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Abstract
Let (S, BS) be the log pair associated with a projective completion of asmooth

quasi-projective surfaceV . Under the assumption that the boundaryBS is irredu-
cible, we obtain an algorithm to factorize any automorphismof V into a sequence
of simple links. This factorization lies in the framework ofthe log Mori theory, with
the property that all the blow-ups and contractions involved in the process occur on
the boundary. When the completionS is smooth, we obtain a description of the
automorphisms ofV which is reminiscent of a presentation by generators and re-
lations except that the “generators” are no longer automorphisms. They are instead
isomorphisms between different models ofV preserving certain rational fibrations.
This description enables one to define normal forms of automorphisms and leads in
particular to a natural generalization of the usual notionsof affine and Jonquières
automorphisms of the affine plane. WhenV is affine, we show however that ex-
cept for a finite family of surfaces including the affine plane, the group generated by
these affine and Jonquières automorphisms, which we call thetame group ofV , is
a proper subgroup of Aut(V).

Introduction

Smooth affine surfaces with a rich group of algebraic automorphisms have been in-
tensively studied after the pioneering work of M.H. Gizatullin and V.I. Danilov in the
seventies. Affine surfaces whose automorphism group acts with a dense orbit with finite
complement were first characterized by M.H. Gizatullin [12] in terms of the structure
of their boundary divisors in smooth minimal projective completions. Namely, except
for finitely many exceptional cases, these surfaces are precisely those which admit com-
pletions by chains of proper nonsingular rational curves. Their automorphism groups
have been studied by V.I. Danilov and M.H. Gizatullin in a series of papers [13, 14].
They established in particular that their automorphism groups can be described as fun-
damental groups of graphs of groups attached to well-chosenfamilies of projective
completions. The vertices of these graphs correspond to classes up to isomorphism of
suitable projective models of the affine surfaces under consideration while the arrows
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are determined by certain birational relations between these. It is however difficult to
extract from them more concrete geometric properties of automorphisms or the exist-
ence of interesting subgroups due to the fact that they have in general uncountably
many vertices and uncountably many edges between any pairs of vertices.

Affine surfacesV as above have the nice geometric property that they come
equipped with families ofA1-fibrations� W V ! A

1, that is, surjective morphisms with
general fibers isomorphic to the affine line. The original approach of M.H. Gizatullin
and V.I. Danilov has been recently reworked by J. Blanc and the first author [5]
with a particular focus on the interactions between automorphisms and these fibra-
tions. This led to introduce simpler graphs encoding equivalence classes of rational
fibrations from which it is possible to decide for instance ifthe automorphism group
of V is generated by automorphisms preserving these fibrations.However the meth-
ods used inloc. cit. remain close to the ones introduced by M.H. Gizatullin and V.I.
Danilov, depending in particular on properties of birational maps that are a priori spe-
cific to the 2-dimensional case.

As a step towards a hypothetical theory to study automorphisms of higher dimen-
sional affine varieties by methods of birational geometry, it is natural to try to refor-
mulate these existing results in the framework of log Mori theory. Since every smooth
affine surface admitting a completion by a chain of smooth rational curves admits in fact
such a completion by a particular chainC0, C1, : : : , Cr , r � 1, whose self-intersections
are respectively 0,a1, : : : , ar , wherea1 � �1 and ai � �2 for all i D 2, : : : , r , we
see that after contracting the curvesC1, : : : , Cr , we obtain a completion by a possibly
singular projective surfaceS with an irreducible boundaryBSD C0. So given a smooth
quasi-projective surfaceV , we would like more generally to describe the automorphism
group of V say when there exists a completionS� V where S is a possibly singular
projective surface withSnV equal to an irreducible curve. More precisely, we look for
a factorization in the framework of the log Mori theory for automorphisms ofV that
do not extend as biregular automorphisms onS.

When V admits a completion into a (log) Mori fiber spaceS, and f W SÜ S is
the birational self-map associated to an automorphism ofV , the (log) Sarkisov program
gives a factorization off into so-called elementary links between intermediate (log)
Mori fiber spaces. As already expressed in [6], the hope is thata refinement of such
an algorithm could allow to understand the structure of polynomial automorphisms of
the affine 3-spaceA3. Here we have in mind to completeA3 by the projective space
P

3, and to apply the algorithm to the birational map fromP3 to P

3 induced by an
automorphism ofA3. It seems natural to expect an algorithm which isproper, that is
where all the blow-ups and contractions occur on the boundary divisor.

A natural first step is to check if at least in the 2-dimensional case, the log Sarkisov
program satisfies this property, and so could be used to give agood description of the
automorphism groups of quasi-projective surfacesV admitting completions into log Mori
fiber spaces. But maybe surprisingly it turns out that applying the log Sarkisov pro-
gram to such a completionS does not provide a satisfactory description: In general the
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links occurring in a factorization of a birational transformation of S induced by an auto-
morphism ofV do not preserve the inner quasi-projective surfaceV (see Proposition 1).
This is not the case forA2, but it is worth noting that the phenomenon occurs for the
3-dimensional affine space: There exist some automorphismsof A3 for which the usual
Sarkisov factorization isnot proper (see [22, §1.2.3]).

This motivated the search for an alternative algorithm for which all the blow-ups
and contractions would occur on the boundary divisor. It is such an algorithm, together
with applications and examples, that we propose in this paper, the main point being a
shift in focus from the existence of completions with a log Mori fiber space structure
to the existence of completions by one irreducible divisor.This last property might turn
out to be the right one for studying automorphisms ofA

3.
Before stating our main result, let us introduce the class ofdlt completionsof a

smooth quasi-projective surfaceV : These are divisorially log terminal pairs (S, BS)
consisting of a projective completionS of V and a reduced boundary divisorBS D
P

Ei , such that the support ofBS is exactly Sn V . Also, by astrictly birational map
of dlt completionswe mean a birational mapf W (S, BS)Ü (S0, BS0) which induces an
isomorphismSn BS! S0 n BS0 and which is not a biregular isomorphism. With these
definitions, our factorization result reads as follows.

Theorem 1. Let f W V
�

! V 0 be an isomorphism of smooth quasi-projective sur-
faces, and let S, S0 be dlt completions of V and V0 with irreducible boundary divisors
BS, BS0 . Then if the induced map fW SÜ S0 is strictly birational, we can factorize
f into a finite sequence of n links of the following form

Zi

Si�1 Si

 

!

 

!

where S0 D S, S1, : : : , Sn D S0 are dlt completions of V with an irreducible boundary,
Zi is for all i D 1, : : : , n a dlt completion of V with two boundary components, and
Zi ! Si�1, Zi ! Si are the divisorial contractions associated with each one ofthe two
K C B extremal rays with support in the boundary of Zi .

The existence of the above decomposition, which was alreadyconsidered by the
authors in [9] (unpublished), is in fact a particular case ofmore general factoriza-
tion results developed later on by Y.M. Polyakova: see [24] where she reformulates
the problem in terms of relations induced by certain classesof birational maps in suit-
able categories of 2-dimensional log-terminal pairs. Thisapproach certainly provides a
nice theoretical framework for studying automorphisms of quasi-projective surfaces in
general: for instance, one can recover from it the description of M.H. Gizatullin and
V.I. Danilov in terms of fundamental groups of graphs of groups. However, it remains
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too abstract to give precise handle on the properties of these automorphism groups and
their subgroups. In our view, such a factorization result isonly a preliminary step for
the understanding of these groups, and a second crucial stepconsists in extracting from
it some particular classes of birational maps which are relevant for the study of precise
properties of these groups. For instance, in [5] the question was to decide whether the
automorphism group of an affine surface admitting a completion by a chain of smooth
rational curves is generated by automorphisms preservingA

1-fibrations. The problem
was solved by introducing two classes of birational maps called fibered modifications
and reversions, roughly characterized by the respective properties that they preserve an
A

1-fibration or exchange it to another one, and then by using an appropriate factoriza-
tion result to deduce that any automorphism can be decomposed in a finite sequence
of such maps.

Here, as an application of our factorization result, we follow a similar strategy to
describe the structure of the automorphism group of a quasi-projective surfaceV ad-
mitting a smooth completion (S, BS) with irreducible boundaryBS' P

1, a case which
is essentially complementary to the situations in which thecombinatorial methods de-
veloped in [5] give a satisfactory description. Affine surfaces of this type have been
first studied by Gizatullin and Danilov [14]: They established in particular that their
isomorphy types as abstract affine surfaces depend only on the self-intersectionB2

S of
the boundaryBS in a smooth completion (S, BS) and not on the choice of a partic-
ular smooth completionS or boundary divisorBS (except in the caseB2

S D 4 where
there are two models). They described their automorphism groups in terms of the ac-
tion of certain groups on a “space of tails” which essentially encodes the isomorphy
types of smooth completions (S, BS) of a fixed affine surfaceV . Here we follow a
different approach based on a natural generalizations of the classical notions ofAffine
and Jonquièresautomorphisms for the affine plane. Roughly, for a given affine surface
V , affine automorphisms in our sense are characterized by the property that they come
as restrictions of biregular automorphisms of various smooth completions (S, BS) while
Jonquières automorphisms are automorphisms which preserve certainA1-fibration on
V . With these notions, we obtain a kind of presentation by generators and relations
closely related to the one considered by Gizatullin and Danilov in loc. cit. and rem-
iniscent of the usual description given by Jung’s Theorem for automorphisms of the
affine plane.

It is classical that Aut(V) is generated by these two classes of automorphisms when
V is A2 or a smooth affine quadric surface and we are able to prove thatthis holds
more generally for every affine surfaceV admitting a smooth completion (S, BS) with
rational irreducible boundary of self-intersectionB2

S � 4. On the other hand, we show
that this property fails for those admitting smooth completions (S, BS) with B2

S � 5. We
also derive from our description that ifB2

S � 5 then Aut(V) is “much bigger” than the
automorphism group ofA2, in the sense that the proper normal subgroup generated by
affine and Jonquières automorphisms ofV cannot be generated by a countable family of
algebraic subgroups (see Proposition 22).
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The article is organized as follows. In Section 1, we briefly review the log Sarkisov
program and we illustrate the reason why it does not provide asatisfactory algorithm
to obtain informations about automorphism groups of quasi-projective surfaces. In Sec-
tion 2, we review the geometry of dlt completions, establishour factorization Theorem 1
and discuss some of its properties. Then in Section 3 we applyour algorithm to the case
of quasi-projective surfacesV admitting smooth completions with irreducible bound-
aries. We observe that our algorithm yields a kind of presentation by generators and
relations for the automorphisms ofV (Proposition 16) and enables to define a notion of
normal forms for automorphisms. We then consider the situation whereV is affine and
discuss the structure of the automorphism group (Proposition 22). Finally, Section 4 is
devoted to the explicit study of various examples of affine surfacesV admitting smooth
completions with irreducible boundaries which illustratethe increasing complexity of the
groups Aut(V) in terms of the self-intersection of their boundary divisors.

1. Quasi-projective surfaces with log Mori fiber space completions and the
log Sarkisov program

Many interesting quasi-projective surfaces with a rich automorphism group admit
completions into dlt pairs (S, BS) which are log Mori fiber spacesgW (S, BS)! Y, i.e.,
g has connected fibers,Y is a normal curve or a point, and all the curves contracted by
g are numerically proportional and of negative intersectionwith the divisor KSC BS.
Examples of such situations include the affine planeA2 or quasi-projective surfaces
obtained as complements of either a section or a fiber in aP

1-bundle over a smooth
projective curve. In this context, the log Sarkisov programestablished by Bruno and
Matsuki [6] gives an effective algorithm to factorize a birational map f W SÜ S0 be-
tween log Mori fiber spaces into a sequence of elementary linksfor which we control
the complexity of the intermediate varieties in the sense that at any step they differ
from a log Mori fiber space by at most one divisorial contraction. As it was established
by Takahashi [23, p. 401] for the case ofA2, it seems natural to expect in general that
given a quasi-projective surfaceV and a log Mori fiber spaceS completingV , apply-
ing this algorithm to birational mapsf W SÜ S corresponding to automorphisms ofV
would lead to a good description of the automorphism group ofV . Unfortunately, this
is not the case as it turns out in general that the birational transformations involved in
the algorithm do not preserve the inner quasi-projective surface V . In this section we
briefly review the mechanism of the log Sarkisov program of Bruno and Matsuki and
illustrate this phenomenon.

1.1. Overview of the log Sarkisov program for projective surfaces. Let
f W SÜ S0 be a birational map between 2-dimensional log Mori fiber spaces (S, BS)
and (S0, BS0). We assume further that the latter are log MMP related, i.e. that they can
be both obtained from a same pair (X,BX) consisting of a smooth surfaceX and a sim-
ple normal crossing divisorBX by running the log minimal model program. We denote
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Fig. 1. The four types of links of the log Sarkisov program.

by � W X! S the corresponding morphism and byCi � X the irreducible components
of its exceptional locus.

The algorithm depends on two main discrete invariants of thebirational map f
which are defined as follows. First, we choose an ample divisor H 0 on S0. We denote
by HS � S (resp. HX � X, etc.) the strict transform of a general member of the lin-
ear systemjH 0j. The degree� of f is then defined as the positive rational number
HS . C=(�(KSC BS) . C) where C is any curve contained in a fiber of the log Mori
fiber structure onS. For the second invariant, the fact that� is obtained by running
the log MMP implies that in the ramification formulas

KX C BX D �
�(KSC BS)C

X

ai Ci , HX D �
�HS�

X

mi Ci

we haveai > 0 for every i , which enables to define themaximal multiplicity� of f
as the maximum of the positive rational numbers�i D mi =ai .

If � > �, then the algorithm predicts the existence of a maximal extraction, that is,
an extremal divisorial contractionZ ! S whose exceptional divisor realizes the max-
imal multiplicity �. Then eitherZ is itself a log Mori fiber space, or there exists an-
other extremal divisorial contraction fromZ that brings us back to a log Mori fiber
space. These operations done, one shows that we have simplified f in the sense that:
either� went down; or� remained constant but� went down; or� and � remained
constant but the number of exceptional divisors inX realizing the maximal multipli-
city � went down. Otherwise, if� � �, the algorithm predicts that eitherS is equipped
with a second structure of log Mori fiber space for which the associated degree� is
strictly smaller, or there exists an extremal divisorial contraction fromS to another log
Mori fiber space for which� is again strictly smaller.

