®, Bs). This is what is done in [14], where
the relations are then expressed in terms of (intricate)lgan@ated products.

Another consequence of Proposition 16 is that it enablesbtaim normal forms
for automorphisms of quasi-projective surfaces admiténgmooth completion. In the
following result, and in the rest of the paper, we shall use tbtation f¥ to denote
the conjugatey fvy 1.

Corollary 19. Let f: (S, Bs) --» (S, Bs) be a birational self-map of a smooth
completion. Then there exists a birational map of smoothptetions: (S, Bs) -->
(S, Bg) such that the conjugate ¥f has one of the following properties
a) fV is a biregular automorphism of the pa(iS, Bs),
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b) f¥ is a triangular self-map ofS, Bg) with the pair ¥, f¥ in special position
c) the pair f¥, f¥ is in general position.

Proof. Supposef is not biregular, and consider a minimal factorizatidn=
¢n --- @1 into triangular maps given by Proposition 16. If the pdirf is in spe-
cial position andf is not triangular (that isn > 2), then we consider the conjugate
fo1=¢n fon: (S 1. Bs.,) -—> (Si1, Bs,,). By hypothesisg; and ¢, are in spe-
cial position and so, by Corollary 13:1¢, is either an isomorphism or a triangular
map. Thusf, 1 = ¢n_1--- P2(p1¢n) has length at mosh — 1 and we are done by
induction. O

The existence of normal forms up to conjugacy for automaupisi of A% was first
noticed by Friedland and Milnor [10] as a consequence of dutiggorem. This was
the starting point for an exhaustive study of the possibleadyical behavior of these
automorphisms (see [3] and references therein). In péaticii g = f¥ satisfies Prop-
erty c) in the conclusion of Corollary 19 and has lengtlthen its iterateg, k € Z,
have lengthn|k|. Such a map is thus similar to a composition of generalizedordé
maps and so one can expect that these maps will always prassmotic dynamical
behavior. On the other hand, any finite automorphismvVefany one-parameter flow
f¢ of automorphisms o¥/, or more generally every automorphism contained in an al-
gebraic subgroup of Au¥() (see Proposition 21 below) always corresponds to Case a)
or b) in Corollary 19.

3.2.2. Tame automorphisms. Given any smooth completionS( Bs) of V, we
denote by Aut§, Bs) the group of automorphisms of the paB, Bs). Note that since
Bs is the support of an ample divisor dB Aut(S, Bs) is an algebraic group.

For every pointp € Bs, Corollary 15 implies that the set of triangular self-maps
¢: (S, Bs) --> (S, Bs) with B(¢) = B(¢~1) = p and automorphisms of the pai,(Bs)
fixing p is a group, which we shall denote by ¥ (Bs, p). By Lemma 14, the latter
coincides with the subgroup of automorphisms\6f= S\ Bs preserving the quasi-
projective Al-fibration pp: V. — Al induced by the rational penciP,. The groups
Tr(S, Bs, p) are not algebraic, but they are countable increasing snidralgebraic sub-
groups. More precisely, see [5, Lemma 2.2.3], there existgaidnal mapz: S --»
A? = Spec(C[x, y]) restricting to a morphism orV such that Tr§, Bs, p) is iso-
morphic to the subgroup of Aut¢) consisting of automorphisms of the form, ) —
(ax + b, cy + P(x)), wherea, c € C*, P(x) € C[x], preserving the points blown-up
by t, including infinitely near ones. For evely > 0, the set of all automorphisms
(X, y) — (ax+b,cy+ P(x)) of A% with P(x) of degree<d is an algebraic group and
those preserving the points blown-up byform of closed subgroup of it, whence an
algebraic group.
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DEFINITION 20. LetV be a quasi-projective surface admitting a smooth comple-
tion (S, Bg), let M = {(¥, P«)}aca b€ a nonempty collection of pairs consisting for
eacha € A of a birational map of smooth completions, : (S, Bs) --> (S, Bs,) and
a point p, € Bg,. An automorphism ofV considered as a birational self-méap of
(S, Bg) is called:

a) M-affine(short foraffine relatively to the models iM) if there existse such that
f¥« is an element of Au,, Bg);

b) M-Jonquiéresif there existse such thatf?« is an element of Ti®,, Bs,, Pu)-
We denote byM TA(V) the subgroup of Aul) generated byM-affine and M-
Jonquiéres automorphisms. We call it the groupAdftame automorphismef V.

This notion of tameness depends a priori on the choice of eleation M. How-
ever by taking the familyM.qn consisting of all pairs ¥, p’) where ¥: (S, Bg) -->
(S, Bg) is a birational map of smooth completions apdis a point of Bg, we obtain
a canonical intrinsic notion of tameness.

An automorphism oV with associated birational self-map of (S, Bg) is said to
be generalized affindresp. generalized Jonquiergsf f is Mcyraffine (resp.Mecar
Jonquiéeres). We denote

GTA(V) = Mcan TA(V)

the subgroup of Aul() generated by generalized Jonquiéres and generalized afiio-
morphisms. Its elements will be callggtneralized tamautomorphisms oV .

In other words, GTAY) is generated by automorphisms 9f which either pre-
serve a quasi-projectiva!-fibration V. — A! induced by a pencil of the forr®, on
a suitable smooth completion &f or extend to biregular automorphisms of suitable
smooth completions o¥/. In fact, since for an element € Aut(S, Bs) the induced
action of f on Bs ~ P! always has a fixed poinp, it follows that every general-
ized affine automorphism is also generalized JonquieresGE&(V) coincides with
the normal subgroup of AW() generated by automorphisms preservingAdrfibration
V — Al as above.

Proposition 21. Let V be a quasi-projective surface admitting a smooth cempl
tion. Then for every algebraic subgroup G Abit(V), there exists a smooth completion
(S, Bs) of V such that G is a subgroup @&fut(S, Bs) or of Tr(S, Bs, p). In particular,
every algebraic subgroup dut(V) consists of generalized tame automorphisms of V.

