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Abstract
We consider the percolation on tkeout graphGeu(n, k). The critical probability
of itis p. = 1/(k + vkZ — k). Similarly to the random grapks(n, p), in a scaling
window pe(1 + O(n~%3)), the sequence of sizes of large components rescaled by
n~2/3 converges to the excursion lengths of a Brownian motion wdtime drift. Also,
the size of the largest component @log n) in the subcritical phase, an@(n) in
the supercritical phase. The proof is based on the analysiecexploration process.

1. Introduction

The random graptGG(n, p) hasn vertices{1, ..., n} and each edgéi, j) is real-
ized independently with probabilitp. The random graph is interpreted as the percola-
tion on the complete graph havingvertices with percolation probabilityp. It is well
known that the random graph has “double jump”. Namely,&gn,c/n), the size of the
largest componerd; is of order log for ¢ < 1, of ordern?® for ¢ = 1, and of orden
for ¢ > 1, we refer the reader to [5], [6]. Furthermore, it becamaurcthat the structure
of the random graph rapidly changes in a “scaling window/nj{1+ O(n=%/3)), we re-
fer the reader to [7]. In the scaling window, the rescale@ sizthe largest component
|C1|-n~?/3 converges in distribution to a non-trivial random variable refer the reader
to [8]. Aldous [1] showed that the sequence of sizes of corapt (Cy|, |C2],...) ar-
ranged in decreasing order converges to the sequence afsextlengths of Brownian
motion with some drift when scaled hy”3. This fact is provided by the analysis of
the exploration process. In this process, we explore onewar; at each timet, i.e.,
we count vertices connected ta by an edge. So, the exploration process reveals the
structure of connected components @fn, p).

The convergence to the Brownian excursions appears in @ngtlaph model too.

In [9], Nachmias and Peres investigated it in the randbnegular graphGyeg(n, d). It
is known that thed-regular graph is almost surely connected dor 3. But when we
consider the percolation 0oBeg(n, d), i.e., each edge remains with probabiligyand
is removed with probability + p independently, we can consider a similar problem for
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percolation clusters. For this model, in the scaling windpw: (14 O(n~%3))/(d — 1),
the sequence of the rescaled sizes of the connected contparmiverges to the se-
guence of the excursion lengths of a Brownian motion with eairift, both arranged
in decreasing order, we refer the reader to [2].

We prove this convergence for thkeout graphGeu(n, k), wherek > 2 is a given
integer and we fix it throughout this paper. Tkeut graph model is explained in [9].
First we construct the graph with directed ed@é&n(n,k). The vertex set oéout(n, k)
isV ={1,...,n}. For eachv € V, choosek distinct edges1(, v1),..., (v, vk) uniformly
from {(v, 1), @, 2),..., (v, N} \ {(v, v)}. This is a construction of théout(n, k). The
vertex set ofGgu(n, K) is V too and a non-directed edde, w) is in the edge set of
Gou(n, k) if either (v, w) or (w, v) is an edge oféout(n, k). However, it is convenient
to keep the information of the direction of each edge untilasastruct the exploration
process. We also consider percolation®g),(n,k). Each edge is open with probability
p and closed with probability + p independently. Our exploration process explores
open clusters of5qu(n, K).

The k-out graph model is related to the Watts—Strogatz modelchwviias intro-
duced in [11] to explain the small world property of real netis (for more details, see
[11] and references therein.). The Watts—Strogatz modebistructed in the follow-
ing way. We start the one-dimensional lattice ring. For eadbe, we rewire each edge
at random with probabilityp. When the rewiring probability is 1, the Watts—Strogatz
model resembles thk-out graph. Further, the critical point of percolation on raph
can be considered as an indicator of the robustness of thh gne@del. We hope that
our analysis of th&-out graph model will lead to knowing the critical point ofrpela-
tion on the Watts—Strogatz model, hence the robustness of it

Bollobas and Riordan [4] proved the phase transition of trmvimg k-out graph.

It is constructed in the following way. At time O, we prepakevertices having no
edges. For each time> 1, we add one vertex, and reach undirected edges from new
vertex tok vertices chosen uniformly at random. We continue this uth@ number

of vertices becomer. Similar to thek-out graph, without firsk vertices, each vertex
reachk edges from itself. But this model has inhomogeneous degfeertices, and

it belongs to the group of the uniformly grown graph. The grmyvk-out graph has
more robustness than theout graph. In fact, it is interesting to see that the crltica
point of the growingk-out graph is half of the critical point of thke-out graph.

In Section 2 we state main results. There are some theoremacim phase of the
percolation for thek-out graph. Section 3 introduces the construction of thdoeapon
process for thé-out graph. Proofs of Theorems 1, 3 and 4 are in Section 4. ¢tidde5
the proof of Theorem 2 is provided by the convergence of th@oeation process.

For the construction and the calculation of the exploratwocess of thek-out
graph, we follow the argument in [2]. However, we have to owere some difficulties
peculiar to thek-out graph.
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2. Main results

Let C, be thel-th largest open cluster dBgyu(n, K).

Theorem 1 (critical phase) Let A € R be fixed and let

1+ an~13

k+ vkZ—k

Then there exist positive constants.,&), C(1, k) such that for a large enough n and
a large enough A

p=pQ) =

c(r, k)efc()»,k)A3

P(|C1| = An?3) < A

Even if A is not a constanthe above inequality is correct when A O(n%/19),

Let {5(s): s € [0, o0)} be a standard Brownian motion. Fare R, we define the
process3* by

@) B(s) = B(2(k — Vk2 —Kk)s) + 2(k — vk2 — k)rs — (VK2 —k —k + 1)s?
for s € [0, 00). Next we define the reflected process®if by
2 W2(s) = B*(s) — 0min B*(9).

<s'<s

Let (y;])j=1 be the sequence of all excursion lengths/Aéf arranged in a decreas-
ing order. Also let [C;|);>1 be the sequence of sizes of open clusters in a decreasing
order, concatenated by zeros to form a vectol?in

Theorem 2 (scaling window) Let A € R be fixed and let

1+ an13
p=pQ)= ———r—.
k + vkZ =k
Then
Py fd.
N2 (ICiN)jz1 = (i Dj=1
as n— oo.

Next, we state the results of the largest open cluster sizulieritical and super-
critical phases. Lep = ¢/(k + vkZ — k).

Theorem 3 (subcritical phase) If ¢ <1 and A> 0 is sufficiently largethen

P(/C1| > Alogn) - 0, as n— oo.
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Theorem 4 (supercritical phase) If ¢ > 1 and § > 0 is sufficiently smajlthen
P(|C1] <dén) -0, as n— oo.

3. Exploration process of thek-out graph

We consider thek-out graph with directed edgeéout(n, k). Each vertex has state
neutral or active or explored and each edge has statkeckedor unchecked We ex-

plain the algorithm of the exploration d%out(n, k).

3.1. The algorithm of the exploration process. For each time, we explore one
vertex. Letw; be the vertex that we explore at timelLet V; be the set of neutral ver-
tices at timet, A; be the set of active vertices at timeand & be the set of explored
vertices at timet. Let Nt(i) be the set of vertices at timesuch that, forv € Nt(i),

(i) v is neutral, and

(i) amongk edges starting fronv, exactlyi edges are checked.