The four types of elementary links occurring in the factorization procedure can be
summarized by Fig. 1.
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The above program works for 2-dimensional dlt pairs (S, BS). Bruno and Matsuki
[6] also established the existence of the analogue program in dimension 3 for Kawamata
log terminal (klt) pairs (Y, BY) generalizing the original 3-dimensional version previ-
ously written down by Corti [7]. For klt pairs in any dimension, Hacon and McKernan
[15] recently gave a proof of the existence of a factorization of birational maps between
log Mori fiber spaces into sequences of links of types (I), . . . ,(IV) (the definition of
these links is slightly more complicated in higher dimension because of the presence
of isomorphisms in codimension 1). However, their description, based on the results in
[4], is much less effective and does not take the form of an explicit algorithm. In any
case, we shall see in the next subsection that anyone of thesefactorization results is in
general inadequate to study the automorphism group of an open surfaceV .

1.2. Inadequacy of the log Sarkisov program. The following criterion shows
that for a large class of quasi-projective surfacesV admitting completions into log Mori
fiber spaces (S, BS), any procedure which factors a birational mapSÜ S into se-
quences of links of types (I), . . . , (IV) between log Mori fiber spaces will affect in a
nontrivial way the inner surfaceV .

Proposition 1. Let V be a quasi-projective surface admitting a completion into a
log Mori fiber space�W S! C over a smooth projective curve C. Suppose further that
each irreducible component of the boundary Sn V has nonnegative self-intersection,
and is not contained in a fiber of any log Mori fiber space structure on S. Then a
strictly birational map� W SÜ S, cannot admit a factorization into a sequence of
Sarkisov links of type(I), . . . , (IV), each restricting to an isomorphism on V .

Proof. Since� W S! C is a log Mori fiber space over a curve, an elementary
link starting from S is necessarily of type (II), (III) or (IV). Links of type (IV)only
change the considered log Mori fiber space structure onS to another structure of the
same type. Since� is strictly birational, it cannot be factored into a sequence of links
of type (IV). Therefore, after a sequence of links of type (IV), one has necessarily to
perform a link of type (II) or (III) with respect to the log Morifiber space structure
�

0

W S! C at this step. Since by assumption the components of the boundary have
non-negative self-intersection hence cannot be contracted, we see that a link of type
(III) never restricts to an isomorphism onV . Consider now the possibility of a link
of type (II). After performing the extractionZ ! S with center at a pointq 2 S, the
morphismZ! S0 is the contraction of the strict transform of the unique fiberF of the
log Mori fiber space� 0 W S! C passing thoughq. Our hypothesis implies thatF is
not an irreducible component of the boundarySn V , and so, the link does not restrict
to an isomorphism onV .

1.3. Example. As an illustration of Proposition 1, let us consider the caseof
the smooth affine surfaceV defined as the complement of the diagonalD in P

1
� P

1.
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ai mi �i

C1 1 2 2
C2 1 4 4
C3 1 6 6
C4 2 8 4

Fig. 2. Resolution off and coefficients in the ramification formulas.

The birational map

f W (x, y) 2 A2
Ü

�

x C
1

x � y
, yC

1

x � y

�

2 A

2

preserves the levelsx � y D constant, and extends via the embedding (x, y) 2 A2
,!

([x W 1], [y W 1]) 2 P1
� P

1 to a birational map fromSD P

1
� P

1 to S0 D P

1
� P

1

inducing an isomorphism onV D P1
�P

1
n D, where D is the closure of the diagonal

x� y D 0 in A2. The unique proper1 base point of f is the point pD ([1 W 0], [1 W 0]),
and the unique contracted curve is the diagonalD. Straightforward calculations in local
charts show that we can resolvef by performing 4 blow-ups that give rise to divisors
C1, : : : ,C4 arranged as on Fig. 2. We denote byC0 the strict transform of the diagonal
D. Note thatC4 is the strict transform of the diagonal inS0.

ChoosingH 0 D D as an ample divisor onS0, the coefficientsai in the ramification
formulas

KX C BX D �
�(KSC BS)C

X

ai Ci , and HX D �
�HS�

X

mi Ci ,

are easy to compute. For themi , one exploits for instance the fact that the strict trans-
form HS of a general member ofjDj is a rational curve of bidegree (3,3) with a double
point at p and at each of the infinitely near base points off . The results are tabulated
in Fig. 2.

The maximal multiplicity is thus realized by the divisorC3 and a maximal extrac-
tion Z ! S is obtained by first blowing-up three times to produceC1, C2 and C3 and
then contractingC1 and C2 creating a cyclic quotient singularity. The boundaryZ n V
consists of two irreducible curvesC0 and C3, the latter supporting the unique singular
point on the surface. Furthermore, there exist 4 irreducible curves onZ that correspond
to K C B extremal rays:
• C3, which is the exceptional divisor associated with the maximal multiplicity;
• C0, which is the strict transform of the diagonal onS;

1By proper we mean a base point which is not an infinitely near point.
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• The strict transforms of the 2 rulesD
C

and D
�

of P1
� P

1 crossing atp.
Now the log Sarkisov program imposes to contract one of the two curvesD

C

or D
�

above (precisely: the one that was a fiber for the chosen structure of log Mori fiber
space onP1

� P

1) to reach a new log Mori fiber space. But this birational contraction
does not restrict to an isomorphism on the affine surfaceV .

However, the above computation shows that we are left with a third option which
consists in contracting the strict transformC0 of D. This is precisely the curve that our
alternative algorithm will impose to contract to get a new projective surfaceS1 support-
ing a cyclic quotient singularity along the new boundaryBS1 D C3. By construction,
the corresponding birational mapSÜ S1 induces an isomorphism on the inner affine
surfaceV but it turns out thatS1 is no longer a log Mori fiber space. Indeed, its div-
isor class group is isomorphic toZ2, generated by the strict transforms ofD

C

and D
�

.
On the other hand, one checks that these curves generate the only KCB extremal rays
on S1, each of these giving rise to a divisorial contractionS1! P

2. Note in particular
that even though it consists of a maximal extractionZ ! S followed by a divisorial
contractionZ! S1, the birational mapSÜ S1 just constructed is not a Sarkisov link
of type (II).

Summing up, Proposition 1 and the above example show that forquasi-projective
surfacesV admitting completions into log Mori fiber spaces, there does not exist any
factorization process for which each elementary step is simultaneously a link of type
(I), . . . , (IV) between log Mori fiber spaces and a birational map restricting to an iso-
morphism onV . So we cannot escape the dilemma that inevitably we have to abandon
one of these properties.

2. The factorization algorithm

Here we first review basic facts on 2-dimensional dlt pairs and discuss the geom-
etry of the boundaries of dlt completions involved in our main statement. Then we
prove main theorem 1 and discuss some additional propertiesof the factorization.

2.1. Singularities and geometry of boundaries. The fact that an automorphism
of a normal quasi-projective surfaceV extends to an automorphism of its minimal
desingularisation enables to restrict without loss of generality to the case of a smooth
quasi-projective surface. On the other hand since an extremal contraction starting from
a smooth log surface may yield a singular one, it is necessaryto allow some kind of
singularities on the projective completionsS of V . Following recent work of Fujino
[11], the widest framework where the log Mori Program is established in dimension 2
is the one of pairs (S, BS) with log canonical singularities. However, it is enough for
our purpose to work with the subclass of dlt pairs (S, BS).

2.1.1. Hirzebruch–Jung singularities. Before giving the characterization of
these pairs that will be used in the sequel, let us first recallthat an isolated singu-



756 A. DUBOULOZ AND S. LAMY

lar point p of a surfaceS is called a Hirzebruch–Jung cyclic quotient singularity of
type An,q, n � 2, 1� q � n � 1, gcd(n, q) D 1 if it is analytic locally isomorphic
to the quotient ofA2 by the action of the group�n ' Z=nZ of complex n-th roots
of unity defined by (x, y) 7! ("x, "q y). As it is well-known (see e.g. [2, p. 99]),
the exceptional locus of the minimal resolution� W S! S of p consists of a chain
of rational curvesE1, : : : , Es with self-intersectionsE2

i D �ai � �2 determined by
the expression

n

q
D a1 �

1

a2 �
1

a3 � � � �

as a continued fraction. Recall that cyclic quotient singularities are log terminal, i.e.,
in the ramification formulaKS D �

�KSC
P

ci Ei one has�1 < ci for every i . For
such singularities, one has in fact�1< ci � 0. Indeed, otherwise, we can writeKSD

�

�KSC A� B where A and B are effectiveQ-divisors supported on the exceptional
locus of � and without common components. SinceA2

< 0, it follows that KS � A D
(A � B) � A < 0 and hence, there would exist an indexi such thatKS � Ei < 0. But
then Ei would be a (�1)-curve which is absurd.

2.1.2. Dlt pairs. For a definition of such pairs in general, we refer the reader
to [18, Definition 2.8]. In our situation, [19, Proposition 2.42] combined with the local
description of log terminal singularities of surfaces which can be found in [17, see in
particular p. 57, case (3)] leads to the following equivalent definition:

DEFINITION 2. A pair (S, BS) consisting of a projective surfaceS and a nonempty
reduced divisorBSD

P

Bi such thatSn BS is smooth is called divisorially log terminal
(dlt) if the following conditions are satisfied:
• The Bi are smooth irreducible curves with normal crossings, that is each common
point of two components is a normal crossing at a smooth pointof S;
• A singular point p of S is a Hirzebruch–Jung singularityAn,q and the strict trans-

form of BS in the minimal resolution� W QS! S of p meets the exceptional chain of
rational curvesE1, : : : , Es transversally at a unique point of the initial or final curve
E1 or Es.
In particular, a dlt pair (S, BS) with irreducible boundary divisorBS is a purely log
terminal (plt) pair.

Note that the above conditions guarantee in particular thatthe total transform of
BS in the minimal resolution� W QS! S of the singularities ofS is a simple normal
crossing divisor.

2.1.3. Geometry of the boundary. Let us first introduce notations and termin-
ology that will be used in the sequel. Given a strictly birational map of dlt comple-
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tions f W (S, BS)Ü (S0, BS0) with irreducible boundaries, we denote by� W QS! S and
�

0

W

QS0 ! S0 the minimal resolutions of the singularities ofS and S0 respectively. We

denote by QS
�

 X
�

0

!

QS0 the minimal resolution of the base points of the birational map
Qf W QSÜ QS0 induced by f . Recall [1, Theorem 1.3.7] thatX and the birational mor-

phisms� , � 0 are uniquely determined up to isomorphism by the following universal
property: given another resolutionQS X0 ! QS0, there exists a unique birational mor-
phism X0 ! X such that the obvious diagram commutes. In particular,X does not
contain (�1)-curves that are exceptional for both� Æ � W X ! S and � 0 Æ � 0 W X ! S0.
This implies that if the sequence of blow-ups� 0 W X! QS0 is not empty, the (�1)-curve
produced as the last exceptional divisor of the sequence is the strict transform ofBS.
Note also that by construction the boundary ofQS and X are simple normal crossing
divisors, with each irreducible component a smooth rational curve.

The following result shows that the existence of strictly birational maps of dlt com-
pletions f W (S, BS)Ü (S0, BS0) imposes strong constraints on the boundaries:

Proposition 3. Let fW (S, BS)Ü (S0, BS0) be a strictly birational map of dlt com-
pletions with irreducible boundaries. Then the following holds:
(1) The boundaries BS and BS0 are both isomorphic toP1;
(2) S admits at most two singularities;
(3) f admits a unique proper base pointB( f ), and if S has exactly two singularities
thenB( f ) coincides with one of these singularities.

Proof. Recall (see e.g. [16, Theorem 5.2 p. 410]) that ifh W M Ü M 0 is a bi-
rational map between normal surfaces, andp 2 M is a proper base point ofh, then
there exists a curveC � M 0 such thath�1(C) D p. In our situation, sinceBS0 is the
only curve that can be transformed to a point byf �1, it follows that f has a unique
proper base pointB( f ) D f �1(BS0) 2 BS. This implies in turn thatf (BS) cannot be
equal to BS0 and so must be equal to a pointp0 D B( f �1) 2 BS0 . In particular, with
the notation above, the strict transforms on the minimal resolution X of BS and BS0

are smooth rational curves (they come either from the resolution of a An,q singularity,
or from the blow-up of a smooth point), and they are not equal.This gives (1).

Now suppose that the union of the singularities ofS and of B( f ) consists of at
least three distinct points supported onBS. Then onX, the strict transform ofBS is a
boundary component with at least three neighbors. If�

0

¤ id then the first contraction
must be the one of the strict transform ofBS, which is impossible since the boundary
divisor is simply normal crossing for all surfaces betweenX and QS0. Hence� 0 D id,
but again this gives a contradiction, since onQS0 all divisors except maybe the strict
transform of BS0 which is distinct from that ofBS must have at most two neighbors.
This proves (2) and (3).
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2.2. Proof of the factorization Theorem 1. The proof relies on the following
lemma which characterizes the possible extremal rays supported on the boundaries of
dlt completions (S, BS).

Lemma 4. Let (S, BS) be a dlt completion of a smooth quasi-projective surface V .
(1) A (smooth) rational curve C� BS with at least two neighboring components in
BS is not a KSC BS extremal ray.
(2) If C � BS is a smooth rational curve with only one neighboring component in BS

and supporting at most one singularity of S, then (KSC BS).C < 0.
(3) Let C� BS be a curve supporting exactly one singularity p of S, and denote by

C the strict transform of C in the minimal resolution of p. IfC
2
< 0 then C2

< 0.

Proof. Letn be the number of neighbors ofC in BS and let p1,:::, pr the singular
points of S supported alongC. By the adjunction formula (see e.g. 2.2.4 in [25]),
we have

(KSC BS) � C D (KSC C) � C C n D deg(KC C Diff C(0))C n

D �2C
r
X

iD1

�

1�
1

mi

�

C n,

where mi � 2 is the index of the singular pointpi , i D 1, : : : , r . This implies (1)
and (2). For (3), let� W S! S be a minimal resolution ofp and let E D E1 be the
unique�-exceptional curve that intersects the strict transformC of C. We write C D
�

�C � bE � R, KS D �
�(KS)C cEC R0 where b > 0, 0� c > �1 (see §2.1.1) and

where R, R0 are �-exceptional divisors whose supports do not meetC. The fact that
(S, BS) is a dlt pair implies thatc� b > �1 whence that 1> b. The assertion follows

sinceC2
D �

�C � C D (C C bEC R) � C D C
2
C b < C

2
C 1.

Proof of Theorem 1. Recall that we have a strictly birationalmap f W (S, BS)Ü
(S0, BS0) restricting to an isomorphismV D S n BS ' V 0 D S0 n BS0 . As in Sub-
section 2.1.3, we let� W QS! S and � 0 W QS0 ! S0 be the minimal resolutions of singu-

larities and we let QS
�

 X
�

0

!