Proof. Let §,Bg) be a smooth completion of. By Sumihiro equivariant com-
pletion theorem [26], there exists a smooth projective aaafZ on which G acts
biregularly and aG-equivariant open embedding <— Z. The induced birational map
7: Z --> S has finitely many base points, including infinitely near oaesl similarly
for its inverse. It follows that the number of base points of ddementg of G con-
sidered as a birational self-map (S, Bg) --> (S, Bg) is bounded by the sum of the
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number of base points of and its inverse. This implies in turn that there exists a
minimal integerM(S) > 0 such that the length of any suchis at mostM(S) (in
the sense of Definition 17). The bourd(S) depends on the particular completion
we choose to realize the birational action 8 Now we choose a smooth comple-
tion (S, Bs) of V such thatM(S) is minimal. If M(S) = 0 the birational self-map
g: (S, Bs) --> (S, Bs) associated to every element & is an automorphism of pairs
and henceG C Aut(S, Bg).

Assume now thaM(S) > 1, and letg: (S,Bs) --> (S,Bs) be the birational self-map
associated to an element 6f which realizes the bount(S), that isg = Yy o- -0y
is a composition ofM = M(S) triangular maps. Leh: (S, Bs) --> (S, Bs) be the
birational self-map associated to another elemenGof

Suppose first thdt(h) > 1 and leth = ¢y 0- - -0 ¢1, wherem =1(h), be a minimal
decomposition oh into triangular maps. 1h~ andg were in general position then, by
Proposition 16y, - - -wlqbl‘l- -~ ¢-L would be a minimal decomposition @fo h=2, and
we would havel (g o h™) =1(g) +1(h) > M(S) in contradiction with the definition of
M(S). SoB(¢1) = B(h) = B(g) = B(y1), andyri0¢; ! is either triangular or biregular.
If ¥10 ¢t is triangular, then by Corollary 15 the pairs of maps 6 ¢, 1), ¥» and
#51, (Y10 ¢71) are both in general position, and we hdygoh™) = M + m—1, so
m = 1. This implies that ifl (h) > 2 theny; o ¢7* is biregular, and applying the same
reasoning tch~! instead ofh we also get thaij; o ¢, is biregular in this case. Finally
observe that in the cagéh) = 1 we havel (y1hy 1Y) = [(y1h~ty 1) < 1: indeed either
Y10 ¢1‘1 is biregular and this is clear, af; o ¢>1‘1 is triangular with base point equal
to B(¢rt) = B(y1) and soy* and y; o ¢t are in special position.

Consider now the cas€h) = 0. We claim thath fixes 5(g) = B(y1): Otherwise
g~* and gh would be in general position and we would hdyghg™) = 2/(g) > M(S),

a contradiction. It follows that/1hy; 1 is triangular or biregular in this case.

In conclusion, conjugating the grou@ by the birational mapy;: (S, Bs) --»
(S1, Bg), we obtain that (y1hy; 1) < 1 if I(h) <1 wheread (y1hy; 1) = I(h) — 2 if
I(h) > 2. SoM(S) = 1 for otherwise we would hav1(S) < M(S), in contradiction
with the minimality of M(S). This shows that all elements i@ extend to biregular or
triangular maps fronS to itself. The argument above shows that the pgint 5(Q)
is fixed by all biregular elements d& and is the proper base point of all triangular
elements inG, that is,G C Tr(S, Bs, p). O

3.3. Automorphisms of affine surfaces with smooth completizs. Here we
consider the particular case of affine surfasesdmitting smooth completionsS(Bs).
By Proposition 11, every such surface is isomorphidPto\ C where C is a line or
a smooth conic or to the complement of an ample sed@oim a Hirzebruch surface
m,: Fn - PL. As we saw before, the integer = B3 is an invariant ofV and in
fact the only invariant except in the case= 4. Indeed, by the Danilov—Gizatullin
isomorphy theorem [14], the isomorphy type as an abstrdictea$urface of the com-
plement of an ample sectidd in a Hirzebruch surface depends neither on the ambient
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projective surface nor on the choice of the section, but anlyits self-intersection. The
following proposition summarizes some of the propertiegthaf automorphism groups
of these surfaces.

Proposition 22. For an affine surface yadmitting a smooth completiofs, Bs)
with BZ = d > 0, the following holds
1) If d <4 then every automorphism of; V6 generalized tamend one ha®ut(Vy) =
M TA(Vy) for a finite family M of completions. In particularAut(Vy) is generated by
countably many algebraic subgroups.
2) If d =5 then GTA(Vy) is a proper normal subgroup oAut(Vy) and it cannot be
generated by countably many algebraic subgroups.

Proof. The fact that for evergd < 4, Aut(Vq) = M TA(Vy) for a natural choice
of finitely many smooth completiond is checked in the examples in Section 4. The
second part of assertion 1) then follows from the fact groopshe form Aut@S, Bs)
and Tr(S,Bs, p) are generated by countable families of algebraic subgr¢sge §3.2.2).

For the second assertion, we first need to prove that ¥ 5 then there exist
smooth completionsS, Bs) of Vy with the property that the orbits of the induced ac-
tion of Aut(S, Bs) on Bs are finite. Namely, ifd > 7 is even therVy admits a smooth
completion F», C) whereC is a section ofr,: F, — P! with self-intersectiord inter-
secting the exceptional secti@y of 7, with self-intersection-2 in (d —2)/2 > 3 dis-
tinct points. Similarly, ifd > 7 is odd, then there exists a smooth completiBn ¢) of
V whereC is a section ofr;: F; — P! with self-intersectiond intersecting the excep-
tional sectionCy of 7; with self-intersection-1 in (d —1)/2 > 3 distinct points. Since
in each case the s& N Cy is necessarily globally preserved by the induced action of
the automorphism group of the ambient pair 8~ P*, we conclude that the orbits
of this group onC are finite. The remaining two cases= 5, 6 are treated explicitly
in the examples in Section 4, 84.4.1 1-b) and 84.5 respégtive

From now on, we identifiv = Vy, d > 5, to S\ Bg for a fixed smooth comple-
tion (S, Bs) with the property that the orbits of the induced A$itBs)-action onBs
are finite.