ThereforeN; equals the union ofV;@, VMY, A, Similarly, let A” be the set of
active vertices at time with exactlyi edges being checked. Sé; equals the union
of A9 A® . A, Further we define the se¥;{*" as U‘j‘=i N Similarly we

define ;D AFD A4S,

Let Ny and Nt(i) denote the cardinalities of andj\/t(i), respectively. Also letA
and A" denote the cardinalities ofl; and A{, respectively.

At time 0, all vertices are inV\%, and all edges are unchecked. The exploration
at each time consists &€ + 2 steps. Lett(— 1,1) denote thel-th step at timet for
0<I| <k+1. We write Ni_1; for N at the stept(—1,1). Similarly we define4;_,,,
NO, and AY

At the step( 1,0), we choosew;. At the step (—1,1) for 1 <| <k, we explore
each directed edge froma;. At the step {(—1,k+ 1), we explore one directed edge to
wt. The number of edges from; depends on the state af; at timet — 1. So, it is
necessary to divide the exploration of directed edges fi@mFrom now on, we will
explain these steps in more detail.

The step ¢—1,0); choosingw;. If A", >0 and AZ/™ = 0, thenw is chosen
from AY), umformly If A_y =0, wy is chosen from\_; uniformly. We putA;®, ;=
NON {we) and 4D o= AD \ {wy) for 0<i <k.

The step ¢ —1,1), 1 <1 < k; directed edge from w;. At this step, we execute
the arm stretch process (AS procegg); . Let T be the total time required for AS
processei_11, - - -, pi—14- pi—1; and T; will be described later. Ifw; € /\/t(fl"l) u
AED we execute the AS proce$$ - I we e NEP U AR), do nothing and put
M('1| _‘/\/t(lll v A =AY, for 0<i <k andT = Ti_; at this step.
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The construction of the AS process. The AS process is composed of the follow-
ing algorithm. We start withlp = 0.

First, we check one directed edge fram, and writen;_11,_,+1 for the head of
this edge. We declare that the eda&,(:—17_,+1) iS checked. Ify_17_,+1 iS chosen
from A%,_; and the edge(w, n_17 .+1) is open, we say thaf_17 .41 iS good
and letn:_17_,+1 change to active. Otherwise we say that; 1, ,+1 is bad and stop
the process here.

Next, for x > 1, suppose that we have distinctgood vertices{ni1.1_,+1, - - - »
N-1T_,+x}- Then we check one directed edge fromiy_,+x, and writeni_1 7,_, +x+1
for the head of this edge. We declare that the edge §_,+x,7t—17_,+x+1) iS checked.
If ni_17_,+x+1 IS chosen from/\ft(o)1| 1 and the edgéni_17_,+x: M—1,T_1+x+1) IS Open,
we say thatp_17,_,+x+1 IS good, and lety_11_,+x+1 change to active. Otherwise we
say thatn:_11_,4+x+1 iS bad, and stop the process here. We continue it until weaget t
a bad vertex, where we stop this process.

By this construction, new good verticés:_11,_,+1,..-,nt-1,1—1} at the stept(=1,1)
are in AY,

We consider the state of the bad vertex and renew the state®rbfes. Let
{m—171_,+1, - -, M-17_,4+x} D€ vertices obtained by the above procedure. Thes
Ti—1+ X, m—17,+y IS good fory < x and n._11_,4x is bad.

a) If M—-1.T, is chosen frorTL4t,1,|,1 U {w¢} U {nt,]_"ﬁ71+1, ey T]t,]_,'ﬁ,l}, or i1, is
chosen from\; 1, 1 and the edgdn:_ 171, nt_17,) is closed, then we put

N(O)u = “/\[t(g)l,lfl \ M1 t1s - - -0 M1 T—1)

Nt(l)u = t(i)ll 1 for 1=ic=<k,

‘Agl)ll = At(l)ll LUMCT 141 - - e T h
§|)1| = A0 11 for i#L

b) If ni_1 7 is chosen from/\/t(fi',fl and the edg€ni_11-1, m—17) IS open, then we
do the same thing as in the case a) except that we put

N(lu = 'A/t(—l)l,lfl \ {17}

1 1
AE,)]_J = ‘AT(,)]_J,]_ U {’7t71,T|,1+1a ceey nt—l,'ﬁ}-

c) If m_17 is chosen frorn/\/t(l)lylf1 for 2 <i <k and the edg€ni_1,1-1, N-17) IS
open, then we do the same thing as a) except that we put

N(I 1 = M(i)l,l—l \ {17},
A(I) A1(i7)1,|71 U {17}

When all the above operations are over, the AS progess is finished.
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The step ¢ — 1,k + 1); directed edge tow;. For v € j\/t(l)lk if there is an
unchecked edgev(wy) in éout(n, k), then we declare that the edge ) is checked.

Further, if the non-directed edg@, w:) is open, thenv € Aﬁ'fllﬁﬂ if this edge is

clqsed, therw € /\/’t(lﬁll If there is not such an edge, thene Nt(i)l,kﬂ. Forv €
Af',)lyk, if there is an unchecked edge, w;) in Gou(n, k), then we declarev( w;)

checked and € A!"Y) . If there is not such an edge, there A", , . .

REMARK 1. For the directed edge (w;) checked at the step € 1,k + 1), there
are cases when the revers edg®, (v) is checked before the step £ 1, k). In this
case, the non-directed eddey, v) has already decided open or closed. So, the state
of this edge must not change. This fact influences the cdlonlaf the exploration
process. We solve this problem in Remark 3.

. Wherj all the above steps are over, we put= &_; U {wy}, N{m = t(l)lykﬂ,
AY = AEI—)I,k+1 for 0 <i <k, and the exploration ofu; is finished.

3.2. The stochastic process characterizing the exploratioprocess. We define
& by

3 & = A —A_11—1.

Namely, & + 1 is the number of vertices changing their state from neutrahctive,
from step {— 1, 2) to step f(— 1, k + 1).

Next we defineN(w:) by N(wi) = Ai—1,1 — Ai—1,0 + Ljmeni,.- Roughly N(wy)
is the number of vertices changing their state from neutrahdtive, during the step
(t—1, 1) (includingwy). Thus A; = A1 + N(wy) + &.

The processN(w;) is positive exactly whenA;_; = 0, and A; can be written as
A=Y N(ws) + Yt_; &. We will investigate the behavior of

REMARK 2. By the above constructiond” = A9 = 0 for any t and|.

By definition, we have
(4) Xt = At —_ Zt,

where Z; is a non-decreasing process given by

t
Zi =) N(w).
s=1
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Let 0=1t <t <--- be the times at whichA; vanishes. TherZ; = Z; , for all
tef{tj+1,...,t1}. SinceXy = -2, we haveX,, = -2, =—2Z < X; for all
te{tj+1,...,tj.1 —1}. Therefore each; is one of renewal times of the process
MiNg<s<t Xs.

4, Proofs of Theorems 1, 3, and 4

For verticesu and v, we mean byu < v that there is a directed edge, (1) in
Gou(n, k), and we mean byn 17 € Nt(i)l,ui oper} that 17 € Nt(i)l,u and the
edge(n—17-1,nt-1,%) is open (ifne17-1 = ne-17_,, then(w, ne17) is open). Also,
{wi <— v, closed means thatw; < v and the edg€w, v) is closed.r,_1, denotes the
number of good vertices in the AS process;;. Let

/ = >
fas = Pt 40 e, oper

i.e., it is the number of new active vertices gp_1;.