QS0 be the minimal resolution of the base points of the
induced birational mapQf . By Proposition 3 (1) and the description of Hirzebruch–
Jung singularities given in §2.1.1, the divisorBX is then a tree of rational curves. The
irreducible components ofBX are exceptional for at least one of the two morphisms
� Æ � or � 0 Æ � 0, thus they all have a strictly negative self-intersection.Since BX is a
tree, there exists a unique sub-chainE0, E1, : : : , En D E0

0 of BX joining the strict trans-
forms E0 and E0

0 of BS and BS0 respectively. We proceed by induction on the number
nC 1 of components in this chain. The integern � 1 will also be the number of links
needed to factorizef . We use the same notation for the curvesEi , i D 0, : : : , n and
their images or strict transforms in the different surfacesthat will come into play.
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Fig. 3. The boundary divisor ofY.

To construct the first linkSD S0Ü S1, we consider the minimal partial resolution
QS YÜ QS0 of Qf dominated byX and containing the divisorE1 defined as follows:
– If Qf W QSÜ QS0 is either a morphism or has a proper base point supported outside
from E0, then E1 is one of the exceptional divisor of� , and the boundaryB

QS is a
chain of rational curves withE0, E1 intersecting in one point. In this case we put
Y D QS.
– Otherwise, if Qf W QSÜ QS0 has a proper base point onE0 then by definition of the
resolutionX, the divisorE1 is produced by blowing-up successively the base points of
Qf as long as they lie onE0, E1 being the last divisor produced by this process. We

let Y! QS be the intermediate surface thus obtained. By construction, the image of the
curves contracted by the induced birational morphismX ! Y are all located outside
E0 and the self-intersections ofE0 in X and Y are equal. The divisorBY is a chain
that looks as in Fig. 3. The wavy curves labeled “Sing” correspond to the (possible)
chains of rational curves obtained by desingularisation ofS, and the wavy curve labeled
“Aux” corresponds to the (possible) chain of auxiliary rational curves, each with self-
intersection�2, obtained by resolving the base points ofQf before gettingE1.

In both cases, we haveE2
0 < 0 on Y, since this self-intersection is the same as the

one onX. So all irreducible components ofBY have a strictly negative self-intersection.
By running the (K C B)-MMP on Y we can successively contract all the components
of the boundaryBY exceptE0 and E1. Indeed at each stepY is a minimal resolution
of the intermediate surface, and each extremity componentC of the boundary chain
supports at most one singularity: Lemma 4 ensures thatC is K C B negative and has
negative self-intersection whence generates aK C B extremal ray giving rise to a divi-
sorial extremal contraction. We note (Z, E0 C E1) the dlt pair obtained from the pair
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(Y, BY) by this sequence of contractions.

X

Y

QS QS0

Z

S S0
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�

 

!

 

!

�

0

 

!

 

!
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�

 

!

�

0

 

!

 

!

f

By construction,Z dominatesS via the divisorial contraction of theK C B extremal
curve E1. Again by Lemma 4,E0 generates aK C B extremal ray inZ, and E2

0 < 0
on Z. So there exists aK C B divisorial extremal contractionZ ! S1 contractingE0

and yielding a new dlt pair (S1, BS1) with reduced boundaryBS1 consisting of the strict
transform ofE1. We obtain the first expected link and the mapf W SÜ S0 factorizes
via a birational mapf1 W S1Ü S0.

Z D Z1

SD S0 S1 S0

 

!

 

!

 

!

 

!

f

 

!

f1

Furthermore, the minimal resolutionX1 of the induced birational mapQf 1 W QS1Ü

QS0 between the minimal desingularisations ofQS1 and QS0 induced by f1 is dominated by
X. More precisely, sinceE0 is the only possible (�1)-curve onX which is exceptional
for both induced morphismX ! QS1 and X ! QS0, X1 is either equal toX if E2

0 � �2
or is obtained fromX by first contractingE0 and then all successive (�1)-curves oc-
curring in the minimal resolution of a singular point ofS supported onBS and distinct
from the proper base point off (see Fig. 3 above). It follows that the chain associ-
ated to f1 W S1 Ü S0 as defined at the beginning of the proof consists of the curves
E1, : : : , En D E0

0 hence has lengthn. We conclude by induction that we can factorize
f into exactlyn links.

REMARK 5. A by-product of the proof above is the following property of the
intermediate surfacesZi with two boundary components that appear in the theorem:
each one of the boundary component supports at most one singularity. Note also that
neither Lemma 4 nor the above proof tell something about the possibleKZi C BZi ex-
tremal curves on these intermediate surfaces that do not belong to the boundary: in the
example given in §1.2 above, we have fourK C B extremal rays but only two of them
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were supported on the boundary.

We introduce a concept that will prove useful in the next section.

DEFINITION 6. If f W (S,BS)Ü (S00,BS00) andgW (S00,BS00)Ü (S0,BS0) are strictly
birational maps of dlt completions, we will say thatf and g are in special positionif
B( f �1) D B(g) and in general positionotherwise.

It follows in particular from the construction of the factorization f D
fn � � � f1W (S, BS)Ü (S0, BS0) given in the proof above that for everyi D 1,: : : ,n�1, fi
and fiC1 are in general position. In general, see Remark 8 below, the factorization
into elementary links of a composition of two strictly birational maps of dlt com-
pletions with irreducible boundaries does not coincide with the concatenation of the
factorizations of these maps. The following corollary provides however a sufficient
condition for this property to hold. In particular the condition is satisfied when all
the surfaces into play are smooth.

Corollary 7. Let f W (S, BS)Ü (S00, BS00) and gW (S00, BS00)Ü (S0, BS0) be bi-
rational maps of dlt completions with irreducible boundaries. If f and g are in general
position and at least one of the two pointsB(g) or B( f �1) is a smooth point of S00 then
the factorization of gÆ f into elementary links given byTheorem 1is equal to the con-
catenation of the factorizations of f and g. Furthermore, one has thenB(gÆ f )D B( f )
and B((g Æ f )�1) D B(g�1).

Proof. Up to replacingf and g by their inverses, we may assume thatB(g) is
a smooth point ofS00. As before we denote byQS the minimal desingularisation ofS
(same withS0, S00) and by Qf , Qg the induced birational maps. The hypothesis implies
that all the base points ofQf �1 and Qg including infinitely near ones are distinct so that

a resolutionQS
�

 X
�

0

!

QS0 of the birational mapQSÜ QS0 induced byg Æ f is obtained
from QS00 by simultaneously resolving the base points ofQf �1 and Qg:

X

QS QS00 QS0

S S00 S0

 

!

�

 

!

 

!

�

0

 

!

Qf
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�

 

!

Qg
 

!

 

!

�

0

 

!

f

 

!g

The surfaceX dominates the minimal resolutionX f of Qf and Xg of Qg. We denote
by E0, E00, E000 the strict transforms ofBS, B0S and B00S in X (or in X f , Xg). By con-
struction the chain joiningE0 to E00 in X is the union of the strict transform of the
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Fig. 4. The counter-example in Remark 8 (? denotes a singularity,
numbers are self-intersections).

chain joining E0 to E000 in X f with the strict transform of the chain joiningE000 to E00
in Xg. Since BS00 is contracted byf �1, its strict transformE000 in X f has negative self-
intersection. Furthermore sinceB(g) is a smooth point ofS00, the lift of g to X f has
a proper base point onE000 and so the strict transform ofE000 in X has self-intersection
� �2. Since E000 is the only curve that could have been a(�1)-curve simultaneously
exceptional for� and � 0, we conclude thatX is a minimal resolution ofg Æ f .

Now the first part of the assertion follows directly from the construction of the fac-
torization. The second part follows from the fact that sincethe imageB(g) 2 BS00 of BS0

by g�1 is distinct fromB( f �1), the imageB(g Æ f ) of BS0 by (g Æ f )�1 coincides with
the imageB( f ) 2 BS of BS00 by f �1. For the same reason,B((g Æ f )�1) D B(g�1).

REMARK 8. The assumption thatB( f �1) or B(g) is a smooth point ofS00 im-
plies in particular thatBS00 supports at most a singular point ofS00 (Proposition 3, as-
sertion (3)). So the only situation in which the conclusion of the Corollary above could
fail is when BS00 supports exactly two singular points which are the proper base points
of B( f �1) andB(g) respectively. The following example, which was pointed out to us
by the referee, shows that this phenomenon can indeed occur.

ConsiderSD P2, with boundaryBS equal to a line. We construct a surfaceX by
blowing-up three points: first a point onS producing an exceptional divisorE; then
the intersection pointE \ E0 (where E0 is the strict transform ofBS) producing the
exceptional divisorE00; and finally blowing-upE0 \ E00 producing E000 .

We construct a surfaceS00 from X by contracting the curvesE, E0 and E00; simi-
larly we constructS0 by contractingE, E0 and E000 . These surfaces are singular, we

have QS00 D X, and QS0 is the surface obtained fromX by contractingE0 and E000 . Denote
by f , g the birational mapsSÜ S00 and S00Ü S0 (see Fig. 4). Then the factorization
of gÆ f is not the concatenation of the factorizations off and g. What’s going wrong
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here is thatX is not a minimal resolution ofg Æ f , indeedE000 is a (�1)-curve onX
which is exceptional for both� and � 0.

2.3. Additional properties of the factorization. Noting that the definition of
the maximal multiplicity� (see §1.1) makes sense even whenS is not a Mori fiber
space, we observe that our algorithm retains one aspect of the log Sarkisov program
of Bruno and Matsuki [6], namely the fact that the first divisorial contraction involved
in each link is a maximal extraction:

Proposition 9. The birational morphism Z! S with exceptional divisor E1 con-
structed in the proof of the theorem is a maximal extraction.

Proof. A maximal extraction (see [23, Proposition 13-1-8] and [6, p. 485] for the
logarithmic case) is obtained from a smooth surface which dominatesS and S0 by a
process of the (K C B)-MMP. So we may use the surfaceX from the proof of the
theorem. The precise procedure consists in two steps (we usethe notations� and H
that have been defined in §1.1): Running first a (K C BC (1=�)H )-MMP over S until
we reach a log minimal model, then running a (K C B)-MMP over S; the last contrac-
tion gives a maximal extraction. The crucial observation isthat each extremal diviso-
rial contraction of the log MMP in the first step is also a contraction for the genuine
(K C B)-MMP. The fact that we are running a log MMP overS guarantees that the
only curves affected by the procedure are contained in the boundary. By Lemma 4, as
long asE1 admits two neighboring components (E0 and another one), it cannot corres-
pond to aK C B negative extremal ray. Remark also that ifBS supports a singularity
q which is not a proper base point forf , then all exceptional divisors of the resolution
of q have multiplicities�i D 0 and thus are contracted in the first step. It follows that
the maximal extraction we constructed, which is the last divisorial contractionZ ! S,
must haveE1 as exceptional divisor.

REMARK 10. In contrast with the log Sarkisov algorithm of Bruno and Matsuki,
we did not assume from the beginning that the pairs (S, BS) and (S0, BS0) were log-MMP
related. In our situation, this property is automatic: thisis probably a well-known fact,
but we can also obtain it as a by-product of the proof of Theorem 1. Indeed, letting
againE0, : : : , En be the subchain of rational curves in the boundaryBX of X defined in
the proof, Lemma 4 guarantees that all the irreducible components ofBX except the ones
contained in that chain can be successively contracted by a process of the (KCB)-MMP.
The surfaceW obtained by this procedure has boundaryBW D

Pn
iD0 Ei and dominates

both S and S0 by a sequence ofK C B divisorial contractions.
On the other hand, the elementary example of the identity mapof A2 viewed as

a rational map fromP1
� P

1
Ü P

2 with a unique proper base pointp located at the
intersection of the two rules at infinity and for which the blow-up of p is not aKCB ex-
tremal contraction shows that arbitrary dlt completions ofa given quasi-projective surface
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need not be log-MMP related in general. So if one wants to extendour factorization re-
sult to pairs with reducible boundaries, it becomes necessary to at least require from the
very beginning that the pairs under consideration are log-MMPrelated.

3. Quasi-projective surfaces with smooth completions

In this section we derive from our factorization theorem a general description of the
automorphism group ofV whenV admits a smooth completion (S, BS) with irreducible
boundaryBS' P

1. In what follows, such pairs (S, BS) are simply referred to assmooth
completions, the inner smooth quasi-projective surfaceV D Sn BS being implicit.

Smooth completions (S, BS) for which B2
S < 0 can be quite arbitrary since for in-

stance any blow-up� W S! S0 of a point on a smooth projective surfaceS0 with excep-
tional divisor BS gives rise to such a pair (S, BS). In contrast, the possible structures
of pairs (S, BS) with B2

S � 0 are much more constrained, as summarized by the follow-
ing proposition:

Proposition 11. If (S, BS) is a smooth completion with B2S � 0, then after the
contraction of finitely many(�1)-curves contained in V, we reach a pair of the follow-
ing type:
(1) (P2, B) where B is either a line or a smooth conic,
(2) (F , B) where pW F ! D is a ruled surface over a smooth projective curve D and
where B is either a fiber or a section. Furthermore, if B2

¤ 0 thenF is a Hirzebruch
surfaceFn, for some n� 0, and B is a section.

Proof. Up to replacing (S, BS) by a pair obtained by successively contracting all
possible (�1)-curves inSn BS and having the strict transform ofBS for its boundary,
we may assume from the very beginning thatS n BS does not contain a (�1)-curve.
Since (KSC BS) � BS D �2 by adjunction formula, it follows thatKSC BS is not nef
and so there exists aKSC BS-negative extremal rational curveC on S. Since B2

S � 0,
the conditions (KSC BS) � C D (KSC C) � C C BS � C � C2

D �2C BS � C � C2
< 0

andC2
< 0 would imply thatC is a (�1)-curve disjoint fromBS, which is impossible.

Thus (S, BS) is a log Mori fiber spaceg W S! D. If D is a point thenS is smooth
log del Pezzo surface of rank 1, whence is isomorphic toP

2 and BS' P
1 is either a

line or a smooth conic. Otherwise, sinceS is smoothg W S! D is a P1-bundle and
the condition (KSC BS) � F D (KSC F) � F C BS � F D �2C BS � F < 0 for a fiber
F ' P1 of g implies that BS � F D 0 or 1. ThusBS is either a fiber ifBS � F D 0 or
a section otherwise. This immediately implies the remaining assertions.

3.1. Triangular birational maps between smooth completions. Let us first ob-
serve that if (S, BS) is a smooth completion withB2

S < 0 then every birational map of
smooth completionsf W (S, BS)Ü (S0, BS0) is in fact an isomorphism. Indeed, otherwise
it would have a proper base point onBS, and sinceB2

S< 0 it would follow that the total
transform ofBS in the minimal resolution off contains no (�1)-curve except the strict
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transform ofBS0 , in contradiction with the fact thatS0 is smooth. It follows in particu-
lar that if a smooth quasi-projective surfaceV admits a smooth completion (S, BS) with
B2

S < 0 then the automorphism group ofV coincides with the subgroup Aut(S, BS) of
Aut(S) consisting of automorphisms preserving the boundaryBS. In contrast, if (S, BS)
and (S0, BS0) are smooth completions withB2

S � 0 or B2
S0 � 0, then strictly birational

maps of smooth completions (S, BS)Ü (S0, BS0) may exist in general.