Let us show first that GTA() cannot be generated by a countable famiB)(cn
of algebraic subgroups. By Proposition 21, to edghis associated a smooth com-
pletion (§, Bg) of V and a birational map of pairg;: (S, Bs) --> (S, Bs), such
that ¢ Gyt is contained either in Auf, Bg) or in Tr(S, Bg, pi) for some point
pi € Bs. For everyi e N, we fix a minimal decompositiog; = ¢, - - -¢i 1: (S, Bg) =
(S.0,Bs,) -=> (Snis Bs,, ) = (S, Bs) of ¥ into triangular mapsi k: (S k-1, Bs, ,) -—>
(Sk. Bs,). Letqj = B(¢ij+1) andr;; = B(¢ijj1): Observe thaty; andrj; are both
points in Bg,. Then defineC as the subset oBs consisting of points of the form
a - Haij), B71(ri;) and y~*(pi) for all possible isomorphisms of paitg  : (S, Bs) —
(S,j, Bs,), Bi,j: (S Bs) > (S,j, Bg;) andyi: (S, Bs) — (S, Bg) respectively.
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It then follows from Corollary 18 that the set of possible peo base points of
elements of Aut{) considered as birational self-maps &, Bs) is contained inC.
Note that Proposition 16 b) implies thétdoes not depend on the choice of the min-
imal decompositions of the birational mags. Our choice of §, Bs) implies that the
Aut(S, Bg)-orbit of C is countable (in fact one could show thatis already Aut§, Bs)-
invariant, but this is not necessary for the argument). Scefery pointp in its com-
plement, a strictly birational element in B(Bs, p) is an element of GTA{) which
does not belong to the subgroup generated byGhe

Next, to derive that GTA() is a proper subgroup of Au¥(), we exploit a more
precise version of the Danilov—Gizatullin isomorphy theror (see [8, §3.1], in par-
ticular Lemma 3.2 and the discussion just before) which resghat if (S, Bg) and
(S, Bg) are smooth completions &f and p’ € Bg, p”’ € Bg are general points, then
the A'-fibered affine surfaceg’|y:: V' = S\ Bg — Al andp”|y: V' = S’\ By — Al
are isomorphic. More precisely, this holds whenepérand p” have reduced fibers, a
property which is always satisfied for genenall and p”. In view of Lemma 14, this
implies in particular that for every pair of general poimsand p’ in Bs, there exists
a triangular mag: (S, Bg) --> (S, Bs) with B(0) = p and B(0~1) = p’. By virtue of
Lemma 23 below, such a map corresponds to an element of GMY if and only if
B(#) and B(®~1) belong to a same orbit of the induced action of AtBs) on Bs.
Since AutfS, Bs) acts onBs with finite orbits, it follows that we can find two general
points p, p’ of Bs in distinct orbits; a corresponding triangular self-m@aphen induces
an element of Aui) \ GTA(V). 0

In the proof of the previous theorem, we used the followin@rabterization of
generalized tame automorphisms of length 1:

Lemma 23. A triangular map6: (S, Bs) --> (S, Bs) of smooth completions is a
generalized tame automorphism of\ 8s if and only if 3(#) and B(6~1) belong to a
same orbit of the action oAut(S, Bs) on Bs.

Proof. Clearly if there exists an automorphisme Aut(S, Bs) such thatp =
B(0) = aB(61), thenab € Tr(S, Bs, p), henced is generalized tame.

Conversely, letd be a generalized tame triangular map. For any automorphism
a € Aut(S, Bg), a6 is again generalized tame and triangular hence can be nviitte
the form

n
@b =[] 9" = vngvnt - Yaguys?
i=1

where for everyi = 1,...,n, ¥;: (S, Bg) -—> (S, Bg) is a birational map of smooth
completions, andy € Aut(S, Bs) U UpieBa Tr(S, Bs, pi)- Among all such factoriza-

tions (for all choices ofx), we choose one with the property thiat= """ (I(¥i) +
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1(g) +1(¥; 1) is minimal, which implies that for all we havel(g") = 2! (y1) +1(g).
Furthermore among all factorizations realizing this miaimL, we pick one with the
minimal numbern of factors. _

Now if a composition of the forng = ]_[iJO=i0 gi‘/", where 1<ig < jo < n, were an

isomorphism, then for alkk > j, we could write

0B = BB lGB = B .

So we could shift theg all the way to the left, without increasing sincel(yy) =
(B~ 1Y), and this would contradict the minimality @f. Thus we can assume that no
composition of the form ]_[ij":io g’ is an isomorphism, or in other words that
I( ijiiogi‘”‘) > 1. Takingip = jo we obtain in particular that ng” is an isomorphism.
We deduce from Corollary 7 thaf(g") = B(y; 1) if ¢ is not an isomorphism, and
B(g") = vi(B(gi)) otherwise. We also observe that in both caBeg"") = B((g"")™).

Now we check that we are in position to apply Corollary 18. cBirwe already
know that no composition of the forrﬁ[ijiio gi‘p' is an isomorphism, and sindegi‘/") =
2(i) + I(g), it remains to exclude the existence of two indeXgs> ip such that
g}/;’“ = fh with f, h in general position ang = h ]_[ij":’io1 gi‘”i an isomorphism. In such
a case we would have

jo jo—1
[[o" =tp=n"ppthip = (1'[ g ‘)ﬂ‘lhfﬂ-

i=ip i=ig

But on one hangg—thfg = (8~th) fh(h=1g) = (1) g;”‘)_lg}i“’( g is a con-
jugate of gj,, and on the other hantl, f are in special position. S&(8~thfB) =
[(hf) < I(fh), in contradiction with the minimality oL.

Therefore, it follows from Corollary 18 and the observatiorade on the proper

base point ofg” that for allip =2, ..., n:
" n ig—1 -1 "
B(gio'o) = B(l_[ gi i) and B((l_[ gi i) ) — B(glolgll)
i<io i—1

Furthermore if[[,'g”" and ]_[i”:iogi‘/" were in general position for some indéx
then by Corollary 7 we would have

()= (L) () =
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in contradiction with the fact thaté is triangular. So all such compositions are in spe-

cial position, and we obtaiij?(gi'g‘o) = B(g.'”‘o’l). Finally B(gn") = B(g‘fl), and we have

B(9) = B(g}*) = B(g!") = BO ™) = aB@7Y). 0

4. Examples

Here we illustrate our algorithm by describing the autorhism groups of affine
varieties admitting a smooth completion with bound&y of self-intersection at most
6. We first check that we recover the well-known structurehaf automorphism group
of A%, Then we consider the case of the affine quadric surfate P\ A started
in Section 1 for which we recover in particular the descaptiof its automorphism
group given for instance in [21]. We briefly discuss the catd¢he complement of
a smooth conic inP2 which is similar. As a next step, we describe the situation fo
affine surfaces admitting smooth completions with bouregadf self-intersection 3 and
4 for which two new phenomena arise successively: the exst®f non isomorphic
Al-fibrations associated to rational penciy with proper base point on the boundary,
and the existence of non isomorphic smooth completions dfengaffine surface. We
observe that all these examples share the common propextythbir automorphisms
are tame. Finally, we consider the more subtle situationaffifie surfaces admitting
smooth completions with boundary of self-intersection 8 &nfor which we establish
the existence of non-tame automorphisms.