Assume thatw; € Nt(i)luAfi_)l for some 1<i <k. Then we introduce fictitious AS
processeg;_1; for | =1,...,i, which are independent copies of an AS process with
data {/\/ﬁiy,_l U Aﬁj_)“_l}, 0 < j <k, which always executes, an/tsi’t(_j)lll, Agj_)u are
unchanged from\/t(_”lv,_l, Afj_)lv,_l. Letfi—1) andf{_,, be the number of good vertices
in pt_1; and the number of new active verticesgpn 1. Forl >i+1, we putpi_1; as
thel-th AS process as before. Therefdke;) =ry 1y andf{_;, =r{_;, for | >i +1.

By (3), & also has the following expression.

k
Y
b= Z 1{w16/\/;(f1|71)UAS'1’1)}rtfl,l + Z 1{w[eu, operj — 1
=2 veNi-1k

k
I,'\t/—l,l + Z 1{w1<—u,oper) -1
1=2 “EM—LK
k

j
=D AL a0 0nti=0) + Laimomeny} D Flare
j=2 1=2

Let F; be theo-algebra generated by all the information up to timeand let
Fi—1) D Fi—1 be theo-algebra generated by all the information up to the end of the
step € —1,1).

Hereafter, we use the following notation fdy = f,(w) and g, = gnh(w). fn =
0(gn) if there is Qo such thatP (o) = 1 and limy_. SUR,cq, fn/dn = 0. fn = O(gn)
if there existsC > 0 such that| f,| < C|gs| for any n and almost every.

We use following notations for some distributions. [Bx#(p), Ggp), Bin(n; p) and
NB(k; p) denote distributions of the Bernoulli distribution withet success probability
p, the geometric distribution with the success probabipitgtarting 1, the binomial dis-
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tribution with the populatiom and the success probability, and the negative binomial
distribution with the number of failurek and the success probability, respectively.
Next, we introduce an abbreviated notation,

X ~ NB(n; p) + Bin(m; q) +c,

to mean thatX = X; + X, + ¢ for independent random variable§;, and X, and a
constantc such thatX; ~ NB(n; p) and X, ~ Bin(m; q).

4.1. Fundamental lemmas.

Lemma 1. Let {a;_1,} be independent random variables distributed as

®) a1 ~Gel-—p) (1=I=Kk),
n(n_t: <P .
(6) Gt 1Ki1 ~ Bln(n —t; - —t) (t=<n-1),
Be(kp) (t = n)

foreachl <t <nandl1<I| <k+ 1 Then we can couplerAtLlyl} and {ot—1)} such

that almost surely’{_; | < a1 andat—y; is independent of;_;,-; for eachl <t <n

and1 <1 <k. Also we can COUP'%Z%M,M Ly, oper;} and {ai_1x+1} such that

almost surelyZverlvk Lwiv, open < Qt—1x+1 and g1 k41 iS independent ofF_y ¢ for

eachl <t <n. Further let o = Z|k=2 ai-1) + ¢i—1k+1 — 1. Thene; is distributed as
kp

NB(k — 1; 1—p)+Bin(n—t; —)—1 t<n-1),

(7) Og ~ n—t

NB(k — 1; 1— p) + Be(kp) — 1 t = n)

for eachl <t <n, and we can coupldé&} and {«;} such that almost surel§; < oy
for each t ande; is independent off;_;.

Proof. We have for each > 1,
P, >d|F11) P{m 17,400+ N-17_,+d-1 are good,
(M-1Ti_y+d-1, M-1Ti_y+d) iS OpEN| Ft 1) 1)
< pd.
So we can couplé; ;; anda;-1) such that almost surelff ;| <ot 1.
Other facts are trivial. ]

Lemma 2. Letd €][0,1). For any0 <t < n, there exist positive constants, &
Ci(k) and G = Cy(K),

E[NEY + A] <Cit, E[(NEY + A)?] < Cot2,
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Proof. Lets = (NEV 4 A) — (NEP + Ac1). Also, letz be a random variable
distributed asNB(k; 1 — p) + Bin(n —t; k/(n —t)), where¢, is independent ofF;_;.
By Lemma 1, we can couplg and g, such that almost surelg < ¢ for all t < 8n.
Hence we get some consta@t = C;(k) depending ork,

t t t
> - k
]E[Nt(—l) +A] = E E¢s < E Els < E {Tpp + k} < Cat.
s=1 s=1 s=1

Also there exist®LC, = Cy(k) depending ork,

E[(NEY + A)*] = E[(NEP + At +4)°]
<E[(NED + A1)?] + 2C2t + C3 < Ct?,

where C3 = Cz(k) depends ork. L]

Lemma 3. Let0O< p < 1and m=m(n) <n be a sequence such tha{mh— oco
as n— oo. Then

k
E[& | Fioa] = (k— 1)—p+kp 1-3 F
j=2

(1)
N, A
et
t n—t

k
= 2 (o= + asmomenty )
=2

? X{(j—l) P _(J'—l)pth(il)_(j_]_)p At—l}
1-p (A-p2n-t (@A-p2n-—t
(=1)
MQ(]_H_O( m*/ + mi3pm )

(n—t)?
E[1{no ey O) | Fis],

where | = (k—1)p?/(1— p)®+ jp and G= (k—1)p/(1— p)> + kp. Furthermore let
Dk = 2(k — VkZ —K).
If p=(1+¢)/(k+ vk2—k) for somee = o(1), then

©) K- 1)1Tpp 4 kp—1= Dye + O(€?).

REMARK 3. (i) Suppose that; is a good vertex of the AS proceggs_;, for
somes <t and some 1< | < k. Namely, there exiss <t, 1<l <kandye N
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such thatw; = ns_17_,4+y and Ti_1 + y < T;. Then we have checked the directed
edge @s—1,1_,+y:Ms-1.T_1+y+1). Hence we have to excludg_; 7 ,+y+1 When we check
other directed edges from; (= ns_17,_,+y). Furthermore, when we execute th¢h
AS processpi-1), m-17_,+1 IS chosen fromNi_qj_1 U Ai1)-1 outside {ne11,+1,
M-1T+1s - - - » —1T_,+1}. HOwever, if we take conditional expectation without con-
sidering these things, then the error@1/(n —t)).

(ii) Suppose thatw; appears in the AS procegs 1) for somes <t and some 1<

I < k. Namely, there exisé <t, 1 <1 <k andy € N such thatw; = ns_17_,+y
andT_1 +y < T. Wheny = 1, we understand thafs_1 1, ,+y-1 = ws. Then we
have already decided the ed@®_171 ,+y, 7s—1,7 ,+y—1) t0 be open or closed at time
s. However, sincejs_1 7,_,+y-1 iS not neutral, so we don’t have to excluge 1 _,+y—1
when we execute AS processes at titne

(iii) Suppose that there exist<t, 1 <| <k andy € N U {0} such thatw; = ns_17_,+y
andT,_1+Vy < T, where we understand= s if y = 0. We consider the step-{1,k+1).

If {wy < ns_17_,+y+1} occurs, then we have already decided the eflge ns—17) is
open or closed at time. However, similarly to (i), if we take conditional expedtat
without considering these things, then the erroi€l/(n —t)).