3.1.1. Structure of intermediate pairs. Given such a strictly birational map,
we prove in the next lemma that the dlt pairs (Si , BSi ) which appear in the factorization
of f as in Theorem 1 have at most one singularity. So the followingdefinition makes
sense: IfSi is singular, then we say that it hasindex k if in the minimal resolution of
its singularities the exceptional curve which intersects the strict transform ofBSi has
self-intersection�k. Otherwise, if Si is smooth then we say thatSi has index 1. We
note ind(Si ) the index ofSi .

Lemma 12. Let f W (S, BS)Ü (S0, BS0) be a strictly birational map of smooth
completions and let SD S0Ü S1Ü � � �Ü Sn D S0 be its factorization into elem-
entary links given by Theorem1. Then the following holds:
1) If B2

SD 0 then each Si is smooth with B2Si
D B2

SD 0,

2) If B2
S > 0 then each Si has at most one singularity. Furthermore:

a) If Si is smooth then B2Si
D B2

S whereas if Si is singular, the boundary of a

minimal resolution of Si is a chain of B2
SC1 rational curves with self-intersections

(0,�ki , �2, : : : , �2) where ki D ind(Si );
b) For all i D 0, : : : , n� 1 the indexes of Si and SiC1 differ exactly by1 and if
ind(Si ) � 2 and ind(Si ) D ind(Si�1) � 1 then ind(SiC1) D ind(Si ) � 1.

Proof. Let (Sj , B j ) be one of the intermediate dlt completions, and let
f j W (Sj , B j )Ü (S0, BS0) be the induced birational map. SupposeSj is smooth, with
B2

Sj
D B2

S D d � 0 and consider as in the proof of Theorem 1 the surfaceY con-

taining the strict transformsE j and E jC1 of the boundaries ofSj and SjC1. Since S0

is smooth, the strict transform ofB j in the minimal resolutionX j of f j is a (�1)-
curve. It follows that the boundary ofY is equal to a chain ofdC 2 curves with self-
intersections (�1,�1,�2, : : : ,�2). If d D 0 then SjC1 is again smooth withB2

SjC1
D 0

and so, 1) follows by induction. Otherwise, ifd > 0 thenSjC1 has a unique singularity
and the boundary of the minimal resolution ofSjC1 is a chain ofd C 1 curves with
self-intersections (0,�2, : : : ,�2). In particular,SjC1 has index 2 (see Fig. 5, (a), with
k D 2). Now we proceed by induction, assuming thatSi has exactly one singularity,
and that the boundary of the minimal resolutionQSi of Si is a chain ofd C 1 rational
curves with self-intersections (0,�(k � 1), �2, : : : , �2), wherek � 1 D ind(Si ) � 2.
We denote byC the second irreducible component of this chain which has thus self-
intersection�(k � 1). Let QSi  Xi ! S0 be the minimal resolution of the induced
birational map QSi Ü S0. Since the strict transformEi of BSi is a 0-curve onQSi and
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Fig. 5. Boundary ofY in the proof of Lemma 12.

a (�1)-curve onXi as S0 is smooth, we see that there is exactly one blow-up onEi ,
which by definition produces the divisorEiC1. Then there are two cases:

a) If the proper base point onEi coincides with the intersection point ofEi and
C, then the boundary ofY is a chain of curves with self-intersections (�1, �1, �k,
�2, : : : , �2), where the first three areEi and EiC1 and C. Thus in this caseSiC1 has
again exactly one singularity and has indexk (the picture is again Fig. 5, (a)).

b) Otherwise, if the proper base point onEi is any other point, then the boundary
of Y is a chain of curves with self-intersections (�2, : : : ,�2,�(k� 1),�1,�1), where
the last three areC, Ei and EiC1. In this caseSiC1 has again at most one singularity
and has indexk� 2 (see Fig. 5, (b)). It is smooth if and only ifk� 1D 2 and in this
case its boundaryBSiC1, which is the strict transform ofEiC1 has again self-intersection
B2

SiC1
D d.

The last assertion follows from the fact that by construction the center of the blow-
up on EiC1 producing the next divisorEiC2 does not coincide with the intersection
point of Ei and EiC1.

3.1.2. Triangular birational maps.

DEFINITION 13. A strictly birational map of smooth completions� W (S, BS)Ü
(S0, BS0) is called triangular if all the intermediate surfacesSi that appear in the fac-
torization produced by Theorem 1 are singular.

Given a smooth pair (S, BS) with B2
S � 0, it follows from Proposition 11 thatS

dominates birationally a surfaceF which is eitherP2 or a ruled surface.
First we discuss the case whereB2

S D 0. Then the strict transform ofBS in F

still have self-intersection 0, soF is a ruled surfacep W F ! D and the strict trans-
form of BS is either a fiberF or a section ofp. Note that in the second caseF is
isomorphic toP1

� P

1 in such a way thatp coincides with the first projection while
the strict transform ofBS is a fiber F of the second projection: up to changing the
projection we can assume thatBS is a fiber, as in the first case. Then, it follows from
Lemma 12 that the notion of a triangular map coincides with that of a link and that
every such link consists of the blow-up of a point onF followed by the contraction
of its strict transform. Assume now thatf W (S, BS)Ü (S0, BS0) is a strictly birational
map of smooth completions, where (S, BS) and (S0, BS0) dominate some ruled surfaces
pW F ! D and p0 W F 0 ! D0 respectively. ThenB2

S0 D 0, we can assume that the strict
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Fig. 6. Minimal resolution of a triangular map.

transforms ofBS and BS0 are fibers ofp and p0 respectively, and the birational trans-
formationFÜ F

0 induced by f consists of elementary transformations between ruled
surfaces. It follows thatf preserves theP1-fibrations� W S! D and � 0 W S0 ! D0 in-
duced by these rulings hence induces an isomorphismf W V D Sn BS! V 0 D S0 n BS0

of P1-fibered quasi-projective surfaces

V D Sn BS V 0 D S0 n BS0

D n �(BS) D0 n � 0(BS0).
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Next we consider the case of a triangular map� W (S, BS) Ü (S0, BS0) between
smooth completions withB2

S D B2
S0 D d > 0. Note that sinceBS and BS0 are smooth

rational curves, it follows form Noether’s lemma that the surfacesS and S0 are rational.
We deduce from the description given in the proof of Lemma 12 that the total trans-
form of BS in the minimal resolutionX of � is a tree of rational curves with the dual
graph pictured in Fig. 6.

Here E0 and E0
0

D En denote the strict transforms ofBS and BS0 respectively, the
two boxes on the left represent chains ofk � 2 rational curves with self-intersection
(�2), and the one on the right a chainD of d � 1 such curves. Note also that the
proper base point of� coincides with the proper base point of the first elementary
link SD S0Ü S1 while the one of its inverse coincides with the proper base point of
the inverse of the last oneSn�1Ü Sn D S0 (see Corollary 7).

Let Æ W X! OS and Æ0 W X! OS0 be the morphisms given by the smooth contractions
of the sub-treesH [ H 0 [ E0

0 and H [ H 0 [ E0 onto q D E0 \ C and q0 D E0
0

\ C.
Since S and S0 are rational andE2

0 D 0 and E00
2
D 0 on OS and OS0, it follows from

Riemann–Roch theorem that the complete linear systemsjE0j and jE0
0

j are base point
free and defineP1-fibrations O� W OS! P

1 and O� 0 W OS0 ! P

1 both having the image of
C as a section. Note further that the image ofD in OS and OS0 is a proper subset of a
fiber of O� and O� 0 respectively: indeed, if not empty, the image ofD has negative defi-
nite self-intersection matrix and hence cannot be equal to afull fiber of a P1-fibration.
By contracting the remaining exceptional divisors, we see that jE0j (resp. jE0

0

j) co-
incides with the strict transform onOS (resp. OS0) of the rational subpencilPB(�) � jBSj

(resp.P 0B(��1) � jBS0 j) consisting of curves having local intersection number with BS
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(resp. BS0) at B(�) (resp.B(��1)) equal tod. Equivalently, the fibrationsO� and O� 0 co-
incide respectively with the minimal resolution of the rational maps� W SÜ P

1 and
�

0

W S0Ü P

1 defined byPB(�) and P 0B(��1). These two maps restrict onV D Sn BS

and V 0 D S0 n BS0 to quasi-projectiveA1-fibrations �jV W V ! A

1
D P

1
n �(BS) and

�

0

jV 0

W V 0! A

1
D P

1
n �

0(BS0), i.e., surjective morphisms with general fiber isomorphic
to the affine lineA1.

The birational map� W SÜ S0 lifts to O� W OSÜ OS0 mapping OSn E0 isomorphically
onto OS0 nE0

0, havingq as unique proper base point while its inverse hasq0 as a unique
proper base point. Since the total transforms ofE0 and E00 in X coincide, the liftedP1-

fibrations O�ÆÆ and O� 0ÆÆ0 on X coincide. This implies thatO� restricts to an isomorphism
of A1-fibered quasi-projective surfaces

V D Sn BSD OSn ��1(BS) V 0 D S0 n BS0 D OS0 n � 0
�1(BS0)

A

1
A

1

 

!

�

O

�

 

!

O�jV  

!

O�

0

jV 0

 

!

�

where� W OS! S and � 0 W OS0! S0 denote the contraction ofC and the right chainD of
d � 1 curves with self-intersection�2 pictured in Fig. 6 above.

A birational map O� W OSÜ OS0 restricting to an isomorphism ofA1-fibered surfaces
as above is called afibered modification(see also [5, 2.2.1]).

In general, if (S, BS) is a smooth completion withB2
SD d > 0 and p is a point of

BS then the base locus of the linear subsystemPp � jBSj consisting of curves having
a local intersection number withBS at p equal tod is solved as follows. We perform
d successive blow-ups with centers on the successive strict transforms ofBS, until we
reach a surfaceOS on which the strict transform ofPp is equal to the complete linear
systemjE0j generated by the strict transformE0 of BS. Since E0 is a smooth rational
curve with E2

0 D 0, Pp defines a rational pencil�p W SÜ P

1 which restricts onV D
Sn BS to a quasi-projectiveA1-fibration �pjV W V ! A

1. This leads to the following
alternative characterization of triangular maps:

Lemma 14. For a strictly birational map of smooth completions� W (S, BS)Ü
(S0, BS0) with B2

SD B2
S0 > 0, the following are equivalent:

a) � is a triangular map;
b) There exist points p2 BS and p0 2 BS0 such that� maps the pencilPp onto the
pencil P 0p0 ; If so, the points p and p0 are equal toB(�) and B(��1) respectively.
c) � maps the pencilPB(�) onto the pencilP 0

B(��1);

d) � induces an isomorphism ofA1-fibered quasi-projective surfaces(SnBS,�B(�))
�

!

(S0 n BS0 , � 0B(��1)).

Proof. Properties c) and d) are clearly equivalent. If b) holds and the proper base
point of � is distinct from p then all infinitely near base points of� are also distinct
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from p. Since� contractsBS, the strict transform inS0 of a general member ofPp

has self-intersection strictly bigger thanB2
SD B2

S0 hence cannot be a general member of
a pencil of the formP 0 p0 . So B(�) D p and for the same reasonB(��1) D p0 which
proves the equivalence of b) and c). The fact that a triangular map � W (S, BS) Ü
(S0, BS0) mapsPB(�) onto P 0B(��1) follows from the above discussion.

It remains to prove that c) implies a). If c) holds then sinceS and S0 are both

smooth, the strict transforms ofBS and BS0 in the minimal resolutionS
�

 X
�

0

! S0 of
� are both (�1)-curves. So� and ��1 both have at leastd C 1 base points including
infinitely near ones and their firstd C 1 base points are supported onBS and BS0 re-
spectively. This implies in turn that� and � 0 factor respectively through the minimal
resolutions� W OS! S and � 0 W OS0 ! S0 of the base points ofPB(�) and P 0B(��1) and

that the induced birational mapO� W OSÜ OS0 is a fibered modification. By virtue of [5,
2.2.4], the dual graph of the total transform ofBS in X looks like the one pictured in
Fig. 6 for which it is straightforward to check that all intermediate surfaces occurring
in the decomposition are singular. Thus� is a triangular map.

The following corollary, which is an immediate consequenceof the previous lemma,
will be frequently used in the sequel:

Corollary 15. If � W (S, BS)Ü (S00, BS00) and �00 W (S00, BS00)Ü (S0, BS0) are tri-
angular maps of smooth completions with B2

S > 0 and �, �00 in special position, then
the composition�0 D �00Æ�W (S,BS)Ü (S0,BS0) is either an isomorphism of pairs map-
ping B(�) on B(�00�1) or a triangular map withB(�0) D B(�) and B(�0�1) D B(�00�1).

3.2. Automorphisms of quasi-projective surfaces with smooth completions.

3.2.1. Decomposition into triangular maps and normal forms. Given a
strictly birational map f W (S, BS)Ü (S0, BS0) of smooth completions withB2

SD B2
S0 >

0, Lemma 12 provides a decomposition off into a finite sequence

f D �n � � � �1 W (S, BS) D (S0, BS0)
�1
Ü (S1, BS1)

�2
Ü � � �

�n
Ü (Sn, BSn) D (S0, BS0)

of triangular maps between smooth completions. Such a decomposition of f is called
minimal if there does not exist any other decomposition with strictly less thann terms.
The following proposition provides a characterization of these minimal decompositions.

Proposition 16. A composition

f D �n � � � �1 W (S, BS) D (S0, BS0)
�1
Ü (S1, BS1)

�2
Ü � � �

�n
Ü (Sn, BSn) D (S0, BS0)

of triangular maps between smooth completions with B2
S D B2

S0 > 0 is minimal if and
only if for every iD 1, : : : , n� 1, the maps�i and �iC1 are in general position.
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Furthermore, if these conditions are satisfied, then the following holds:
a) The map f is strictly birational withB( f ) D B(�1) and B( f �1) D B(��1

n ),
b) For every other minimal decomposition

f D �0n � � � �
0

1 W (S, BS) D (S00, BS00)
�

0

1
Ü (S01, BS01)

�

0

2
Ü � � �

�

0

n
Ü (S0n, BS0n) D (S0, BS0)

of f there exists isomorphisms of pairs�0D idS, �i W (Si , BSi )
�

! (S0i , BS0i ), i D 1,: : :n�1
and �n D idS0 , such that�i�i D �

0

i�i�1 for every iD 1, : : : , n.