4.1. Automorphisms of A2, P? \ {smooth conig and of the smooth affine
quadric surface.

4.1.1. The affine plane. Here we derive Jung’s Theorem from the description
of the triangular maps which appear in the factorization of aautomorphism ofA2
(see also [20] and [23], which contain proofs of Jung's Theoderived from the phi-
losophy of the (log) Sarkisov program). We let

A% = Spec(C|u, v]) = P?\ Lo = Proj(C[x, vy, Z]) \ {z = 0}

with (u, v) = (X/z, y/2z), and we define the affine and Jonquiéres automorphisms with
respect to this unique completion, with the choice mf = [1 : 0 : 0] (see Defin-
ition 20). The restriction taA? of the rational pencilp: P? --> P! generated byl

and the liney = 0 coincides with the second projection, pA? — Al. Since the pairs
(P?,L) wherelL is a line are the only smooth completionsAf, our algorithm leads to

a factorization of an arbitrary polynomial automorphisgimof A? into a finite sequence

of triangular birational maps; : (P2, Li_;) --> (P2, L;), where theL; are lines. These
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maps are obtained as sequences lof-22, ki > 2, elementary links as in Theorem 1
of the form

(P? Li—1) --> (P?(2), By) -—> -+ - =—> (P?(K;), B—1) ——> - -+ -—> (P*(2), Ba—3)
——> (]PZ, Li)

whereP?(d) is the weighted projective plari2?(d, 1, 1), obtained from the Hirzebruch
surfacery: Fq — P! by contracting the section with self-intersectien, and each in-
termediate boundary is the image by the contraction of a filfety. Since Autf?)
acts transitively on pairs consisting of a line and a poinit,ofve may associate to each
¢ two isomorphisms of pairg; : (P?, Lg) — (P?, Li_1) and g : (P, L) — (P2, L;),
which map p, = [1 : 0: O] respectively onto the proper base points¢pfand qbi_l.
Then the induced birational maﬁflqsi a; restricts onA? to an automorphism commut-
ing with the second projection. Thus eagh'¢i; is a triangular automorphism o2

in the usual sense (but in this paper, we prefer to use theirtelogy “Jonquiéres”,
since we reserve “triangular” for a more general notion)u§levery automorphism of
A? is M-tame with respect to the familjt = {(idp2, p»)} and via Proposition 16, we
recover the classical description of the automorphism groluA® as the free product
of its affine and Jonquiéres subgroups amalgamated alomgitibersection. We also
recover via Proposition 21 another classical fact: anytatje subgroup of Auk?) is
conjugated to a subgroup of affine or Jonquiéres automarnshis

4.1.2. The smooth affine quadric surface. The structure of the automorphism
group of the smooth affine quadric surfa = SpecC[x, vy, z]/(xz — y(y + 1)) is
similar to that of the affine plane. Via the open embedding

Q — Fo = P! x P! = Proj(C[up : ui]) x Proj(C[vo : v1]),
XY, 2= (x:yL[x:y+1)=((y+1:2,[y:2),

we identify Q with the complement of the diagon&ly = {Ugv; — uyvg = 0}. The ra-
tional pencil onFy generated byDgy and the union of the two rulegi; = 0} U{v; = 0}
has a unique proper base poiot= ([1: 0], [1: 0]) and the restriction t&@Q of the cor-
responding rational map: Fy --> P! coincides with theAl-fioration pr: S — AL
The minimal resolutionX — F, is obtained by blowing-up two times the point
with successive exceptional divisofs and Cy. The surfaceX then dominates the
Hirzebruch surfacer;: F, — P! via the contraction of the strict transforms faf; = 0}
and {v; = 0}. Since PicQ) ~ Z, it follows from Proposition 11 that the pair&y, D)
where D is a smooth curve of type (1, 1) are the only possible smoothpbetions
of Q. Proposition 16 and the description of the resolution aingular maps given in
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83.1.2 lead to a decomposition of every automorphismQofnto a sequence of tri-
angular maps

¢ : (Fo, Dj_1) ——> (P(2), By) -—> -+ -—> (P?(K)), Bg_1) ——> - - - (P?(2), Bx3)
--> (Fo, Dy)

where the projective surfac®?(d) is obtained from the Hirzebruch surfaeq: Fy —
P!, with negative sectiorC,, by first blowing-up two distinct points in a fibeF \ Co
of Fq — P! and then contracting successively the strict transform& afnd Co. The
intermediate boundaries are the images by these contaatia fiber F’ of Fy distinct
from F. Remark thatP?(d) dominates the weighted projective plaRé&(d) via a single
divisorial contraction, hence the notation.

Since AutlFp) acts transitively on the set of pairs consisting of a smantive of
type (1, 1) and a point on it, we may associate to egclwo isomorphisms of pairs
a;: (Fg, Do) — (Fo, Di_1) and Bi: (Fo, Do) — (o, D;j), which mapps, = ([1:0],[1:0])
respectively onto the proper base points¢gefand ¢; 1. Thus the induced birational
map B 1gie; restricts onQ to an automorphism commuting with the!-fibration pr,.
Such automorphisms come as the lifts via the morphisg: [ — A? of Jonquiéres
automorphisms ofA? of the form ¢, y) — (az, y + zP(2)), or the form ¢, y) —
(az, —(y + 1) + zP(2)) wherea € C* and P(2) is a polynomial. Every automorphism
of the second family is obtained from one of the first family dymposing with the
affine involution g, y) — (z, —(y + 1)) of A2 which lifts to the involutionQ induced
by the “symmetry” with respect to the diagonBly in P* x P1. We recover in this
way the presentation given in [21] of AM] as the amalgamated product of AHf] =
Aut(Fo, A)lo and Aut@, pr,) = Tr(Fo, A, Px)|q over their intersection. In particular,
similarly as in the case oA?, we have AutQ) = M TA(Q), with respect to the fam-
ily M = {(idr,, Po)}. Proposition 21 says in turn that every algebraic subgroup o
Aut(V) is conjugated to a subgroup of AG) or Aut(Q, pr,). For instance, every al-
gebraic action of the additive groug, on Q is conjugated to an action preserving the
fibration pr,.