Proof of Lemma 3. First we consider stefs—(1,1) for 2 <1 < k. Note that

1{f:'71,|:"} = 1“‘*1*' =x-1j 1{'7171,T| NGy, oper}
(10) + lmflvl =x} [1{%71,1] eNa\{n-17_g+10- -1 -1}, closeq

+ 1{’1(—1,1] €A V{w U1 g 410 77t—1‘T|—1}}]'

By (i) and (ii) of Remark 3,

N, 1
- N
P(t-17_,+1 is good| Fi_1)-1) = o P + O(m)

P(ni_17_,+1 IS bad and changes to active from neutr&t_;,_1)
(=1

NeZ1io1 1
= d O — |,
o)

P(ni_17_,+1 IS bad and doesn't change its stht&_1;_1)

Ni—1)1-1 Ac1)-1 1
= —(1- : (@] .
n—t ( P+ n—t + (n—t)

Further fory > 2,

P(nt-1,7 1+y IS 900d| {n—1,5 441, - - -, N-1,7 ,+y-1} are good)

_ Nt(g)l,l—l -(y-1)
n—t
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P(nt-17_,+y IS bad and changes to active from neutral

{’7t 1,Ti_14+1s -+« 77t—1,T|,1+y—1} are gOOd)

(z1)
NiZ1i1

n—t
P(n-17_,+y IS bad and doesn’t change its state

{(M-1T441) - - -» M-1T_1+y-1} are good)
Ne1-1—(y—1) A gpa+(y-1)+1
= . 1-— ’ .
n—t =P+ n—t

Therefore, from (10),

]:t—1,|—1:|

N x-2 ( n(0) 1)
' NeZpg-1—Y 1 NeZ1i-1 1
=2 X[H{ n—t p+1{y:0}'o(n—t) n—t p+o(n—t)
x=1 =

y=0

x—1 0)
NiZi—1—Y 1
el P - O —

Ni—1j-1— X A1 +X 1
M g At o)

(O) t1| 1 0)
~ Niggs NZpp_1—Y 1
- New p<1 ) > n{ p}+0(—n_t),

where we understand thﬂ;io{ -} = 1. Here

n
E[f{_y, | Fi-1)-1] = E[Z XLie, =x)
x=0

Nt(g)ll—l X—2 0)
: Ny =Y
> xT1 { -t P

[mY3]  x NGO —y N x=2 (O _y
— t—1,-1 t—11-1
= Lz | D X H{ p}+ > XH{—n—t p}

x=|m3]+1 y=0

t 1| 1 (0)1| L —y
+ 1{N(0) <m1/3} Z l_[{ p}

- 5+ O( LK pmm) +1 0(1)
- © .
(1 ( t(0)1| 1/(n - t)) ) n—t {Ntfl‘l—l m1/3}
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Thus

a7 Ntfl,lfl 1 ml/3 1/3 1/3
B e (T O(_ e

+ 1{ Nt(g)].’|71<m1/3} O(l)

By the Taylor expansion |r( 1| 1 + Accj-1)/(n —t), the right hand side of the
above equality is equal to

> >1 2
p P NE 1l)| 1 P Ay, (NS 1o+ Acaio)
1-p (1-p)2 n-—t (1—p)2 n—t (n—1)2

0(1)
mb/3 Ui
+ O(— +m / pm )+1{Nt(0)1,ll<m1/3} 0(1)
By the proof of Lemma 2, we have

NED + A 1
]:t1:| =1 Ty O(—),
n—t n—t
(=1)

]E|:(Nt:1'l_1+ IA\t—l,I—l)2 J_._tli| _ (N(>1)+ A 1) " O( 1 )

(n—1)2 (n—1)2 n—t

E Nt(>1l| 1+ A1l
n—t

So we obtain thaE[Y , f;_;, | Fi-1] is equal to

L P Nt‘i” e At_l
(k—l) - (k )(1 7 n (k )(1 S
(11) (NED + A

)2 o)+ O m?/3 + m/3 mi/3
2 n—t P

B e
E[l{ NO<miva) O(1) | Fial,

where we used thatl®,_;, > N©.
Next, we consider the step € 1,k + 1). By (iii) of Remark 3,

1
]E|: Z 1w <, open -7:tl,k:| ZNt(”lk o(m)

veM 1k

k )
N A 1
=k _ . tfl,k_k t—1,k O
P glpn—t ot TP\t )
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hence we have

(12) ]E|: Z 1wt<7v oper}

veM 1k

A 1
El}—kp ij — (n_t)

Combining (11) and (12), we have (8).
(9) is trivial. ]

Lemma 4. Leté € (0,1)and p< 1.
If a > k(p/(1— p) +1/(1—3)), then there exists some constdia) > 0 such that

(13) P(N® <n—t—at) < e '@

for any t<én. In particular if p < 1/3 and§ < (1—2p)/(2—3p), then we can take
a= 2k in (13).

If b < (k—1—ké8)/(1+ks) for somes > 0, then there exists some constaiib)l > 0
such that

(14) P(N® > n—t—bt) < e LO!

for any t < én. In particular if § < (2k — 3)/(k(k + 3)), then we can take b= k/3
in (14).

Proof. Take ars < t. RecallZs in the proof of Lemma 2 and I€tXs} be i.i.d. ran-
dom variables distributed a¥B(k; 1 — p) + Bin(n; k/((1 — é§)n)) for eachs < t. We
couple¢s and X for eachs < t such that almost surelgg < Xs. Therefore (13) follows
from usual large deviation estimates f&r(for usual large deviation estimates, we refer
the reader to the Section 1.9 of [10].).

Next, let X, be i.i.d. random variables distributed Bi(n — (1 + b)én; k/n) —

We can couples and X, such thatzs > X, on {NS@Lk > n—(1+b)sn} for eachs < t,
and X, is independent ofFs_1 . Since Ns(ﬁ) is decreasing for each time and step, and

(0)
P(N;™ > n—t—bt) < ]E[l{ NED+ A <bt} 1{ N}°>>n—(1+b)5n}]’
we obtain (14) from usual large deviation estimates Xor ]
4.2. Proof of Theorem 1. Let {as} be defined by (7), where we extend the def-
inition for s > n to be independent copies of,. Let W, =d + Ztszl as, Whered is

a fixed positive integer witld < n*3. Let h = n'/® and

¥h = min{t: W, =0 or W; > h}.
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Whens < n—1, expanding inc aroundc = 0, we obtain that

o — o) k1P _
log Ee _c{ (k 1)1—p kp+1}

2

c p P\ k?p?
+E{(k—1)rp+(k—l)(rp) +kp— I']—S}+O(Cs)

Writing € = An~%3, from (9) we can see that the right hand side of the above igual
is equal to

CZ P p 2 k2p2 3 )
15) -D —k=-1)—+ k-1 —— kp— —— o] .
(15) kC€+2{( )1_p+( )(1—p) + kp n_s}—i- (c® + ce9)
Whens > n, we get the same equality, except tlkdp?/(n —s) in the second term of
the right hand side of (15) is replaced wikfp?.
Using these facts, we first prove that for a large enongh

4dr 13
= n A >0,
(16) P(W,, > 0) < e;deln_l/B ‘<0,
dn1/3 » = 0.

When A > 0, we putc = 4¢ and we have—Dyce = —8(k — vk2 —k)e?. Since
p=1/(k + vk2—Kk) + O(e), by (15) and the remark after (15), we can see that

logEe ®* > 8(—kp + kp? — k?p? + 1)e? + O(d).