Proof. First note that by virtue of Corollary 15, the composition of two triangular
maps in special position is either triangular or an isomorphism of pairs. Therefore a
composition�n � � ��1 in which for somei the maps�i and�iC1 are in special position
cannot be minimal.

Next assume thatf D �n � � � �1 is a composition for which any two successive
triangular maps are in general position. To prove a), up to changing f with its inverse,
it is enough to check thatf is strictly birational withB( f �1)D B(��1

n ). We proceed by
induction onn, the casen D 1 being obvious. Ifn > 1 then by induction hypothesis
fn�1 D �n�1 � � � �1 is a strictly birational map which contracts the curveBS0 to the
proper base pointp 2 BSn�1 of ��1

n�1. The curveBSn�1 is contracted in turn by�n onto
the proper base point of��1

n . But since�n�1 and �n are in general position,p is not
a base point of�n and so, f D �n fn�1 contractsBS0 onto �n(BSn�1) D B(��1

n ). This
shows that f is strictly birational and thatB( f �1) D B(��1

n ).
Now let f D �

0

m � � � �
0

1 W (S, BS) Ü (S0, BS0), m � n, be a minimal decompos-
ition of f into triangular maps. By Corollary 15 again, any two successive triangu-
lar maps must be in general position. If��1

1 and�01 were in general position, then by
a) �0m � � � �

0

1�
�1
1 � � � �

�1
n would be a strictly birational map restricting to the identity on

S0nBS0 , whence onS0, which is absurd. Therefore,��1
1 and�01 are in special position and

it follows from Corollary 15 that�1 D �
0

1�
�1
1 W (S1, BS1)Ü (S01, BS01) is either a triangu-

lar map or an isomorphism of pairs. But if�1 is triangular, then, again by Corollary 15,
we would haveB(�1) D B(��1

1 ) andB(��1
1 ) D B((�01)�1). The pairs of maps�1, �02 and

�

�1
2 , �1 would then be both in general position and�0m � � � �

0

2�1�
�1
2 � � � �

�1
n would again

be strictly birational. So�1 is an isomorphism of pairs and writing 02 D �
0

2�1, which is
again a triangular map, we deduce in a similar way that 

0

2�
�1
2 W (S2, BS2)Ü (S02, BS02)

is an isomorphism, that we denote by�2. By induction, we define 0r D �

0

r�r�1 and
obtain an isomorphism�r D  

0

r�
�1
r W (Sr , BSr )Ü (S0r , BS0r ) for r D 2, : : : , m. The last

relation obtained is�m�
�1
mC1 � � ��

�1
n D idS0 W (S0, BS0)Ü (S0, BS0) from which we deduce

that m D n, and�n D idS0 . Choosing�0 D idS we find that�i�i D �

0

i�i�1 for every
i D 1, : : : , n.

This proves on the one hand that the decompositionf D �n � � � �1 was minimal
and that b) holds for this decomposition.
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DEFINITION 17. The numberl ( f ) of triangular maps occurring in a minimal de-
composition of a birational mapf W (S, B)Ü (S0, BS0) of smooth completions is called
the length of f .

Corollary 18. Let f D �n � � � �1 W (S, BS) Ü (S0, BS0) be a strictly birational
composition of n� 2 triangular maps. IfB( f ) ¤ B(�1) then there exists an index
i 2 {2, : : : , n� 1} such that�i � � � �1 is an isomorphism.

Proof. We proceed by induction on the number of triangular maps in the com-
position. If n D 2 then if �2 and �1 are in general position or if�2 and �1 are in
special position and�2�1 is triangular thenB(�2�1) D B(�1) by Proposition 16 and
Corollary 15. SoB(�2�1) D B(�1) unless�2�1 is an isomorphism.

Now suppose thatn > 2.
If �2 and �1 are in special position then either�2�1 is an isomorphism and we

are done, or�02 D �2�1 is a triangular map with proper base point equal to that of
�1. Since f D �n � � � �

0

2 with B( f ) ¤ B(�02) the induction hypothesis implies that there
exists i 2 {3, : : : , n� 1} such that�i � � � �

0

2 D �i � � � �2�1 is an isomorphism.
If �2 and �1 are in general position and either�n � � � �2 is an isomorphism or

B(�n � � � �2) D B(�2). Then in both casesB(�n � � � �2�1) would be equal toB(�1).
So �n � � � �2 is not an isomorphism and its proper base point is different from that
of �2. By induction hypothesis, there exists an indexj 2 {3, : : : , n � 1} such that
� D � j � � ��2 is an isomorphism. Replacing� jC1 by the triangular map�0jC1 D � jC1�,
we have f D �n � � � �

0

jC1�1 and we are done by induction.

One can think of Proposition 16 as a kind of presentation by generators and rela-
tions, the second part saying in particular that there is essentially no relation except the
obvious ones given by Corollary 15. However, even if (S, BS) D (S0, BS0) and f is the
birational map induced by an automorphism ofV D Sn BS, in general the triangular
maps�i are not birational transformations between isomorphic smooth completions of
V (see §4.3 and 4.4 for illustrations of such situations). If one insists in having gener-
ators that live on a particular model, one possibility is to fix a rule to pass from each
possible model to the distinguished one (S, BS). This is what is done in [14], where
the relations are then expressed in terms of (intricate) amalgamated products.

Another consequence of Proposition 16 is that it enables to obtain normal forms
for automorphisms of quasi-projective surfaces admittinga smooth completion. In the
following result, and in the rest of the paper, we shall use the notation f  to denote
the conjugate f �1.

Corollary 19. Let f W (S, BS)Ü (S, BS) be a birational self-map of a smooth
completion. Then there exists a birational map of smooth completions W (S, BS)Ü
(S0, BS0) such that the conjugate f has one of the following properties:
a) f  is a biregular automorphism of the pair(S0, BS0),
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b) f  is a triangular self-map of(S0, BS0) with the pair f , f  in special position,
c) the pair f , f  is in general position.

Proof. Supposef is not biregular, and consider a minimal factorizationf D
�n � � � �1 into triangular maps given by Proposition 16. If the pairf, f is in spe-
cial position and f is not triangular (that is,n � 2), then we consider the conjugate
fn�1 D �

�1
n f �n W (Sn�1, BSn�1)Ü (Sn�1, BSn�1). By hypothesis,�1 and �n are in spe-

cial position and so, by Corollary 15,�1�n is either an isomorphism or a triangular
map. Thus fn�1 D �n�1 � � � �2(�1�n) has length at mostn � 1 and we are done by
induction.

The existence of normal forms up to conjugacy for automorphisms ofA2 was first
noticed by Friedland and Milnor [10] as a consequence of Jung’s theorem. This was
the starting point for an exhaustive study of the possible dynamical behavior of these
automorphisms (see [3] and references therein). In particular, if gD f  satisfies Prop-
erty c) in the conclusion of Corollary 19 and has lengthn then its iteratesgk, k 2 Z,
have lengthnjkj. Such a map is thus similar to a composition of generalized Hénon
maps and so one can expect that these maps will always presenta chaotic dynamical
behavior. On the other hand, any finite automorphism ofV , any one-parameter flow
ft of automorphisms ofV , or more generally every automorphism contained in an al-
gebraic subgroup of Aut(V) (see Proposition 21 below) always corresponds to Case a)
or b) in Corollary 19.

3.2.2. Tame automorphisms. Given any smooth completion (S, BS) of V , we
denote by Aut(S, BS) the group of automorphisms of the pair (S, BS). Note that since
BS is the support of an ample divisor onS, Aut(S, BS) is an algebraic group.

For every pointp 2 BS, Corollary 15 implies that the set of triangular self-maps
� W (S, BS)Ü (S, BS) with B(�) D B(��1) D p and automorphisms of the pair (S, BS)
fixing p is a group, which we shall denote by Tr(S, BS, p). By Lemma 14, the latter
coincides with the subgroup of automorphisms ofV D S n BS preserving the quasi-
projectiveA1-fibration �p W V ! A

1 induced by the rational pencilPp. The groups
Tr(S,BS, p) are not algebraic, but they are countable increasing unions of algebraic sub-
groups. More precisely, see [5, Lemma 2.2.3], there exists a birational map� W SÜ
A

2
D Spec(C[x, y]) restricting to a morphism onV such that Tr(S, BS, p) is iso-

morphic to the subgroup of Aut(A2) consisting of automorphisms of the form (x, y) 7!
(ax C b, cyC P(x)), where a, c 2 C�, P(x) 2 C[x], preserving the points blown-up
by � , including infinitely near ones. For everyd � 0, the set of all automorphisms
(x, y) 7! (axCb, cyC P(x)) of A2 with P(x) of degree� d is an algebraic group and
those preserving the points blown-up by� form of closed subgroup of it, whence an
algebraic group.
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DEFINITION 20. Let V be a quasi-projective surface admitting a smooth comple-
tion (S, BS), let M D {( 

�

, p
�

)}
�2A be a nonempty collection of pairs consisting for

each� 2 A of a birational map of smooth completions 
�

W (S, BS)Ü (S
�

, BS
�

) and
a point p

�

2 BS
�

. An automorphism ofV considered as a birational self-mapf of
(S, BS) is called:
a) M-affine (short foraffine relatively to the models inM) if there exists� such that
f  � is an element of Aut(S

�

, BS
�

);
b) M-Jonquièresif there exists� such that f  � is an element of Tr(S

�

, BS
�

, p
�

).
We denote byM TA(V) the subgroup of Aut(V) generated byM-affine andM-
Jonquières automorphisms. We call it the group ofM-tame automorphismsof V .

This notion of tameness depends a priori on the choice of the collectionM. How-
ever by taking the familyMcan consisting of all pairs (9, p0) where9 W (S, BS)Ü
(S0, BS0) is a birational map of smooth completions andp0 is a point of BS0 , we obtain
a canonical intrinsic notion of tameness.

An automorphism ofV with associated birational self-mapf of (S, BS) is said to
be generalized affine(resp. generalized Jonquières) if f is Mcan-affine (resp.Mcan-
Jonquières). We denote

GTA(V) DMcanTA(V)

the subgroup of Aut(V) generated by generalized Jonquières and generalized affine auto-
morphisms. Its elements will be calledgeneralized tameautomorphisms ofV .

In other words, GTA(V) is generated by automorphisms ofV which either pre-
serve a quasi-projectiveA1-fibration V ! A

1 induced by a pencil of the formPp on
a suitable smooth completion ofV or extend to biregular automorphisms of suitable
smooth completions ofV . In fact, since for an elementf 2 Aut(S, BS) the induced
action of f on BS ' P

1 always has a fixed pointp, it follows that every general-
ized affine automorphism is also generalized Jonquières. SoGTA(V) coincides with
the normal subgroup of Aut(V) generated by automorphisms preserving anA

1-fibration
V ! A

1 as above.

Proposition 21. Let V be a quasi-projective surface admitting a smooth comple-
tion. Then for every algebraic subgroup G ofAut(V), there exists a smooth completion
(S, BS) of V such that G is a subgroup ofAut(S, BS) or of Tr(S, BS, p). In particular,
every algebraic subgroup ofAut(V) consists of generalized tame automorphisms of V .

Proof. Let (S0,BS0) be a smooth completion ofV . By Sumihiro equivariant com-
pletion theorem [26], there exists a smooth projective surface Z on which G acts
biregularly and aG-equivariant open embeddingV ,! Z. The induced birational map
� W ZÜ S0 has finitely many base points, including infinitely near onesand similarly
for its inverse. It follows that the number of base points of an elementg of G con-
sidered as a birational self-mapgW (S0, BS0)Ü (S0, BS0) is bounded by the sum of the
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number of base points of� and its inverse. This implies in turn that there exists a
minimal integer M(S0) � 0 such that the length of any suchg is at most M(S0) (in
the sense of Definition 17). The boundM(S0) depends on the particular completion
we choose to realize the birational action ofG. Now we choose a smooth comple-
tion (S, BS) of V such thatM(S) is minimal. If M(S) D 0 the birational self-map
g W (S, BS)Ü (S, BS) associated to every element ofG is an automorphism of pairs
and henceG � Aut(S, BS).

Assume now thatM(S) � 1, and letgW (S,BS)Ü (S,BS) be the birational self-map
associated to an element ofG which realizes the boundM(S), that isgD  M Æ � � �Æ 1

is a composition ofM D M(S) triangular maps. Leth W (S, BS) Ü (S, BS) be the
birational self-map associated to another element ofG.

Suppose first thatl (h) � 1 and lethD �m Æ � � � Æ�1, wheremD l (h), be a minimal
decomposition ofh into triangular maps. Ifh�1 andg were in general position then, by
Proposition 16 M � � � 1�

�1
1 � � ��

�1
m would be a minimal decomposition ofgÆh�1, and

we would havel (g Æ h�1) D l (g)C l (h) > M(S) in contradiction with the definition of
M(S). SoB(�1) D B(h) D B(g) D B( 1), and 1 Æ�

�1
1 is either triangular or biregular.

If  1 Æ �
�1
1 is triangular, then by Corollary 15 the pairs of maps ( 1 Æ �

�1
1 ),  2 and

�

�1
2 , ( 1 Æ �

�1
1 ) are both in general position, and we havel (g Æ h�1) D M Cm� 1, so

mD 1. This implies that ifl (h) � 2 then 1 Æ �
�1
1 is biregular, and applying the same

reasoning toh�1 instead ofh we also get that 1 Æ�m is biregular in this case. Finally
observe that in the casel (h)D 1 we havel ( 1h �1

1 )D l ( 1h�1
 

�1
1 ) � 1: indeed either

 1 Æ �
�1
1 is biregular and this is clear, or 1 Æ �

�1
1 is triangular with base point equal

to B(��1
1 ) D B( 1) and so �1

1 and 1 Æ �
�1
1 are in special position.

Consider now the casel (h) D 0. We claim thath fixes B(g) D B( 1): Otherwise
g�1 and gh would be in general position and we would havel (ghg�1)D 2l (g) > M(S),
a contradiction. It follows that 1h �1

1 is triangular or biregular in this case.
In conclusion, conjugating the groupG by the birational map 1 W (S, BS) Ü

(S1, BS1), we obtain thatl ( 1h �1
1 ) � 1 if l (h) � 1 whereasl ( 1h �1

1 ) D l (h) � 2 if
l (h) � 2. So M(S) D 1 for otherwise we would haveM(S1) < M(S), in contradiction
with the minimality of M(S). This shows that all elements inG extend to biregular or
triangular maps fromS to itself. The argument above shows that the pointp D B(g)
is fixed by all biregular elements ofG and is the proper base point of all triangular
elements inG, that is, G � Tr(S, BS, p).