4.1.3. The complement of a smooth conic.Since the automorphism group of
PP? acts transitively on the set of pairs consisting of a smodathicc and a point of
it, every smooth pair K2, C) where C is a smooth conic is isomorphic t@%, Co)
where Co = {yz— x? = 0}, and every rational penciP, associated to a point o€
is conjugated tdP,, generated byCo and Ao where Lo denotes the tangent G, at
the point po = [0: 0: 1]. The corresponding\!-fibration q = pp|v: V = P?\ Co —
Al has a unique degenerate fibleg NV, of multiplicity 2. The automorphism group
of V is then the amalgamated product of Af){ = Aut(P?, Co)lv and Aut{V, q) =
Tr(P?, Co, po)|v over their intersection. Again, we have A= M TA(V), for M a
collection consisting of a uniqgue model. The interestedleeaan find more details in
[22, §1.1].
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4.2. Complement of a section with self-intersection 3 ii¥;. By Proposition 11,
a smooth completion ofg, Bs) of an affine surfac® with B3 # 1,4 is of the form¥,, C)
whereC is an ample section. Sindg3 is an invariant ofV, we see that if83 = 3 the
only smooth completions of are pairs 1, C) whereC is a section of self-intersection
3. If we identify r1: F; — P! with the blow-upo of P? = Proj(C[Xx, y, Z]) at the point
g = [0 : 1: 0] with exceptional divisoICy and denote by, the strict transform of the
line {z = 0} C PP?, then every such sectioB is the strict transform of a smooth conic
in P? passing througly. The automorphism group d; acts transitively on such sec-
tions and so, every smooth completion\6fis isomorphic to ¥1, Do) where Dy denotes
the strict transform of the conifyz — x> = 0} C P? tangent to the lindz = 0} at
g. The automorphism group of the palifi( Dg) acts onDg with two orbits: the point
P = Do N Cy = Dy N Fy and its complement. This implies in turn that every ra-
tional pencilP, associated to a point oDg is conjugated either t®,_ or to Pp, where
po = o ([0 : 0: 1]). Both of these pencils have a unique singular memberistimg
of the divisorCy + 2F, in the first case andl + Fy whereL and F, are the respective
strict transforms of the linesy = 0} and{x = 0} of P2 in the second case. The induced
Al-fibrations onV =~ F; \ Do are not isomorphic: the one induced By_ has a unique
degenerate scheme theoretic fiber which consists of theawfitwo affine linesCy NV
andF, NV whereF,, NV occurs with multiplicity 2, while the one induced B, has
a unigue degenerate fiber consisting of two reduced affieslimV andFoNV. In par-
ticular we see from Lemma 14 that any triangular nvap> V is either in Tr1, Do, Poo),
or up to left-right composition by automorphisms &% ( Do), in Tr(F1, Do, po).

Now given an automorphism of considered as a birational self-mdpof (F1, Do)
with decomposition

f=¢no---0¢1: (F1, Do) = (S, Bg) --> --+ -—> (§, Bg) -——> -+~
--> (&, Bs,) = (F1, Do)

into triangular maps, we can find isomorphismeg: (F1, Do) — (S-1, Bg_,),
Bi: (F1, Do) > (S, Bg), i =1,...,n such that for every = 1,...,n, ¥i = B 1pi;
is an element of either TF(, Do, po) or Tr(F1, Do, Pso). Writing f as

f = Bnnlon  Bnoa) - - - Bovra(ay 1) Yriey

wherea; !, By ande; 161, i = 2,...,n are elements of Aufy, Do), we conclude
that Aut(V) is generated by Aul;, Dg), Tr(F1, Do, po) and Tr{F1, Do, p)- In other
words Autl/) = M TA(V) for the family M = {(idg,, Po), (idr,, Poc)}. Remark that in
this case we cannot use a single model anymore.

4.3. Complement of a section with self-intersection 4 irf,. Here we con-
sider the case of an affine surfa¥e admitting a smooth completion by a smooth ra-
tional curve with self-intersection 4, and which is not isophic to the complement of
a conic inPP2. According to Proposition 11, the corresponding paBsBs) are either
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Model 1

Fig. 7. The three models of pencils with their resolutione(th-
dex of the exceptional divisorg; corresponds to their order of
construction coming fronf,).

(Fo, B) where B is an arbitrary smooth rational curve with self-intersectd (which is
automatically a section with respect to one of the two rd)ngr (F,, B) where B is

a section of thePl-bundle structurer,: F, — P1. First we review these smooth com-
pletions S, Bs) with a particular emphasis on the rational penéils related with all
possible triangular elementary maps that can occur in thrfaation given by Prop-
osition 16. Given such a penci,, we leto: S— S be the minimal resolution of the
corresponding rational map,: S--> P. The last exceptional divisor extracted by
is a sectionC of the inducedP!-fibration pyo : S — P! and one can prove (see [5],
Section 2) thatS dominatesr;: F; — P! through a uniquely determined sequence of
contractionst: S— F; in such a way that the general fibers @fo coincide with that
of m17 and that the strict transform,(C) of C coincides with the exceptional section
of my: F; — P! with self-intersection—1. We will use this point of view to give a
uniform description of the different pencils involved: seig. 7.
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4.3.1. The case Ky, B). With the bi-homogeneous coordinates introduced in
84.1.2, every pairKp, B) where B is an irreducible curve witlB? = 4 is isomorphic
to (Fo, Do) Where Dg = {u?vo — ugv; = 0}. Letting Co = {vo = 0} and Fp = {ug = 0}
we haveDgy ~ Cy + 2F,. The automorphism group of the paiFo( Dp) acts onDg
with two orbits: the pair of pointdpy, p,.} = {([0: 1], [0: 1]), ([1: 0], [1:Q])} and
their complement. This implies in turn that there exist otlyo models of rational
pencils Py up to conjugacy by automorphisms dfo( Do), say Py, and Pp, where
p; = ([1:1],[1:1]). They can be described as follows:

a) The pencilPy, is generated byDo and H + F; where H = {(uo — 3uz)(vo +
3v1) 4+ 8uiv; = 0} is the unique irreducible curve of type (1, 1) intersecting only
in p;, with multiplicity 3, and F; is the fiber of the first ruling over the point f11].
The restriction of this pencil t&/y = o\ Dg is an Al-fibration V; — A® with a unique
degenerate fiber consisting of the disjoint union of two peduaffine linesH NVy and
F1 N Vp. See Fig. 7 (model 1).

b) The pencilPy, is generated byDo and Co + 2F, (note thatCo is the tangent
to Do at the pointpp). Its restriction toVp is an Al-fibration Vo — A® with a unique
degenerate fiber consisting of the disjoint union of a reduaffine lineCy NV, and a
non reduced oné N Vg, occurring with multiplicity 2. See Fig. 7 (model II).