Noting that p < 1/(2k — 1), the right hand side of the above inequality is positive
for a smalle and this implies thae " is a submartingale. By the optional stopping
theorem we have

e = Ee ™ < Ee ™ < e " P(W,, > 0)+ P(W,, = 0).

This proves the first part of (16).

When A < 0, we putc = —e. By a similar argument we can see theit's is
a supermartingale. Also when = 0, Wy is a martingale. By the optional stopping
theorem we obtain the second and the third part of (16).

Lemma 5. For a large enough n

(17) EW,, < (3kn'3+ 1)P(W,, > 0),
(18) EW? < (9k*n®3 + 1)P(W,, > 0).
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Proof. SinceEW,, = E[W,,; W,, > 0], noting thatW,, =W,, , + «,,, and that
W,, , < n¥3 we can see thdEW,, is not larger than

n/3P(W,, > 0) + (3k — 1)n**P(W,, > 0) + E[a, : a;, > (3k — 1)n*/?].

To prove (17), we will show that the third term is not largeanhP(W,, > 0) for a
large enoughm. In fact,

Ela,,; a,, > (3k — 1)n*?]

n3-1 oo
< Z Z Elots 1 (g ak-nnvz) | 0 < Wi, ..., We p < n'/3,
x=1 s=1
Ws_1 =X, as > n/3 — X]
(19) xPO<W, ..., Wso<n3 Wy 3 =x, ag>n"3—x)
o

Z E[oslig,> @k—1)nv3)]

< S —

T Plas = nt3) Fim =3 W >0)
S:

e P(xs > (3k — 1)jn'/3)
_ 1/3 \ s _
= (Bk—1)n S§=1 J.§=1(J +1) Pl = 119) P(yh =s, Ws > 0).

By (5)—(7), sincens > as_12, the denominator in the right hand side of the above
inequality is not less thalP(as 1.2 > n%/3) = p"”°.

If as> (3k—1)jn'/3, then eitherxs_1) > 2jnY/3 for some 2<1 <Kk, or as_1x;1 >
(k + 1)jn/3. Therefore we have

13

(20) P(as = (3k — 1)jn3) < (k — 1)p?"” + Cy(kp)*+Din

for some constant€; = Cy(k) > 0. Sincek(kp)* < k(1/(2 — 1/k))¥ < 8/9, we have
P(as = (3k — 1)jn’?) e

(21) P(a. = 077

< (k-1)p"" + 01(5)

From (19) and (21), there is a constadt = C,(k) > 0 such that

nl/3
(22)  Elay,: a, > (3k—1)n'? < c2n1/3{ "+ (g) }]P’(W,,h > 0).

To prove (18), we proceed as above. BY, =W, _1 + «,, and (22),
8 n1/3
EW?2 < 9k*n?*P(W,, > 0)+ 2n*/°. czn1/3{p““3 + (5) P(W,, > 0)

+ ]E[aih; oy, > (Bk— 1)n*3).
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By (21), it is easy to see that there is a consi@gnt= C3(k) > 0 such that

8 ni/3
Elo?: o, > 3k — D' < can/B{p“l“ i (5) P(W,, > 0),

which proves (18) for a large enough ]
Lemma 6. For a large enough n
(23) Ey, < 100k%dn'/3.

Proof. Assume first that > 1/4. By Eas = DeAn~3 + O(n~%3) and Dy > 1,
if nis large, then{W, —tan—1/3} is a submartingale. By the optional stopping theorem
and (17),

d < EW,, — an Y3Ep, < (3kn'3 + HP(W,, > 0) — An Y3Ep,.

From (16), this shows that (23) is correct when- 1/4.

Whenn is large, it is easy to see th@(as = 0) < 3/4, and that Eay)? = O(€?).
Hence{(W, —EW,)?>—(1/5)t} is a submartingale, and by the optional stopping theorem
we get

1 1
0= 1E|:(W,,h —EW,,)? - Eyh:| =EW? — 5]Eyh.

Combining this with (16) and (18), we see that (23) is corfect, < 1/4, as well. [

Let v be a vertex in the component explored first, and dét) be the compo-
nent includingv. By definition t; is the first time X; hits —N(w3), and |C(v)| = t1.
Therefore|C(v)| > An?? implies thatX; never hits—N(wz) until t = An?3. Setting
Wo = N(w3), by our coupling we hav&V; > N(w;) + X; almost surely.

Following [2], we introducey = yn A n%3, and note that ifiC(v)] > An®3 for
someA > 1, thenW,. > 0 as well asX,: ;(a-1nzz > —N(w1) almost surely. We shall
estimate this probability.

By Lemma 1,N(w;) is stochastically dominated by a random variable distetas
Ge(1— p) + 1. So the probability thaN(w;) > n*3 is bounded byp™ - from above.

Let D and D for n¥/3 —1 <t < &n be events given by

k
D, = {Nt(o) <n-t- —t}, and D= () D,
3 1,
n/3—1<t<én
whered > 0 is a small constant. By Lemma 4, we have

sn—1
k
P(D°) < Y IP’(NS(O) >n—s— §S) < ne kAN,

s=n1/3-1
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Therefore we can concentrate on the evBnd {N(w;) < n*/3}. Forc > 0, we have

P(D N {N(w1) < N3, Wy > 0, Xy (apyee = —N(w1)})

h

(24) n/3_1 n23 a3
< Y Y E[efXuen SFWtedy s N(wy) =d, yy =s, We > 0],
d=1 s=1

. . . |
To estimateE[e™ | F,_1], we introduce another coupling. Létu <Q v} be the event

that we choose uniformly directed edges fronf(v, v): v’ ¢ &1 U {v}}, and @, wy)
is among these chosen edgest ¥ k —1I, then we understand théto, Q v} is equal
to the total set. Further we mean byw; ﬁ v, open the event that{w <Q v}

occurs and the edgé, wy) is open. LetG;(v) denote the family of event§{w; Q
v, oper}: 0 <I| < k}. Then we can coupl¢{w; < v, oper}: v € V\ {&_1 U {w}}}
with {G(v): v € V\ {&-1 U {wy}}} such that

(i) Gi(v) is independent of G;(v'): v' € V' \ {&-1 U {wi}}, v # v},

(i) {wt <9 v, oper} C {wy ﬂ v, opert almost surely ifm > |, and

(i) if ve Nt(kl'k), then {w, L v, oper} = {w; < v, open.

Then sinceN® > Nt(o)lk, we have

Z 1{w[eu, open

veM 1k
< E E 1 «y .
w1<—v oper) {wy < v, open
UEM(Ol ve./\/((il)UAt,l

Therefore, sinceDy < 2, we obtain that fot < n and for smallc > O,

E[e® | Fi_1]

< exp[(k— 1){ (c +c2) + ( ) (V/2c)? }

= +NO { S+ cz)} +(n—t- Nt(o’l){(k 1)p(c + cz)} }

2k~ 1)P*) o _ n—t—N2
(1-p)p? n—t

for a large enoughn. Sincee = An~Y/3, whenn'/® <t < én, (25) implies that

< exp[Z(c + A)e] + {1 + p(c + 02)]

kpct
E[e | Fitllip, y < exp[3c|e| _ % + 202]

for a large enough. Also by (25), we haveE[e% | Fi_4] < el<+2 for every 1<
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t <n. SinceDy D D if ue[n3—-1,6n), we have fors >0 and 0< s+t < én,

E[ef Titsa bl p, ‘ Fs]