3.3. Automorphisms of affine surfaces with smooth completions. Here we
consider the particular case of affine surfacesV admitting smooth completions (S, BS).
By Proposition 11, every such surface is isomorphic toP2

n C where C is a line or
a smooth conic or to the complement of an ample sectionC in a Hirzebruch surface
�n W Fn ! P

1. As we saw before, the integerd D B2
S is an invariant ofV and in

fact the only invariant except in the cased D 4. Indeed, by the Danilov–Gizatullin
isomorphy theorem [14], the isomorphy type as an abstract affine surface of the com-
plement of an ample sectionC in a Hirzebruch surface depends neither on the ambient
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projective surface nor on the choice of the section, but onlyon its self-intersection. The
following proposition summarizes some of the properties ofthe automorphism groups
of these surfaces.

Proposition 22. For an affine surface Vd admitting a smooth completion(S, BS)
with B2

SD d > 0, the following holds:
1) If d � 4 then every automorphism of Vd is generalized tame, and one hasAut(Vd)D
M TA(Vd) for a finite familyM of completions. In particular, Aut(Vd) is generated by
countably many algebraic subgroups.
2) If d � 5 then GTA(Vd) is a proper normal subgroup ofAut(Vd) and it cannot be
generated by countably many algebraic subgroups.

Proof. The fact that for everyd � 4, Aut(Vd) DM TA(Vd) for a natural choice
of finitely many smooth completionsM is checked in the examples in Section 4. The
second part of assertion 1) then follows from the fact groupsof the form Aut(S, BS)
and Tr(S,BS, p) are generated by countable families of algebraic subgroups (see §3.2.2).

For the second assertion, we first need to prove that ifd � 5 then there exist
smooth completions (S, BS) of Vd with the property that the orbits of the induced ac-
tion of Aut(S, BS) on BS are finite. Namely, ifd > 7 is even thenVd admits a smooth
completion (F2, C) whereC is a section of�2 W F2! P

1 with self-intersectiond inter-
secting the exceptional sectionC0 of �2 with self-intersection�2 in (d�2)=2� 3 dis-
tinct points. Similarly, ifd � 7 is odd, then there exists a smooth completion (F1,C) of
V whereC is a section of�1W F1! P

1 with self-intersectiond intersecting the excep-
tional sectionC0 of �1 with self-intersection�1 in (d�1)=2� 3 distinct points. Since
in each case the setC \C0 is necessarily globally preserved by the induced action of
the automorphism group of the ambient pair onC ' P

1, we conclude that the orbits
of this group onC are finite. The remaining two casesd D 5, 6 are treated explicitly
in the examples in Section 4, §4.4.1 1-b) and §4.5 respectively.

From now on, we identifyV D Vd, d � 5, to Sn BS for a fixed smooth comple-
tion (S, BS) with the property that the orbits of the induced Aut(S, BS)-action on BS

are finite.
Let us show first that GTA(V) cannot be generated by a countable family (Gi )i2N

of algebraic subgroups. By Proposition 21, to eachGi is associated a smooth com-
pletion (Si , BSi ) of V and a birational map of pairs i W (S, BS) Ü (Si , BSi ), such
that  i Gi 

�1
i is contained either in Aut(Si , BSi ) or in Tr(Si , BSi , pi ) for some point

pi 2 BSi . For everyi 2 N, we fix a minimal decomposition i D �i ,ni � � ��i ,1W (S, BS)D
(Si ,0, BSi ,0)Ü (Si ,ni , BSi ,ni

)D (Si , BSi ) of  i into triangular maps�i ,kW (Si ,k�1, BSi ,k�1)Ü

(Si ,k, BSi ,k ). Let qi j D B(�i , jC1) and r i j D B(��1
i , j ): Observe thatqi j and r i j are both

points in BSi , j . Then defineC as the subset ofBS consisting of points of the form

�

�1
i , j (qi j ), ��1

i , j (r i , j ) and 
 �1
i (pi ) for all possible isomorphisms of pairs�i , j W (S, BS)!

(Si , j , BSi , j ), �i , j W (S, BS)! (Si , j , BSi , j ) and 
i W (S, BS)! (Si , BSi ) respectively.



776 A. DUBOULOZ AND S. LAMY

It then follows from Corollary 18 that the set of possible proper base points of
elements of Aut(V) considered as birational self-maps of (S, BS) is contained inC.
Note that Proposition 16 b) implies thatC does not depend on the choice of the min-
imal decompositions of the birational maps i . Our choice of (S, BS) implies that the
Aut(S, BS)-orbit of C is countable (in fact one could show thatC is already Aut(S, BS)-
invariant, but this is not necessary for the argument). So for every point p in its com-
plement, a strictly birational element in Tr(S, BS, p) is an element of GTA(V) which
does not belong to the subgroup generated by theGi .

Next, to derive that GTA(V) is a proper subgroup of Aut(V), we exploit a more
precise version of the Danilov–Gizatullin isomorphy theorem (see [8, §3.1], in par-
ticular Lemma 3.2 and the discussion just before) which asserts that if (S0, BS0) and
(S00, BS00) are smooth completions ofV and p0 2 BS0 , p00 2 BS00 are general points, then
theA1-fibered affine surfaces� 0jV 0

W V 0 D S0 nBS0 ! A

1 and� 00jV 00

W V 00 D S00 nBS00 ! A

1

are isomorphic. More precisely, this holds whenever�

0 and � 00 have reduced fibers, a
property which is always satisfied for generalp0 and p00. In view of Lemma 14, this
implies in particular that for every pair of general pointsp and p0 in BS, there exists
a triangular map� W (S, BS)Ü (S, BS) with B(�) D p andB(��1) D p0. By virtue of
Lemma 23 below, such a map� corresponds to an element of GTA(V) if and only if
B(�) and B(��1) belong to a same orbit of the induced action of Aut(S, BS) on BS.
Since Aut(S, BS) acts onBS with finite orbits, it follows that we can find two general
points p, p0 of BS in distinct orbits; a corresponding triangular self-map� then induces
an element of Aut(V) nGTA(V).

In the proof of the previous theorem, we used the following characterization of
generalized tame automorphisms of length 1:

Lemma 23. A triangular map� W (S, BS)Ü (S, BS) of smooth completions is a
generalized tame automorphism of Sn BS if and only if B(�) and B(��1) belong to a
same orbit of the action ofAut(S, BS) on BS.

Proof. Clearly if there exists an automorphism� 2 Aut(S, BS) such that p D
B(�) D �B(��1), then�� 2 Tr(S, BS, p), hence� is generalized tame.

Conversely, let� be a generalized tame triangular map. For any automorphism
� 2 Aut(S, BS), �� is again generalized tame and triangular hence can be written in
the form

�� D

n
Y

iD1

g i
i D  ngn 

�1
n � � �  1g1 

�1
1

where for everyi D 1, : : : , n,  i W (Si , BSi )Ü (S, BS) is a birational map of smooth
completions, andgi 2 Aut(Si , BSi ) [

S

pi2BSi
Tr(Si , BSi , pi ). Among all such factoriza-

tions (for all choices of�), we choose one with the property thatL D
Pn

iD1(l ( i )C
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l (gi )C l ( �1
i )) is minimal, which implies that for alli we havel (g i

i ) D 2l ( i )C l (gi ).
Furthermore among all factorizations realizing this minimum L, we pick one with the
minimal numbern of factors.

Now if a composition of the form� D
Q j0

iDi0
g i

i , where 1� i0 � j0 � n, were an
isomorphism, then for allk > j0 we could write

g k
k � D ��

�1g k
k � D �g�

�1
 k

k .

So we could shift the� all the way to the left, without increasingL since l ( k) D
l (��1

 k), and this would contradict the minimality ofn. Thus we can assume that no
composition of the form

Q j0
iDi0

g i
i is an isomorphism, or in other words that

l
�

Q j0
iDi0

g i
i

�

� 1. Taking i0D j0 we obtain in particular that nog i
i is an isomorphism.

We deduce from Corollary 7 thatB(g i
i ) D B( �1

i ) if  i is not an isomorphism, and

B(g i
i )D  i (B(gi )) otherwise. We also observe that in both casesB(g i

i )D B((g i
i )�1).

Now we check that we are in position to apply Corollary 18. Since we already
know that no composition of the form

Q j0
iDi0

g i
i is an isomorphism, and sincel (g i

i )D
2l ( i ) C l (gi ), it remains to exclude the existence of two indexesj0 > i0 such that

g
 j0
j0
D f h with f, h in general position and� D h

Q j0�1
iDi0

g i
i an isomorphism. In such

a case we would have

j0
Y

iDi0

g i
i D f � D h�1

��

�1h f� D

 

j0�1
Y

iDi0

g i
i

!

�

�1h f�.

But on one hand��1h f� D (��1h) f h(h�1
�) D

�

Q j0�1
iDi0

g i
i

�

�1
g
 j0
j0

�

Q j0�1
iDi0

g i
i

�

is a con-

jugate of g j0, and on the other handh, f are in special position. Sol (��1h f�) D
l (h f ) < l ( f h), in contradiction with the minimality ofL.

Therefore, it follows from Corollary 18 and the observationmade on the proper
base point ofg i

i that for all i0 D 2, : : : , n:

B(g
 i0
i0

) D B

 

n
Y

iDi0

g i
i

!

and B

  

i0�1
Y

iD1

g i
i

!

�1!

D B(g
 i0�1

i0�1 ).

Furthermore if
Qi0�1

iD1 g i
i and

Qn
iDi0

g i
i were in general position for some indexi0,

then by Corollary 7 we would have

l

 

n
Y

iD1

g i
i

!

D l

 

n
Y

iDi0C1

g i
i

!

C l

 

i0
Y

iD1

g i
i

!

� 2,
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in contradiction with the fact that�� is triangular. So all such compositions are in spe-

cial position, and we obtainB(g
 i0
i0

)D B(g
 i0�1

i0�1 ). Finally B(g n
n )D B(g 1

1 ), and we have

B(�) D B(g 1
1 ) D B(g n

n ) D B(��1
�

�1) D �B(��1).

4. Examples

Here we illustrate our algorithm by describing the automorphism groups of affine
varieties admitting a smooth completion with boundaryBS of self-intersection at most
6. We first check that we recover the well-known structure of the automorphism group
of A2. Then we consider the case of the affine quadric surfaceP

1
� P

1
n 1 started

in Section 1 for which we recover in particular the description of its automorphism
group given for instance in [21]. We briefly discuss the case of the complement of
a smooth conic inP2 which is similar. As a next step, we describe the situation for
affine surfaces admitting smooth completions with boundaries of self-intersection 3 and
4 for which two new phenomena arise successively: the existence of non isomorphic
A

1-fibrations associated to rational pencilsPp with proper base point on the boundary,
and the existence of non isomorphic smooth completions of a given affine surface. We
observe that all these examples share the common property that their automorphisms
are tame. Finally, we consider the more subtle situations ofaffine surfaces admitting
smooth completions with boundary of self-intersection 5 and 6 for which we establish
the existence of non-tame automorphisms.

4.1. Automorphisms of A2, P2
n fsmooth conicg and of the smooth affine

quadric surface.

4.1.1. The affine plane. Here we derive Jung’s Theorem from the description
of the triangular maps which appear in the factorization of an automorphism ofA2

(see also [20] and [23], which contain proofs of Jung’s Theorem derived from the phi-
losophy of the (log) Sarkisov program). We let

A

2
D Spec(C[u, v]) D P2

n L0 D Proj(C[x, y, z]) n {zD 0}

with (u, v) D (x=z, y=z), and we define the affine and Jonquières automorphisms with
respect to this unique completion, with the choice ofp

1

D [1 W 0 W 0] (see Defin-
ition 20). The restriction toA2 of the rational pencil� W P2

Ü P

1 generated byL0

and the liney D 0 coincides with the second projection pr
v

W A

2
! A

1. Since the pairs
(P2,L) whereL is a line are the only smooth completions ofA2, our algorithm leads to
a factorization of an arbitrary polynomial automorphismf of A2 into a finite sequence
of triangular birational maps�i W (P2, L i�1)Ü (P2, L i ), where theL i are lines. These
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maps are obtained as sequences of 2ki � 2, ki � 2, elementary links as in Theorem 1
of the form

(P2, L i�1)Ü (P2(2), B1)Ü � � �Ü (P2(ki ), Bki�1)Ü � � �Ü (P2(2), B2ki�3)

Ü (P2, L i )

whereP2(d) is the weighted projective planeP2(d, 1, 1), obtained from the Hirzebruch
surface�d W Fd ! P

1 by contracting the section with self-intersection�d, and each in-
termediate boundary is the image by the contraction of a fiberof �d. Since Aut(P2)
acts transitively on pairs consisting of a line and a point ofit, we may associate to each
�i two isomorphisms of pairs�i W (P2, L0)! (P2, L i�1) and �i W (P2, L0)! (P2, L i ),
which map p

1

D [1 W 0 W 0] respectively onto the proper base points of�i and ��1
i .

Then the induced birational map��1
i �i�i restricts onA2 to an automorphism commut-

ing with the second projection. Thus each��1
i �i�i is a triangular automorphism ofA2

in the usual sense (but in this paper, we prefer to use the terminology “Jonquières”,
since we reserve “triangular” for a more general notion). Thus every automorphism of
A

2 is M-tame with respect to the familyMD {(id
P

2, p
1

)} and via Proposition 16, we
recover the classical description of the automorphism group of A2 as the free product
of its affine and Jonquières subgroups amalgamated along their intersection. We also
recover via Proposition 21 another classical fact: any algebraic subgroup of Aut(A2) is
conjugated to a subgroup of affine or Jonquières automorphisms.

4.1.2. The smooth affine quadric surface. The structure of the automorphism
group of the smooth affine quadric surfaceQ D Spec(C[x, y, z]=(xz� y(y C 1)) is
similar to that of the affine plane. Via the open embedding

Q ,! F0 D P
1
� P

1
D Proj(C[u0 W u1]) � Proj(C[v0 W v1]),

(x, y, z) 7! ([x W y], [x W yC 1]) D ([yC 1 W z], [ y W z]),

we identify Q with the complement of the diagonalD0 D {u0v1 � u1v0 D 0}. The ra-
tional pencil onF0 generated byD0 and the union of the two rules{u1D 0}[{v1 D 0}

has a unique proper base pointpD ([1 W 0], [1 W 0]) and the restriction toQ of the cor-
responding rational map� W F0 Ü P

1 coincides with theA1-fibration prz W S! A

1.
The minimal resolutionX ! F0 is obtained by blowing-up two times the pointp
with successive exceptional divisorsF and C0. The surfaceX then dominates the
Hirzebruch surface�1W F1! P

1 via the contraction of the strict transforms of{u1D 0}

and {v1 D 0}. Since Pic(Q) ' Z, it follows from Proposition 11 that the pairs (F0, D)
where D is a smooth curve of type (1, 1) are the only possible smooth completions
of Q. Proposition 16 and the description of the resolution of triangular maps given in
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§3.1.2 lead to a decomposition of every automorphism ofQ into a sequence of tri-
angular maps

�i W (F0, Di�1)Ü ( OP2(2), B1)Ü � � �Ü ( OP2(ki ), Bki�1)Ü � � �Ü ( OP2(2), B2ki�3)

Ü (F0, Di )

where the projective surfaceOP2(d) is obtained from the Hirzebruch surface�d W Fd !