The fact that theA®-fibrations associated to the pencil, and Py, are not iso-
morphic implies further that every triangular self-map (Fo, Do) --> (Fo, Do) is the
product of an element of TFg, Do, py) or Tr(Fo, Do, p;) and an element of Aufg, Do).

4.3.2. The caself,, B). Letting Cy be the exceptional section af,: F, — P!
with self-intersection—2, a sectionB of =, with self-intersection 4 is linearly equiva-
lent to Co + 3F,, Where F,, is a fiber ofm,. In particularB intersectsCy transversely
in a single point, which we can assume to GgN F,. We identify F, \ (Co U Fy)
to A2 with coordinatesx and y in such way that the induced ruling ok? is given
by the first projection and that the closuresHs of the level sets ofy are sections of
m, linearly equivalent toCy + 2F,, (equivalently, the closure of the cunfg = 0} in
F, does not intersedfy). With this choice,B coincides with the closure of an affine
cubic defined by an equation of the forgn= ax® + bx? 4+ cx + d. Since any auto-
morphism ofA? of the form &, y) — (AX + v, uy + P(x)) where P is a polynomial of
degree at most 2, extends to a biregular automorphisii, oft follows that every pair
(F,, B) whereB is a section with self-intersection 4 is isomorphic ¥,D2) where D,
is the closure irlF, of the affine cubic inA? with equationy = x3. Furthermore, the
automorphism group of the paiff{, D,) acts onD, with two orbits: the fixed point
P = DN Cy= D, N Fy and its complement. Again, we have two possible models
of rational pencilsP, up to conjugacy by automorphisms df>( D), say Pp, Where
Po = (0,0)C A2CF, and Pp_:

a) The pencilPy, is generated byD, and H + Fq where H ~ Cy + 2F, is the
closure inF, of the affine line{y = 0} ¢ A% which intersectsD, only in po, with
multiplicity 3, and wherely = nz—l([o : 1]) C F,. lts restriction toWy = F, \ Dy is an
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Alfibration Wo — A with a unique degenerate fiber consisting of the disjoinbani
of two reduced affine line$d N Wy and Fo 1 Wp. A minimal resolution of this pencil
is given in Fig. 7 (model I).

b) The pencilP,_ is generated byD, and Cq + 3F,, (remember thaD, inter-
sectsCy transversely inp). Its restriction toW, is an Al-fibration Wo — A? with a
unique degenerate fiber consisting of the disjoint union céduced affine lin€CoNWy
and a non reduced orfe,, N Wy, occurring with multiplicity 3. See Fig. 7 (model Il1).

4.3.3. Connecting triangular maps. By the Danilov—Gizatullin theorem,
(Fo, Do) and {,, D,) can arise as smooth completions of a same affine surface- How
ever, let us briefly explain how to derive this fact directly éonstructing appropriate
triangular mapsg: (Fz, Do) --> (Fp, Dg). In view of Lemma 14 and of the descrip-
tion of the rational pencils given above, the only posdipiis that the proper base
points of such a map and its inverse belong respectively to the open orbits of the
actions of Autf,, D,) on D, and of AutlFy, Dg) on Dy. Let us construct a partic-
ular quadratic triangular mago with B(¢) = po and B(¢ 1) = p, (see Fig. 8 for
the notations).

Let S— F, be the minimal resolution of the base points of the ratioreiqi Phro
as in 84.3.2.a) above. The surfaBecan also be obtained fro? by a sequence of
blow-ups with successive exceptional divis®@s E;, E;, Ez and E4 in such a way
that curvesl and B = D, correspond to the strict transforms of a pair of linesPif
intersecting at the centar of the first blow-up. In this setting, the strict transform of
Co C T, in S coincides with the strict transform of a certain lihein P2 intersecting
B in a point distinct fromq. Let ¥ : S--> S be any fibered modification of degree
2 and letB’ be the strict transform ir§ of the second exceptional divisor produced.
Then one checks that there exists a unique smooth canie P? tangent toB in g
and toL at the pointL Nl such that its strict transform i is a (=1)-curve which
intersects transversely the strict transformsEfand B’ in general points. By succes-
sively contractingEy, ..., E;, we arrive at a new projective surfac in which the
strict transform ofB’ is a smooth rational curve with self-intersection 4 and stiat
the strict transforms ofA and E; are smooth rational curves with self-intersection 0,
intersecting transversely in a single point. Theis~ Fy and ¢ : S--> S descends to
a triangular mapy : (F., D,) --> (Fo, B’). Moreover, the proper base point ¢f* is
located at a point wher®’ intersects the two rulings transversely. So there exists an
isomorphism of pair$8: (Fg, B") — (Fo, Dg) such that®g = By : (F2, Dy) -—> (Fo, Do)
is triangular and map®p, onto Py,.

4.3.4. The automorphism group. To determine the automorphism group of an
affine surfaceV admitting a smooth completiorS( Bs) with B2 = 4 we can proceed
as follows. First we may assume up to isomorphism W¥at F, \ D,. Then given an
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§’ (model I)

Fig. 8. Quadratic triangular magq: (F2, D2) --> (Fo, Do).
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automorphismé of V we consider a minimal factorization of the associated ioinz
self-map f of (F,, D) into triangular maps

f=¢no---0¢1: (F2, D2) = (S, Bg) -—> -+ -—>(§, Bg) ——> -~
--> (S, Bs,)) = (F2, Dy)

where eachS is isomorphic either tdy or F,.