+t

< ex SZ 3ofe| — “PCU | o2\ 4 2gje|nt/3 + 2c2nt/3

< exp €] an + 2¢c7 ) + 2cle|n*® + 2¢°n
u=s+1

kpct®

o T 2¢2t + 2cle|n/® + 202n1/3],

< exp[3c|e|t —
if ¢ > (kp/6)n~2/3 —(3/2)|¢|. But sincee = An~Y3, this is true as long as > 0 and
n is large enough. Now we put= (A —1)n%3. If A is large, then the minimizer of
the quadratic form in the exponent is

o kpt?/(6n) — 3|e|t — 2|e|nY/3
- 4t + n'?) !

and this is positive. Also, note that thisis of ordern—/3, So, hereafter we use this
c. Then we have

_ {kpt?/(6n) — et — 2|e|n1/3}2}

26 E[ef Xitei1buq <e

Next, we estimateE[e”; N(wi) = d, ¥ =S, Ws > 0]. If ¥ ='s, thenWs =
Ws 1 + as < nt3 + «g, and we have

E[e™; N(wy) =d, ¥ =s, Ws > 0]
< ¥’ P(N(wy) = d, y* =, Ws > 0) + " "E[6; ag > (3k — 1)n*/7].
Using (20), we obtain that
E[e; as > (3k — 1)nY/?]

00
< Z ec(3k71)(j+l)n1/3{(k _ 1) ijI‘ll/3 + C]_(kp)(kJrl)jnl/s}.
=1

The right hand side converges and is bounded by
Ca(p™" + (kp) ™)

for some constan€, = Cy(k, 1) > 0, sincec is of ordern—Y3, Therefore we have

N3 n2/3

> ) E[E™: N(wy) =d, yy =, We > 0]

(27) d=1s=1

< cs{z P(N(w1) = d)P(Wy; > 0| N(ws) = d) + n(p"" + (kp)<k+1>“”3)}
d=1
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for some constan€s = Cs(k, A) > 0. Finally by definition,
P(W,: > 0| N(wy1) = d)
< P(W,, = n"®| N(wi) = d) + P(yh = n** | N(wy) = d).
By (16) and (23), we obtain that
(28) P(W,: > 0| N(wy) = d) < Cedn™3

for some constanCgs = Cg(k, ) > 0. Substituting (26), (27) and (28) into (24), we
obtain that

P(D N {N(w1) < "3, Wy > 0, X,ep(a_gyee = —N(w1)})

< Cyn e (A-1)3

for some constant€; = Cz(k, A) > 0, andr =r(k, A) > 0 if A is large butA =
O(n1%). From this we have

P(IC(v)| = An¥3) < CnY3e " (A1

for some constan€ = C(k, 1) > O.

A similar argument applies to components explored afterfitis¢ one.

Denote bySr the number of vertices contained in components larger Thafhen
|C1| > T implies thatS; > T. So, takingT = An?3, we have

P(ICy > T)<P(Sr > T) < ETST < nP(IC(#)I =T) _ %e—rm—l)ﬂ

completing the proof of Theorem 1.

4.3. Proofs of Theorems 3, 4. In cases of above or below the critical point, we
also use the calculation of thx;.

Proof of Theorem 3. Lefas} be the random variables given by (7).
By a calculation similar to (25), we have for a smalt 0,

Ee’ < exp[{(k— 1)1Tpp + kp— 1}(¢9 +6%) + {1 + 2?;:—352}92}-

The right hand side of the above inequality is not larger tedfi for somer > 0 and
a small enougl® > 0. We have the same estimate fo&= n. Let v be a vertexv such
that it is included in the component explored at first. Lemmantl |C(v)| > Alogn
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imply that >"2'%9" o > X j0gn > —N(w1) almost surely. AlsoN(ws) is stochastically
dominated by a random variable distributed@g1 — p) + 1. Therefore we have

P(IC(v)| > Alogn) = ) P(N(ws) = d)P(Xalogn > —0)
d=1
Z P(N(wl) _ d)efr(?AlOgnJrOd
d=1
<Cn roA
for some constan€C > 0. The argument is similar for the components explored after
first time. Similarly to the proof of Theorem 1,

nP(|C(v)| > Alogn) _ CnloA

<
P(lal > Alogn) =< Alogn ~ Alogn’

If Ais large enoughP(|C;| > Alogn) — 0 asnh — oc. ]

Proof of Theorem 4. When = k + vkZ —k (i.e., p = 1), since thek-out graph
is almost surely connectett};| = n. We consider the case where<lc < k + +kZ —k
(i,e.,, p<1). Letr = (k—1)(p/(1— p)) + kp— 1. Thenr is positive in this case. Let

k
& = Z ft/—lvl + Z Lw v, open — 1,
=2

(29) veNi_1k

K i
Z{l{AEJ) -0, A$>J+1) O} + 1{A1 1=0 w[eN(J)} Z AtLl
=2 =2

Theng = g —&/'. Further, letX] = YL &, and X! = YL , &/, So X; = X[ — X[
Therefore, we can see that

286n 25n rt rt
{|C1] < én} C U {X; <0} C U {X’ > or x”>_}

t=2
t=én+1 t=6n+1

Takea > k(p/(1— p)+1/(1 23)) with a small§ > 0. For 0<s <28n and 1<| <k,
we define the event®, and DS| by

Ds = {N® > n—2(1+ a)sn},
Dsi = (N9 > n—2(1+ a)sn — 1 — 2ksn}.
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Fors <t and 2<1| <Kk, let Bs_1, be following independent non-negative ran-
dom variables;

x—1
n—2(1+a)dn—1—2kén —
P(gs 1) =) = [[{ T2 ’

y=0

P}(l— P

for an integerx > 1, and it puts on O the remaining probability. We can coujlg

and Bs_1) such thatf_ 1) = Bs-11 ON Do 11-1. We also letBs_1x+1 be independent
random variables distributed &n(n—2(1+a)dn—1—2kén; kp/n) for eachs. We can

COUp|eZveNS,M 1{w5<—v, open and ,Bs—l,k+1 such thatzugj\/silvk 1{ws<—u, open z ﬂs—l,k-{-l on
Ds_1x. We get forf > 0,

Since D, is decreasing in botls and|, and 0< e ?<' < 1, the right hand side of the
above inequality is not larger than

t—1 /k+1
—0Bs, ~ ~ 0
E [H (H & L pyg T 1{172;”})6 }

s=0 \I=2
t—1 (k+1 t—1 k+1
—0Bs, G 0P,
<[ [T{TTe Je (++ T T2, ) |
s=0 =2 s=01=2

By Schwarz’s inequality and Minkowski’s inequality, the hig hand side is not

larger than
t—1 (k+1 t—1 (k+1
E[H{ne—zeﬁs,l}eze}x ” E[H{Hez%sl} D}

s=0 =2 s=0 \I=2

Again by Schwarz’s inequality,
t—1 (k+1 t—1 k+1
[H{H ﬁ} } < [TIT VEe™ x P50
s=0 \I=2
By definition, we can find positive constant€}/"5 and 6, > 0 such that we have