P

1, with negative sectionC0, by first blowing-up two distinct points in a fiberF n C0

of Fd ! P

1 and then contracting successively the strict transforms ofF and C0. The
intermediate boundaries are the images by these contraction of a fiber F 0 of Fd distinct
from F . Remark thatOP2(d) dominates the weighted projective planeP2(d) via a single
divisorial contraction, hence the notation.

Since Aut(F0) acts transitively on the set of pairs consisting of a smoothcurve of
type (1, 1) and a point on it, we may associate to each�i two isomorphisms of pairs
�i W (F0, D0)! (F0, Di�1) and�i W (F0, D0)! (F0, Di ), which mapp

1

D ([1 W 0], [1 W 0])
respectively onto the proper base points of�i and ��1

i . Thus the induced birational
map ��1

i �i�i restricts onQ to an automorphism commuting with theA1-fibration prz.
Such automorphisms come as the lifts via the morphism pz,y W Q! A

2 of Jonquières
automorphisms ofA2 of the form (z, y) 7! (az, y C zP(z)), or the form (z, y) 7!
(az, �(yC 1)C zP(z)) wherea 2 C� and P(z) is a polynomial. Every automorphism
of the second family is obtained from one of the first family bycomposing with the
affine involution (z, y) 7! (z, �(yC 1)) of A2 which lifts to the involutionQ induced
by the “symmetry” with respect to the diagonalD0 in P

1
� P

1. We recover in this
way the presentation given in [21] of Aut(V) as the amalgamated product of Aff(Q) D
Aut(F0, 1)jQ and Aut(Q, prz) D Tr(F0, 1, p

1

)jQ over their intersection. In particular,
similarly as in the case ofA2, we have Aut(Q) DM TA(Q), with respect to the fam-
ily M D {(id

F0, p
1

)}. Proposition 21 says in turn that every algebraic subgroup of
Aut(V) is conjugated to a subgroup of Aff(Q) or Aut(Q, prz). For instance, every al-
gebraic action of the additive groupGa on Q is conjugated to an action preserving the
fibration prz.

4.1.3. The complement of a smooth conic.Since the automorphism group of
P

2 acts transitively on the set of pairs consisting of a smooth conic and a point of
it, every smooth pair (P2, C) where C is a smooth conic is isomorphic to (P2, C0)
where C0 D {yz� x2

D 0}, and every rational pencilPp associated to a point onC
is conjugated toPp0 generated byC0 and 2L0 where L0 denotes the tangent toC0 at
the point p0 D [0 W 0 W 1]. The correspondingA1-fibration q D �p0jV W V D P2

n C0!

A

1 has a unique degenerate fiberL0 \ V , of multiplicity 2. The automorphism group
of V is then the amalgamated product of Aff(V) D Aut(P2, C0)jV and Aut(V, q) D
Tr(P2, C0, p0)jV over their intersection. Again, we have Aut(V) DMTA(V), for M a
collection consisting of a unique model. The interested reader can find more details in
[22, §1.1].
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4.2. Complement of a section with self-intersection 3 inF1. By Proposition 11,
a smooth completion of (S, BS) of an affine surfaceV with B2

S¤ 1,4 is of the form (Fn,C)
whereC is an ample section. SinceB2

S is an invariant ofV , we see that ifB2
S D 3 the

only smooth completions ofV are pairs (F1, C) whereC is a section of self-intersection
3. If we identify�1 W F1! P

1 with the blow-up� of P2
D Proj(C[x, y, z]) at the point

q D [0 W 1 W 0] with exceptional divisorC0 and denote byF
1

the strict transform of the
line {z D 0} � P2, then every such sectionC is the strict transform of a smooth conic
in P2 passing throughq. The automorphism group ofF1 acts transitively on such sec-
tions and so, every smooth completion ofV is isomorphic to (F1, D0) whereD0 denotes
the strict transform of the conic{yz � x2

D 0} � P

2 tangent to the line{z D 0} at
q. The automorphism group of the pair (F1, D0) acts onD0 with two orbits: the point
p
1

D D0 \ C0 D D0 \ F
1

and its complement. This implies in turn that every ra-
tional pencilPp associated to a point onD0 is conjugated either toPp

1

or to Pp0 where
p0 D �

�1([0 W 0 W 1]). Both of these pencils have a unique singular member consisting
of the divisorC0 C 2F

1

in the first case andL C F0 whereL and F0 are the respective
strict transforms of the lines{y D 0} and{x D 0} of P2 in the second case. The induced
A

1-fibrations onV ' F1 n D0 are not isomorphic: the one induced byPp
1

has a unique
degenerate scheme theoretic fiber which consists of the union of two affine linesC0 \ V
andF

1

\ V whereF
1

\ V occurs with multiplicity 2, while the one induced byPp0 has
a unique degenerate fiber consisting of two reduced affine linesL\V andF0\V . In par-
ticular we see from Lemma 14 that any triangular mapV ! V is either in Tr(F1, D0, p

1

),
or up to left-right composition by automorphisms of (F1, D0), in Tr(F1, D0, p0).

Now given an automorphism ofV considered as a birational self-mapf of (F1,D0)
with decomposition

f D �n Æ � � � Æ �1 W (F1, D0) D (S0, BS0)Ü � � �Ü (Si , BSi )Ü � � �

Ü (Sn, BSn) D (F1, D0)

into triangular maps, we can find isomorphisms�i W (F1, D0) ! (Si�1, BSi�1),
�i W (F1, D0)! (Si , BSi ), i D 1, : : : , n such that for everyi D 1, : : : , n,  i D �

�1
i �i�i

is an element of either Tr(F1, D0, p0) or Tr(F1, D0, p
1

). Writing f as

f D �n n(��1
n �n�1) � � � �2 2(��1

2 �1) 1�
�1
1

where��1
1 , �n and ��1

i �i�1, i D 2, : : : , n are elements of Aut(F1, D0), we conclude
that Aut(V) is generated by Aut(F1, D0), Tr(F1, D0, p0) and Tr(F1, D0, p

1

). In other
words Aut(V) DMTA(V) for the family M D {(id

F1, p0), (id
F1, p

1

)}. Remark that in
this case we cannot use a single model anymore.

4.3. Complement of a section with self-intersection 4 inF0. Here we con-
sider the case of an affine surfaceV admitting a smooth completion by a smooth ra-
tional curve with self-intersection 4, and which is not isomorphic to the complement of
a conic inP2. According to Proposition 11, the corresponding pairs (S, BS) are either
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Fig. 7. The three models of pencils with their resolution (the in-
dex of the exceptional divisorsEi corresponds to their order of
construction coming fromF1).

(F0, B) where B is an arbitrary smooth rational curve with self-intersection 4 (which is
automatically a section with respect to one of the two rulings) or (F2, B) where B is
a section of theP1-bundle structure�2 W F2! P

1. First we review these smooth com-
pletions (S, BS) with a particular emphasis on the rational pencilsPp related with all
possible triangular elementary maps that can occur in the factorization given by Prop-
osition 16. Given such a pencilPp, we let � W OS! S be the minimal resolution of the
corresponding rational map�p W SÜ P

1. The last exceptional divisor extracted by�

is a sectionC of the inducedP1-fibration �p� W OS! P

1 and one can prove (see [5],

Section 2) thatOS dominates�1 W F1! P

1 through a uniquely determined sequence of
contractions� W OS! F1 in such a way that the general fibers of�p� coincide with that
of �1� and that the strict transform�

�

(C) of C coincides with the exceptional section
of �1 W F1 ! P

1 with self-intersection�1. We will use this point of view to give a
uniform description of the different pencils involved: seeFig. 7.
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4.3.1. The case (F0, B). With the bi-homogeneous coordinates introduced in
§4.1.2, every pair (F0, B) where B is an irreducible curve withB2

D 4 is isomorphic
to (F0, D0) where D0 D {u2

1v0� u2
0v1 D 0}. Letting C0 D {v0 D 0} and F0 D {u0 D 0}

we have D0 � C0 C 2F0. The automorphism group of the pair (F0, D0) acts on D0

with two orbits: the pair of points{p00, p0
1

} D {([0 W 1], [0 W 1]), ([1 W 0], [1 W 0])} and
their complement. This implies in turn that there exist onlytwo models of rational
pencils Pp0 up to conjugacy by automorphisms of (F0, D0), say Pp00 and Pp01 where
p01 D ([1 W 1], [1 W 1]). They can be described as follows:

a) The pencilPp01 is generated byD0 and H C F1 where H D {(u0 � 3u1)(v0C

3v1) C 8u1v1 D 0} is the unique irreducible curve of type (1, 1) intersectingD0 only
in p01, with multiplicity 3, and F1 is the fiber of the first ruling over the point [1W 1].
The restriction of this pencil toV0 D F0nD0 is anA1-fibration V0! A

1 with a unique
degenerate fiber consisting of the disjoint union of two reduced affine linesH \V0 and
F1 \ V0. See Fig. 7 (model I).

b) The pencilPp00 is generated byD0 and C0C 2F0 (note thatC0 is the tangent

to D0 at the pointp00). Its restriction toV0 is anA1-fibration V0! A

1 with a unique
degenerate fiber consisting of the disjoint union of a reduced affine lineC0\ V0 and a
non reduced oneF0 \ V0, occurring with multiplicity 2. See Fig. 7 (model II).

The fact that theA1-fibrations associated to the pencilsPp00 and Pp01 are not iso-
morphic implies further that every triangular self-map� W (F0, D0)Ü (F0, D0) is the
product of an element of Tr(F0, D0, p00) or Tr(F0, D0, p01) and an element of Aut(F0, D0).

4.3.2. The case (F2, B). Letting C0 be the exceptional section of�2 W F2! P

1

with self-intersection�2, a sectionB of �2 with self-intersection 4 is linearly equiva-
lent to C0C 3F

1

where F
1

is a fiber of�2. In particular B intersectsC0 transversely
in a single point, which we can assume to beC0 \ F

1

. We identify F2 n (C0 [ F
1

)
to A

2 with coordinatesx and y in such way that the induced ruling onA2 is given
by the first projection and that the closures inF2 of the level sets ofy are sections of
�2 linearly equivalent toC0 C 2F

1

(equivalently, the closure of the curve{y D 0} in
F2 does not intersectC0). With this choice,B coincides with the closure of an affine
cubic defined by an equation of the formy D ax3

C bx2
C cxC d. Since any auto-

morphism ofA2 of the form (x, y) 7! (�xC �,�yC P(x)) where P is a polynomial of
degree at most 2, extends to a biregular automorphism ofF2, it follows that every pair
(F2, B) where B is a section with self-intersection 4 is isomorphic to (F2, D2) whereD2

is the closure inF2 of the affine cubic inA2 with equationy D x3. Furthermore, the
automorphism group of the pair (F2, D2) acts onD2 with two orbits: the fixed point
p
1

D D2 \ C0 D D2 \ F
1

and its complement. Again, we have two possible models
of rational pencilsPp up to conjugacy by automorphisms of (F2, D2), sayPp0 where
p0 D (0, 0)� A2

� F2 andPp
1

:
a) The pencilPp0 is generated byD2 and H C F0 where H � C0C 2F

1

is the
closure inF2 of the affine line{y D 0} � A

2 which intersectsD2 only in p0, with
multiplicity 3, and whereF0 D �

�1
2 ([0 W 1]) � F2. Its restriction toW0 D F2 n D2 is an



784 A. DUBOULOZ AND S. LAMY

A

1-fibration W0 ! A

1 with a unique degenerate fiber consisting of the disjoint union
of two reduced affine linesH \W0 and F0 \W0. A minimal resolution of this pencil
is given in Fig. 7 (model I).

b) The pencilPp
1

is generated byD2 and C0 C 3F
1

(remember thatD2 inter-
sectsC0 transversely inp

1

). Its restriction toW0 is anA1-fibration W0! A

1 with a
unique degenerate fiber consisting of the disjoint union of areduced affine lineC0\W0

and a non reduced oneF
1

\W0, occurring with multiplicity 3. See Fig. 7 (model III).

4.3.3. Connecting triangular maps. By the Danilov–Gizatullin theorem,
(F0, D0) and (F2, D2) can arise as smooth completions of a same affine surface. How-
ever, let us briefly explain how to derive this fact directly by constructing appropriate
triangular maps� W (F2, D2)Ü (F0, D0). In view of Lemma 14 and of the descrip-
tion of the rational pencils given above, the only possibility is that the proper base
points of such a map� and its inverse belong respectively to the open orbits of the
actions of Aut(F2, D2) on D2 and of Aut(F0, D0) on D0. Let us construct a partic-
ular quadratic triangular map80 with B(�) D p0 and B(��1) D p01 (see Fig. 8 for
the notations).

Let OS! F2 be the minimal resolution of the base points of the rational pencil Pp0

as in §4.3.2.a) above. The surfaceOS can also be obtained fromP2 by a sequence of
blow-ups with successive exceptional divisorsC, E1, E2, E3 and E4 in such a way
that curvesl and B D D2 correspond to the strict transforms of a pair of lines inP2

intersecting at the centerq of the first blow-up. In this setting, the strict transform of
C0 � F2 in OS coincides with the strict transform of a certain lineL in P

2 intersecting
B in a point distinct fromq. Let O W OSÜ OS0 be any fibered modification of degree
2 and let B0 be the strict transform inOS0 of the second exceptional divisor produced.
Then one checks that there exists a unique smooth conic1 in P

2 tangent toB in q
and to L at the pointL \ l such that its strict transform inOS0 is a (�1)-curve which
intersects transversely the strict transforms ofE2 and B0 in general points. By succes-
sively contractingE4, : : : , E1, we arrive at a new projective surfaceS0 in which the
strict transform ofB0 is a smooth rational curve with self-intersection 4 and suchthat
the strict transforms of1 and E3 are smooth rational curves with self-intersection 0,
intersecting transversely in a single point. ThusS0 ' F0 and O� W OSÜ OS0 descends to
a triangular map W (F2, D2)Ü (F0, B0). Moreover, the proper base point of �1 is
located at a point whereB0 intersects the two rulings transversely. So there exists an
isomorphism of pairs� W (F0, B0)! (F0, D0) such that80 D � W (F2, D2)Ü (F0, D0)
is triangular and mapsPp0 onto Pp01.