If the intermediate surfaceS; are not all isomorphic td», then we letj € {1,...,
n—1} andk € {j +1,...,n} be minimal with the property thaf; ~ S_1 ~ Fy and
S ~ F,. Replacing if necessamyj_1, ¢; and ;1 by agj_1, Bpje ! andg; 1871 for
isomorphismsx: (Sj_1, Bs ;) — (F2, D2) and B: (S, Bs)) — (Fo, Do), we may assume
from the beginning that§ _;, Bj_1) = (F2, D2) and §j, Bj) = (Fo, Do). We may
assume similarly that§_1, Bs_,) = (Fo, Do) and &, Bs) = (F2, D2). Now consider
the triangular map®; : (F2, D2) --> (Fo, Do) and ¢x: (Fo, Do) --> (F2, D). Since the
Al-fibrations induced by the penciB,_ on F, and Pp, on Fo are not isomorphic and
not isomorphic to those associated to pointsOp \ {p.} and Do \ {pp} it must be
that B(¢;) € D2 \ {p=} and B(qu‘l) € Do\ {pp} (see 84.3.1 and 4.3.2). It follows
that there exist automorphismag € Aut(F,, Dy) and gj € Aut(Fo, Do) mapping B(¢;)
onto py and B(qu*l) onto p; respectively. So replacingj_1, ¢;j and ¢;1 by oj¢;_1,
,qubjaj*l and ¢;;18; respectively, we may assume from the beginning H@t;) = po
and B(qu‘l) = p;. For the same reason, we may assume H{ak) = p; and B(¢>k‘1) =
po. Strictly speaking, in the cade= j + 1, we have to insert an automorphisme
Aut(Fo, Do) betweeng; and ¢;,1, which will play the same role agy_1-:-¢j11 Iin
the sequel. Recall that by construction, the particulangiular mapdg: (F2, Dy) -—>
(Fo, Do) constructed in §4.3.3 haS(®o) = po and B(d;?) = pj. It then follows from
Corollary 15 that®,'¢; : (F2, Dy) --> (F2, D,) is an element of Tiz, Dy, po) While
Doepy: (Fo, Do) --> (Fo, Do) belongs to Tro, Do, p;). Summing up, we can rewrité
in the form

f=n- - $s1Po [(Pod)u1 - -~ $j 1] Pol(D ) - -~ 1]
= 1O (Pop)di1 - - $j 1] Pol(®570;) - - 1]

where f’: (F,, Dy) --> (F2, Dp) has lengthl(f) < I(f) and where the sequences
(Pogk) - - - ¢j+1 and @y2¢j)- - - ¢1 only involve intermediate surfaces isomorphicRg
and F, respectively.

Now we deduce as in §4.2 tha®§’¢;)---¢1 can be written as a sequence of
elements in Auff,, D), Tr(F2, D2, po) and TrfF2, D2, p). Similarly, (®oi) - - - ¢j+1
can be decomposed into a sequence of elements iNFAUDp), Tr(Fo, Do, pp) and
Tr(Fo, Do, p;) and sorbal[(cboqbk)- -+ ¢j+1]Po can be written as a composition of elem-
ents of the conjugates of these groups dy: (F,, D2) --> (Fo, Dg). We conclude by
induction on the length that Al() = M TA(V) with

M= {(Id]Fga p0)1 (ilezv poo)! ((DO: p/o), ((DOv p;_)}
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4.4, Automorphisms of the complement of a section with selfitersection 5 in
F1. While it could seem at first glance similar to the previoussyrthis case exhibits
a new behavior which is more representative of the genetat®in: the existence of
non-tame automorphisms.

4.4.1. Possible models and associated rational pencilsin view of Propos-
ition 11 there exists only two possible types of smooth catiphs S, Bs) with
Bg =5 and S\ Bg affine: the complements of sections with self-intersecttonn
either m1: F; — P! or m3: F3 — PL.

1) In the first case, every such sectiBnis linearly equivalent taCy + 3F where
Co is the exceptional section of; and F a fiber. In particular,B - Co = 2 and with
the notations of 84.2, we have two possible pairs up to isphisms: first ¥1, D1)
where D, is the strict transform of the nodal cub®; = {x® — 22 = xyz c P? with
tangents{z = 0} and{x =0} atqo =[0: 1: 0]; and secondK;, D,) where D, is the
strict transform of the cuspidal cubit, = {x3 = z%y} c P? tangent to{z = 0} at qp.

a) The automorphism group off{, D) acts onD, with three orbits: py 2 =
Co N Fao, Po2=0"([0:0:1]) and their complement. The pendi,_, is generated
by D, andCy + 3F,, and it restricts orVg » = IF; \ D, to an Al-fibration with a unique
degenerate fiber consisting of two affine lin€s N Vg2 and Fo, N Vp 2, the second
one occurring with multiplicity 3. The penciPy,, is generated byD, and L + 2F,
whereL ~ Cp + F is the strict transform of the tangent line @ at [0: 0: 1] and
Fo = my tm1(po,2). Its restriction toVp 2 is an Al-fibration with a unique degenerate
fiber consisting of two affine lineg N Vo2 and Fo N Vo 2, the second one occurring
with multiplicity 2. Finally, for everyp € D2\ (Po,2U P,2), the pencilP, is generated
by D, and H + F, where F, = 7, Y(1(p)), andH ~ Co + 2F is the strict transform
of the unique smooth conic i®? intersectingC, with multiplicity 4 at o(p) and 2 at
go. The inducedA®-fibration onVp > has a unique degenerate fiber consisting of two
reduced affine linedd N Vo2 and Fp N Vo 2.

b) The automorphism group off{, D;) acts onD; via the dihedral group of
order 6 generated by the symmetry with respect to the ppint o —1([1:0: 1]) and
the lift of the Zs-action onC; defined bys - [x : y: 2] = [ex, e 1y : Z]. In particular,
the induced action has no open orbit.

For the pair ¥1, D;), we have two types of pencils: the first family consists of
the pencilsPy, at the pointsp.« = o 1[1:0:6)), k =0,1,2. These are gener-
ated respectively byp; and L« + 2F.« whereL .« ~ Cy+ F is the strict transform of
the tangent line tcCy at the point [1: 0: &¥] and Fu = 77 (1(pex)). The induced
Alfibrations onVp 1 = F; \ D; have a unique degenerate fiber consisting of the dis-
joint union of two affine linesL.« N Vo1 and Fx« N Vg 1, the second occurring with
multiplicity 2.

On the other hand, for every poipte D1\ {p1, p:, P2}, the pencilP, is generated
by D; and H, + Fp, where Fp = yrl‘l(nl(p)), and H,, is the strict transform of the
unique smooth conic iP? intersectingC; with multiplicity 4 at o(p) and 2 atqo if
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p € D1\ Cy or the strict transform of one of the two smooth conics irgeting C; with
multiplicity 6 at go otherwise. In each case the induc&fibration onVg ; has unique
degenerate fiber consisting of the disjoint union of two cedliaffine linesH N Vp 1
and Fp N VO’]_.