(30) Eeffs < ¢ IR Bs +(62/2)Ci
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for every 2<| <k+1, 0<s<2n, and 9| < 6p. Now we have for 0< s < 2§n,
p p
31 EBs) = —— + O(8), and EBs < ——, 2=I| =Kk,
(31) Bs) l—p+ (8) ,33,|_1_p
(32) EBsk+1 = kp+ O(8), and EpBskr1 < kp.
From (30)—(32), and from the fact that
P(D5ink) < P(D5n) + P (NG — Ny = 1+ 2kon)
< e—f(a)-Z(Sn + kerSn
choosingd > 0 small enough, we get
t—1 (k+1 .
E[]‘[{ gPs! H P(DSnx) = 0(1)
s=0 =2

asn — oo. Also from (30)-(32), and by the definition of

t—1 (k+1 k+1
E H{H e 2hs }er’ < exp|:—6{r +O@ENt+6% > Clti|.

s=0\I=2 1=2

Choosings > 0 and6 > 0 small enough, we can find > 0 such that
/ re —r1it
(33) P( X{ < 0 <e ',

To estimateEe’*(, take a vertexv which appears ass € N2 U AE?. Then
there is some timas < s — 1 such thatv € J\/u(i)l’k U Af,l_)llk and that{w, < v} oc-
curs. Therefore) L , &/ < Y% , Lueente2uAE2) YK, f¢ 1) and the right hand side is
stochastically dominated by

t k
E E 1 « E oy_11(v
100 u-11(v),
— 1 1 =
u=1 UENU(—)l,kUAfJ—)l,k 1=2

where{oy_1)(v)} for L<u=<t, 2=<I <k, v eV are ii.d. random variables distributed
as Ge(1 — p). Here we define random variabldgx), gs and hs by

f(x) ~NB((k —1)x; 1—p),

: k—1
Os ~ B|n(2(1+ a)in; (17)

s)n
k—1
hs ~ Bi — ).
s '”(”’ (1—28)n)
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We can couplef(gs) and f(hs) such that almost surelf (gs) < f(hs). Thus, using
Lemma 4, we obtain that

t
Ee’X < E[]‘[{eef(gs>1{ﬁsl} + eef(“s)l{@scl}}}

s=1

t t
SE[Her(gS)“‘Her(hs)l{ﬁ% }:|
s=1 s=1

t t
<[[Ee"®@ + [[Ee®M\/P(DS,)
s=1

s=1
< eO(s)m_
Therefore
rt
s ") < @t
(34) 11>(xt > 2) <e
for somer, > 0.
Combining (33) and (34), we get the proof of the theorem. ]

5. Proof of Theorem 2

5.1. Detailed calculation. From now on, we assume that= ¢(n) is a sequence
such thate(n) — 0 asn — oo and we writep = p(n) = (1 + €(n))/(k + vk2 —K).
Also we assume that € [0, oo) and m = [son?3].

Lemma 7. If n is large enoughthen for all t < sn?/3,
EA; = O(en?® + n'3), EZ, = O(en??® + n'/3).

Proof. By Lemma 1, we can couplg and oy such that almost surely; < o
and oy is independent off;_; for 1 <t < sn%3. From (9), we have

E[& | Fi_1] < Eay = Dye + O(e?) a.s.

Recall that{ty, t;, ...} are times at whichA; equals zero. By definition, we have
N(wy) = 0 for anyt # t; + 1. Let {«};_, be i.i.d. random variables distributed as
Gegl - p) + 1. By Lemma 1, we can coupldl(wy+1) and a random variable, ;1
such that almost sureli(wy, 1) < kt,+1 and k41 is independent ofF;. Also from
(4), Zt;+1 = —X;+1 + N(wy, +1) + &;+1. Thus by coupling, almost surely

o0
Ze =) Ly <tetion {=Xy 41+ N(wy41) + &y 41
(35) =0

< —min X max{ks + as}.
- s<t S+s§tx{s+ s}
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Here X; — Ztszl E[& | Fs_1] is an (F)-martingale. So, using Doob’k? maximal in-
equality and Lemmas 2, 3 and 4, we have

—E |:T<IP Xsi| = E[Téit)(‘ Xs — Z E[&, | Fu-1]
2 t
} + E[DE{& | Fs_l]l}

u=1
, ; M

t
< B0 * Yasoment?y 1O
s=1

+ O(en?® 4+ n173).

+ rng‘é E[&, | Fu 1]

t
Xt — ) E[&s | Fsa]

s=1

For 1<i <k, let
(37) )= AD - AD,
Further we define@{) = AZ) — AZY) || By definition, al) € F and
(38) 1{Ag)>0} =< 1{%;?21} + 1{&32)22}.
Now we use the following lemma. We prove this later.
Lemma 8. For s<t < sn%® and de N U {0},

K(t + 2kt))°
P({aF? = d} N (N® > n—t — 2kt) | Foyg) < 2o { K+ 2a) t)} ,

n—t
PUAL? > 2} N {N® > n—t — 2kt}) = O(n %3).

Using (38) and Lemmas 4, 8, we have

t
(39) > Elfpc2.0,0(1) = o(n'3).
s=1

Next, we have

N N7
E[1{n ,—omene?) | Fo1] = Liai=q No, —nos

By Lemma 2,

t
(40) D Bl oumentny OQ) = ONY?).

s=1
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Combining (36), (39) and (40), we have
(41) —]E[r?sip xs} = O(en?® + n%3),
Therefore, using (35) and (41), we obtain that

EZ < -E [rllltn XS] + O(logn) = O(en?® 4 n%3).

Also, by Lemmas 2, 3, 4 and (39), (40), we have
EX; = O(en?® 4 n'/3),
From this and (4), we obtain th@A; = EX; + EZ; = O(en®2 4 n'/3), O]

Proof of Lemma 8. Wherd = 0, the first part of this lemma is trivially true.
So we assume that is a natural number. We set {) = { (ii)'k - AS?O = c} and

(Nsc = {A(szl),kJrl - A&?k = c}. Then we have

dAak

Laeo_gy = Y L0ee Lihas -
c=0

For eachc with 0 <c <d A k, we have

C
L = > TT e

1<li<lp<-<le<k i=1

where we set (Il = {Agii)l. — (éi),lifl = 1}. Since (lll); is a subset 01{?75,1'1'Ii €

NEL 1}, we have

NE2 NED 4 A,
]E[l{(lll)si} |f571‘|i71] < s—1)i—1 < s—1i—1 s—1,l; 1.
' n—s n—s

Note thatNED, | + As g1 <t—s+2kt if N, | > n—t—2kt occurs. Therefore

t—s+ 2Kkt _ Kt + 2kt)
n-s ~ n—t

]E[l{(lll)s,i}l{ N, >=n—t-2kt} | ]:sfl,lifl] =<

-1/ -1

Next, we estimate (I¢c. If v e A=, \ AEZD,, then either
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(i) ve M( 1x and {wt <— v, open} occurs, or

k—1
(i) ve AP, and {w; < v} occurs. This means also thaw; < v} C {w D)
because we have already checked at least one edge stadimg fr
Therefore

d—c
(k-1)
E[Li)sqo | Fs-1x] = > [T eaws < vy)

(V1 va-c) eENERUAD, | 1=1

( NED+ Acai) (k=1\4°
- d-c n-—s

{(N 1kt As1 k)L}d_c,

S

so on the even{N{, , > n—t —2kt}, we have

Kt —s+ 2kt) )9 (k(t + 2kt))4°
]Ell{(n)s.dc}Ifs—l,klf{—( - )} 5{—(n_t )}

Now, since Nt(ﬁ’) is decreasing in both andl, we have
t ok
1{ NO=n—t-2kt) = 1_[ 1_[ 1{ N >n—t-2kt}
s=11=0

for s <t. Thus

E[1{ ez):d}l{N(o)znfthkt} | fsflyk]

dak d—c
k(t + 2kt)
= Z Z l_[ 1(lll)s. 1{N(01 _,=n—t— 2kt}{ n_t } )

c=0 1=<l;<ly<-<lc<k i=1
and therefore

E[lmga:ml{wmzn47%q |]%*d
dak d—c g
<Z(){k(t+2kt)} {k(t+2kt)} 52k{k(t+2|<t)} .
n—t n—t n—t

This proves the first part of this lemma.