4.3.4. The automorphism group. To determine the automorphism group of an
affine surfaceV admitting a smooth completion (S, BS) with B2

S D 4 we can proceed
as follows. First we may assume up to isomorphism thatV D F2 n D2. Then given an
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Fig. 8. Quadratic triangular map80 W (F2, D2)Ü (F0, D0).
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automorphism� of V we consider a minimal factorization of the associated birational
self-map f of (F2, D2) into triangular maps

f D �n Æ � � � Æ �1 W (F2, D2) D (S0, BS0)Ü � � �Ü (Si , BSi )Ü � � �

Ü (Sn, BSn) D (F2, D2)

where eachSi is isomorphic either toF0 or F2.
If the intermediate surfacesSj are not all isomorphic toF2, then we let j 2 {1,: : : ,

n� 1} and k 2 { j C 1, : : : , n} be minimal with the property thatSj ' Sk�1 ' F0 and
Sk ' F2. Replacing if necessary� j�1, � j and� jC1 by �� j�1, �� j�

�1 and� jC1�
�1 for

isomorphisms� W (Sj�1, BSj�1)! (F2, D2) and� W (Sj , BSj )! (F0, D0), we may assume
from the beginning that (Sj ,�1, B j�1) D (F2, D2) and (Sj , B j ) D (F0, D0). We may
assume similarly that (Sk�1, BSk�1) D (F0, D0) and (Sk, BSk ) D (F2, D2). Now consider
the triangular maps� j W (F2, D2)Ü (F0, D0) and �k W (F0, D0)Ü (F2, D2). Since the
A

1-fibrations induced by the pencilsPp
1

on F2 andPp00 on F0 are not isomorphic and
not isomorphic to those associated to points inD2 n {p

1

} and D0 n {p00} it must be
that B(� j ) 2 D2 n {p

1

} and B(��1
j ) 2 D0 n {p00} (see §4.3.1 and 4.3.2). It follows

that there exist automorphisms� j 2 Aut(F2, D2) and � j 2 Aut(F0, D0) mappingB(� j )
onto p0 andB(��1

j ) onto p01 respectively. So replacing� j�1, � j and � jC1 by � j� j�1,

� j� j�
�1
j and� jC1� j respectively, we may assume from the beginning thatB(� j ) D p0

andB(��1
j )D p01. For the same reason, we may assume thatB(�k)D p01 andB(��1

k )D
p0. Strictly speaking, in the casek D j C 1, we have to insert an automorphism� 2
Aut(F0, D0) between� j and � jC1, which will play the same role as�k�1 � � � � jC1 in
the sequel. Recall that by construction, the particular triangular map80 W (F2, D2)Ü
(F0, D0) constructed in §4.3.3 hasB(80) D p0 andB(8�1

0 ) D p01. It then follows from
Corollary 15 that8�1

0 � j W (F2, D2)Ü (F2, D2) is an element of Tr(F2, D2, p0) while
80�k W (F0, D0)Ü (F0, D0) belongs to Tr(F0, D0, p01). Summing up, we can rewritef
in the form

f D �n � � � �kC18
�1
0 [(80�k)�k�1 � � � � jC1]80[(8�1

0 � j ) � � � �1]

D f 08�1
0 [(80�k)�k�1 � � � � jC1]80[(8�1

0 � j ) � � � �1]

where f 0 W (F2, D2) Ü (F2, D2) has lengthl ( f 0) < l ( f ) and where the sequences
(80�k) � � �� jC1 and (8�1

0 � j ) � � ��1 only involve intermediate surfaces isomorphic toF0

and F2 respectively.
Now we deduce as in §4.2 that (8�1

0 � j ) � � � �1 can be written as a sequence of
elements in Aut(F2, D2), Tr(F2, D2, p0) and Tr(F2, D2, p

1

). Similarly, (80�k) � � � � jC1

can be decomposed into a sequence of elements in Aut(F0, D0), Tr(F0, D0, p00) and
Tr(F0, D0, p01) and so8�1

0 [(80�k) � � �� jC1]80 can be written as a composition of elem-
ents of the conjugates of these groups by80 W (F2, D2)Ü (F0, D0). We conclude by
induction on the length that Aut(V) DM TA(V) with

M D {(id
F2, p0), (id

F2, p
1

), (80, p00), (80, p01)}.
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4.4. Automorphisms of the complement of a section with self-intersection 5 in
F1. While it could seem at first glance similar to the previous ones, this case exhibits
a new behavior which is more representative of the general situation: the existence of
non-tame automorphisms.

4.4.1. Possible models and associated rational pencils.In view of Propos-
ition 11 there exists only two possible types of smooth completions (S, BS) with
B2

S D 5 and S n BS affine: the complements of sections with self-intersection5 in
either �1 W F1! P

1 or �3 W F3! P

1.
1) In the first case, every such sectionB is linearly equivalent toC0C3F where

C0 is the exceptional section of�1 and F a fiber. In particular,B � C0 D 2 and with
the notations of §4.2, we have two possible pairs up to isomorphisms: first (F1, D1)
where D1 is the strict transform of the nodal cubicC1 D {x3

� z3
D xyz} � P2 with

tangents{zD 0} and {x D 0} at q0 D [0 W 1 W 0]; and second (F1, D2) where D2 is the
strict transform of the cuspidal cubicC2 D {x3

D z2y} � P2 tangent to{zD 0} at q0.
a) The automorphism group of (F1, D2) acts on D2 with three orbits: p

1,2 D

C0 \ F
1

, p0,2 D �
�1([0 W 0 W 1]) and their complement. The pencilPp

1,2 is generated
by D2 andC0C3F

1

and it restricts onV0,2D F1nD2 to anA1-fibration with a unique
degenerate fiber consisting of two affine linesC0 \ V0,2 and F

1

\ V0,2, the second
one occurring with multiplicity 3. The pencilPp0,2 is generated byD2 and L C 2F0

where L � C0C F
1

is the strict transform of the tangent line toC2 at [0 W 0 W 1] and
F0 D �

�1
1 �1(p0,2). Its restriction toV0,2 is an A1-fibration with a unique degenerate

fiber consisting of two affine linesL \ V0,2 and F0 \ V0,2, the second one occurring
with multiplicity 2. Finally, for everyp 2 D2n (p0,2[ p

1,2), the pencilPp is generated
by D2 and H C Fp where Fp D �

�1
1 (�1(p)), and H � C0C2F

1

is the strict transform
of the unique smooth conic inP2 intersectingC2 with multiplicity 4 at � (p) and 2 at
q0. The inducedA1-fibration on V0,2 has a unique degenerate fiber consisting of two
reduced affine linesH \ V0,2 and Fp \ V0,2.

b) The automorphism group of (F1, D1) acts on D1 via the dihedral group of
order 6 generated by the symmetry with respect to the pointp1 D �

�1([1 W 0 W 1]) and
the lift of the Z3-action onC1 defined by" � [x W y W z] D ["x, "�1y W z]. In particular,
the induced action has no open orbit.

For the pair (F1, D1), we have two types of pencils: the first family consists of
the pencilsPp

"

k at the pointsp
"

k
D �

�1([1 W 0 W "k]), k D 0, 1, 2. These are gener-
ated respectively byD1 and L

"

k
C 2F

"

k where L
"

k
� C0C F is the strict transform of

the tangent line toC1 at the point [1W 0 W "k] and F
"

k
D �

�1
1 (�1(p

"

k )). The induced
A

1-fibrations onV0,1 D F1 n D1 have a unique degenerate fiber consisting of the dis-
joint union of two affine linesL

"

k
\ V0,1 and F

"

k
\ V0,1, the second occurring with

multiplicity 2.
On the other hand, for every pointp 2 D1n{p1, p

"

, p
"

2}, the pencilPp is generated
by D1 and Hp C Fp where Fp D �

�1
1 (�1(p)), and Hp is the strict transform of the

unique smooth conic inP2 intersectingC1 with multiplicity 4 at � (p) and 2 atq0 if
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p 2 D1nC0 or the strict transform of one of the two smooth conics intersectingC1 with
multiplicity 6 at q0 otherwise. In each case the inducedA1-fibration onV0,1 has unique
degenerate fiber consisting of the disjoint union of two reduced affine linesH \ V0,1

and Fp \ V0,1.
In contrast with the previous case, the description of the action of Aut(F1, D1) on

D1 implies that even though theA1-fibrations onF1 n D1 induced by the pencilsPp,
p 2 D1 n {p1, p

"

, p
"

2} are abstractly isomorphic, they are no longer pairwise conjugate
via elements of Aut(F1, D1).

2) In the second case (F3,B), a sectionB of �3 with self-intersection 5 is linearly
equivalent toC0C 4F whereC0 is the exceptional section of�3 with self-intersection
�3 and F is a fiber of�3. Since the automorphism group ofF3 acts transitively on
such sections, there exists a unique model (F3, D3) up to isomorphism of pairs. Fur-
thermore, the automorphism group of (F3, D3) acts onD3 with two orbits: the point
p
1

D D3\C0 and its complement. The pencilPp
1

is generated byD3 and C0C4F
1

where F
1

D �

�1
3 (�3(p

1

)) and it restricts onW0 D F3 n D3 to anA1-fibration overA1

with a unique degenerate fiber consisting of two affine linesC0 \ W0 and F
1

\ W0,
the second one occurring with multiplicity 4. For every other point p 2 D3 n p

1

,
the rational pencilPp is generated byD3 and H C Fp where Fp D �

�1
3 (�3(p)), and

H � C0 C 3F is the unique section of�3 intersectingD3 at p only with multiplicity
4. The inducedA1-fibration on W0 has a unique degenerate fiber consisting of two
reduced affine linesH \W0 and Fp \W0.

4.5. Automorphisms of the complement of a section with self-intersection 6
in F0. In this case a further new phenomenon occurs: the existence of uncountably
many isomorphy types of smooth completions (S, BS), only finitely many of these hav-
ing non-trivial automorphism groups. Below we only summarize these possible abstract
isomorphy types and observe what is strictly necessary to finish the proof of Propos-
ition 22. The three types of possible models of smooth completions (S, BS) of an affine
surface withB2

S D 6 are (F0, C), (F2, C) and (F4, C) whereC is each time an ample
section with self-intersection 6.

1) The case (F4, C): a sectionC with C2
D 6 is linearly equivalent toC0C 5F

where C0 is the exceptional section of�4 W F4 ! P

1 with self-intersection�4 and F
is a fiber of�4. Note thatC intersectsC0 transversally in a unique pointp

1,4. The
automorphism group ofF4 acts transitively on the set of such sections and, identifying
F4 n (C0 [ F

1

) where F
1

D �

�1
4 (�4(p

1,4)) with A

2 in a similar way as in §4.3, we
may assume thatC D C4 is the closure of the affine quintic{y D x5} � A

2. The
automorphism group of (F4, C4) acts onC4 with two orbits: the pointp

1,4 D C4\C0

and its complement.
2) The case (F2, C): a sectionC with C2

D 6 is linearly equivalent toC0C 4F
where C0 is the exceptional section of�2 W F2 ! P

1 with self-intersection�2 and F
is a fiber of�2. Such a section intersectsC0 either in a single point with multiplicity
two or transversally in two distinct points.



AUTOMORPHISMS OFOPEN SURFACES 789

a) In the first case, up to an automorphism ofF2 we may assume thatC D C2,1

is the closure inF2 of the intersection of the quartic{yz3
D x4} � P2 with A

2. The
group Aut(F2,C2,1) acts onC2,1 with three orbits: the pointp

1,2D C2,1\C0, the point
p0,2D (0, 0)� A2

� F2 and their complement.
b) In the second case, up to an automorphism ofF2 we may assume thatC D

C2,2 is the closure inF2 of the intersection of the quartic{xyz2
D x4

� z4} � P2 with
A

2. The group Aut(F2, C2,2) acts onC2,2 via the dihedral group of order 8 generated
by the symmetry with center at the pointps D [1 W 0 W 1] and the lift of theZ4-action
on {xyz2

D x4
� z4} defined by" � [x W y W z] D ["x W "�1y W z].

3) The case (F0, C): a sectionC of the first projection�0 D pr1 W F0 D P
1
� P

1

with C2
D 6 is linearly equivalent toC0C3F whereC0 is a fiber of pr2 and F a fiber

of �0. Such sections can be first roughly divided into three classes according to the
number of fibers of the second projection which intersectC with multiplicity 3.

a) If there exist at least two such fibers intersectingC with multiplicity 3 then
the pair (F0, C) is isomorphic to (F0, C0,0) whereC0,0D {u3

1v0Cu3
0v1 D 0}. The group

Aut(F0, C0,0) is then isomorphic toC� �Z2 whereC� acts by� � ([u0 W u1], [v0 W v1]) D
([�u0 W u1], [�3

v0 W v1]) and whereZ2 exchangesu0, v0 with u1, v1.
b) If there exists a unique fiber of pr2 intersectingC with multiplicity 3, then

the pair (F0, C) is isomorphic to (F0, C0,1) whereC0,1D {u3
1v0C u2

0(u0C u1)v1 D 0}.
Its automorphism group is isomorphic toZ2, acting via ([u0 W u1], [v0 W v1]) 7! ([�u0�

2u1=3 W u1], [�v0 � 4v1=27 W v1]).
c) Finally, if there is no fiber of pr2 intersectingC with multiplicity 3 then the pair

(F0,C) is isomorphic to a pair of the form (F0,C1,b) whereC1,b D {u2
1(u0Cu1)v0Cu2

0(u0C

bu1)v1 D 0} for someb 2 C n {0, 1} such that the polynomials(t) D 2t2
C (bC 3)t C 2b

has simple roots (this last condition guarantees preciselythatC1,b cannot intersect a fiber
of pr2 with multiplicity 3). Furthermore, such a curveC1,b has exactly four horizontal tan-
gents at the following pointsPi (b)D (pi (b),qi (b)): P1(b)D ([0 W 1], [0 W 1]), P2(b)D ([1 W
0],[1 W 0]), P3(b)D ([r1 W 1],[r 2

1(r1Cb)=(r1C1) W 1]) andP4(b)D ([r2 W 1],[r 2
2(r2Cb)=(r2C

1) W 1]), wherer1, r2 2 C n {�1} are the roots ofs(t). It follows from this description that
two pairs (F0,C1,b) and (F0,C1,b0) are isomorphic only if there exists a permutation� 2S4

such that the cross-ratios of (p1(b), p2(b), p3(b), p4(b)) (resp. (q1(b), q2(b), q3(b), q4(b)))
and (p

� (1)(b0), p
� (2)(b0), p

� (3)(b0), p
� (4)(b0)) (resp. (q

� (1)(b0), q
� (2)(b0), q

� (3)(b0), q
� (4)(b0)))

are equal. A direct computation implies in turn that there exists uncountably many iso-
morphy classes of such pairs all having a finite group of automorphism of order at most
24 and that this group is in fact trivial except for finitely many of these.
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