In contrast with the previous case, the description of th@awf Aut(F,, D;) on
D; implies that even though tha!-fibrations onF; \ D; induced by the pencil$p,
p € D1\ {p1, ps, P2} are abstractly isomorphic, they are no longer pairwise wgate
via elements of Auif;, D).

2) In the second cas&4{,B), a sectionB of w3 with self-intersection 5 is linearly
equivalent toCy + 4F where Cy is the exceptional section of; with self-intersection
—3 and F is a fiber of r3. Since the automorphism group B§ acts transitively on
such sections, there exists a unique mod&l D3) up to isomorphism of pairs. Fur-
thermore, the automorphism group d3( D3) acts onD3 with two orbits: the point
P = D3N Cy and its complement. The pendily_ is generated byDz and Co + 4F
where Fy, = 75 (3(pss)) @nd it restricts orWp = F3\ D3 to an Al-fibration overA?
with a unique degenerate fiber consisting of two affine lilgsN Wy and F,, N W,
the second one occurring with multiplicity 4. For every athmint p € D3 \ Poo,
the rational pencilP, is generated byD; and H + F, where Fp, = 73(3(p)), and
H ~ Cp + 3F is the unique section af3 intersectingD3 at p only with multiplicity
4. The inducedA®-fibration on W, has a unique degenerate fiber consisting of two
reduced affine linesd N Wy and Fp N W,

4.5. Automorphisms of the complement of a section with selfitersection 6
in Fo. In this case a further new phenomenon occurs: the existehemamuntably
many isomorphy types of smooth completiors Bs), only finitely many of these hav-
ing non-trivial automorphism groups. Below we only summarihese possible abstract
isomorphy types and observe what is strictly necessary tshfithe proof of Propos-
ition 22. The three types of possible models of smooth cotigple (S, Bs) of an affine
surface withB3 = 6 are o, C), (F2, C) and 4, C) whereC is each time an ample
section with self-intersection 6.

1) The caself, C): a sectionC with C2 = 6 is linearly equivalent ta«Co + 5F
where Cy is the exceptional section of,: F4 — P with self-intersection-4 and F
is a fiber ofry. Note thatC intersectsCy transversally in a unique poinp. 4. The
automorphism group adf, acts transitively on the set of such sections and, identifyi
F4 \ (Co U Fs) Where Foy = 7, (m4(Poo,4) With A? in a similar way as in §4.3, we
may assume tha€ = C, is the closure of the affine quintity = x%} ¢ A%. The
automorphism group offfy, C4) acts onC, with two orbits: the pointps, 4 = C4N Co
and its complement.

2) The caseljy, C): a sectionC with C? = 6 is linearly equivalent taCy + 4F
where Cy is the exceptional section of,: F, — P! with self-intersection-2 and F
is a fiber of 7,. Such a section intersec either in a single point with multiplicity
two or transversally in two distinct points.
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a) In the first case, up to an automorphismFafwe may assume tha = C; 1
is the closure inF, of the intersection of the quartityz® = x*} ¢ P? with A2. The
group Autf,,C, 1) acts onC, ; with three orbits: the poinp., 2 = Cp,1MNCp, the point
Po2 = (0, 0)C A? C F, and their complement.

b) In the second case, up to an automorphisnFofve may assume that =
C,.» is the closure inF, of the intersection of the quarticxyZ = x* — z*} € P? with
A2, The group Auff,, C,,) acts onC,, via the dihedral group of order 8 generated
by the symmetry with center at the poipt = [1 : 0: 1] and the lift of theZs-action
on {xyZ = x*— 7%} defined bys-[x:y:27] =[ex: ety : 7.

3) The caseKj, C): a sectionC of the first projectionrzy = pr,: Fo = P! x P!
with C? = 6 is linearly equivalent t&Cy + 3F whereCy is a fiber of ps and F a fiber
of mp. Such sections can be first roughly divided into three clsszording to the
number of fibers of the second projection which interggatvith multiplicity 3.

a) |If there exist at least two such fibers intersectthgwvith multiplicity 3 then
the pair o, C) is isomorphic to Ko, Co,0) WhereCq o = {udvo + udv; = 0}. The group
Aut(Fo, Co o) is then isomorphic taC* x Z, whereC* acts by - ([up : u1], [vo : v1]) =
([Auo : u1], [A%vg : v1]) and whereZ, exchangeslo, vy with uy, vy.

b) If there exists a unique fiber of piintersectingC with multiplicity 3, then
the pair Fo, C) is isomorphic to Ko, Co 1) where Co 1 = {udvo + u3(uo + us)vs = 0}.
Its automorphism group is isomorphic %, acting via (Lo : u1], [vo : v1]) = ([—Uo —
2u1/3: U]_], [—Uo — 4, /27 . U]_]).

c) Finally, if there is no fiber of grintersectingC with multiplicity 3 then the pair
(Fo,C) is isomorphic to a pair of the fornFg,Cy p) whereCy p = {U2(Uo -+ U1)vo+U3(Uo+
bus)v; = 0} for someb € C \ {0, 1} such that the polynomiai(t) = 2t2 + (b + 3)t + 2b
has simple roots (this last condition guarantees prectbalyC, ,, cannot intersect a fiber
of pr, with multiplicity 3). Furthermore, such a curn& , has exactly four horizontal tan-
gents at the following point®; (b) = (pi(b), gi (b)): Pi(b) = ([0: 1],[0:1]), Po(b) = ([1:
0],[1:0]), P3(b) = ([ry: 1], [rf(ra+b)/(ra+1): 1]) andPa(b) = ([r2 : 1],[r5(r2+b)/(r2+
1):1]), wherery, r, € C\ {—1} are the roots o§(t). It follows from this description that
two pairs Fo,Cyp) and Fo,Cy ) are isomorphic only if there exists a permutatior S,
such that the cross-ratios ofy(b), p2(b), ps(b), pa(b)) (resp. Gu(b), az(b), as(b), aa(b)))
and s (®), Pe(0), Pr@(), Py (®)) (resp. (D), G0, Q@) (D), do@(0)))
are equal. A direct computation implies in turn that theristsxuncountably many iso-
morphy classes of such pairs all having a finite group of aotpitism of order at most
24 and that this group is in fact trivial except for finitely nyaof these.
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