CRITICAL PERCOLATION ON THE k-OUT GRAPH 703
To prove the second part of this lemma, {el(q)}3_, be non-negative integers for
0 <r <s <t. Using notations (I)—(lll) again, we obtain that
[T 2 —atan Lot
q=r
s d(g)Ak (@)
= H Z Z H 1{('“)q,i}1{ N, g zn—t—2kt} 1{(“)q,d<q)—c<q)}1{N(§°>1k>n t—2kt} -

g=r ¢(q)=0 1=l <ly<-<lgg=<k i=1

Thus, by the first part of this lemma,

S
E[H Lo —d@n O zn-t-2x) frl]
=r

AW (o S5 d@
< H 2KLa@z0) k(t + 2kt) 2K(t + 2kt) | = .
n-—t B n—t

(42)

Now
L AGD=2) = L AGP>2) [1{Vu§s, a7?2<2 T Lauss af?=3 vuu,af?=2)

+ 1{Hu, u'<s, aﬁzz)— 2= =3} + 1{3u<s afrz)>4}]

When AZ? = 0, if aZ? = x then A2 = x. When A9 > 1, sincew, is chosen
from A%?, if a2 = x then A2 = A2 + x — 1. On the even{AE? > 2, Vu <
s, a2 < 2}, if

#Huels—r,s;af? =2 —#ue[s—r,9];af? =0} <0

for all r <s, then Agﬁ) > 0, which is a contradiction. So there exists a time [0, s]
such that

#Huels—r,s;af? =2 —#ue[s—r,9]; af? =0} = 1.
Therefore

1{ A(ZZ)>2} 1 VussaF?<2)

= Z #ue[s—r,5]; aF?P=2}—#{ue[s—r,5]; aF?=0}= 1}1{Vu§s,aﬁzz)§2}
(43) r=0

s [r/2]

= Z Z 1 #ue[s—r,5]: aF?=0}=x} l#{ue[s—r,s]:aﬁzz):Z}:Hl}1{#{ue[s—r,s]:aﬁzz):l}:r—Zx}‘
r=0 x=0
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Thus from (42),

]E[l{A§2>32} Livussaf?<) 1{N(°>>n t— 2kt}]

3 XS: “f r + 1) 2KK(t + 2kt) | 2 D2
== Oxl(x+1)!(r—2x)! n—t

Z 24K(t + 2kt) f+23,+1zo 2
- n—t n2)

Next, we have
1{Ag32)32} Juss,aff?=3,vu#u,af?<2)
(44) = Lz + Laeoog + {Laeooy + L2y Hjaucs 246239
t Luzs2a59=3 vuzuai?<2 L ?-a9 -0 L a22 4

From the first part of this lemma, we know that

: t?
E[{the first and the second term of (411?N50)Zn_t_2kt}] = O(ﬁ)’

. t t3 t5
E[{the third term of (44})1{Nt<0)2n7t72kt}] = O(ntﬁ)_ O(F)'

We consider the fourth term of (44). Using a similar argumenget (43) for the event
{AE2 > 2} N {VYu <s, a#? < 2}, there is a time € [0, s] such that

#Hue[s—r,s;af? =2 —#ue[s—r,5;af? =0} =1
in this case too. Therefore
E[l{A§22)22}1{3u<saﬁ22) 3 vu#u,af?<2) 1{N(°>>n t- 2kt}]
t2 t5
_ o( i )
n n

Finally, by a straightforward calculation

t2
]E[l{zlu,u’is—z aF?=a77=3 L N{")zn—t—zkt}] = O(ﬁ)

t2
]E[l{Elufsfz, a£22’24}1{ N,(D)znft—zkt}] = O(@)-

Thus we have proved the second part of this lemma. ]
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Lemma 9. If n is large enoughthen for all t < s5n?/3,
EN® =n— {(k - 1)LIo + k}t + O(en?® 4 n1/3),

N = k(1 — p)t + O(en?? + n'/3),
]ENt(' = 0(en?®+n'3), 2<ic<k

Proof. N — Nt(g)l is equal to

Z 1 {wp v} — 1{A171=0, wle./\ft@l} {1+ rt_l'l}
UEM(Oik

+

- mmx

{1{A£J) =0, A£>J+1) 0} + 1{A1 1=0, wxej\/(”}} Zrt 1.

Il
N

j

Recallm = |5n%3] for somes, € [0, oo). Similarly to (11), we have

]:tl,ll:|
p Nt(>1| 1+ A1

= 1 — p n O(l) + O(n72/3) —+ 1{ NI(E)l,I—1<m1/3} O(l)

n
E[ft-a) [ Ft-14-1] = ]E|:Z XL 0y=x)

x=0

Therefore

p
]E[Nt(o) | Fia] = Nt(g)l —(k— 1)1Tp —k+ 1{AE?>0} 0o(1)

(=1)
111+ A1)-
+ LA =0y O(2) + t=1l1-1 t—1,)-1

o(1)
+0(n?%) + Line, ,<misy O(L)-
Since Yu_; Lia ;0 < Zi, by Lemma 7,E[Yi_; LA ,—0] = O(en?® + n*3). By

(38) and Lemmas 4, 8, we ha®&{"_, 1 AS?>O}] = O(n¥/3). Combining these with
Lemma 4, we obtain the first statement of the lemma.
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Next, fori > 1, N® — Nt(i)l is equal to

k
- Z l{r]m—l E'A/'t(i)l,l—ll oper} + Z 1{w[<—v, closed — Z l{w1<—v}
1=2

ve/\/t(illk) Ue'/\/.t(i)l,k
k

+ Z{l{Aﬁi)Po, ACL=0} + 1{ A171=0,wteNt(l)1}}
(45) 2,

i
x Z 1{m,T, eN®,,_,, oper
=2
- 1{u’t€M(i)11 - 1[wt€/\/§9}}1{nm eN, ,, oper}

So, we have

- : k=i + 1)1
BING | Fii] = MO, e AP

NED + A

+ Lia=00(1)

o)

+0(n~?7) + E[10, | Fi-1]O(D).

L <mi3
Using (38) and Lemmas 2, 4 and 8, we complete the proof thisniem ]
Lemma 10. If n is large enoughthen for all t < $n%3 and 0 <i <Kk,
EIN® — ENO| = O(en?? + n'/3),
Proof. By Lemma 9, foi > 2, E[N) —EN{"| < 2EN{’ = O(en?3 + n¥/3), also

by Lemma 7,E|A; — EA;| < O(en?® + n'/3). So we first assume that= 1. Recall
(45). By (38) and Lemmas 2, 4 and 8, we have

t
]E| Nt(l) - ]ENt(l)| <E Z Z 1{ws<—v, closed

=10enD,

t
—E Z Z Liwgev, closeq | + O(en?® 4+ n'/3).

=10enD,
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|
Here recall the definition ofws <Q v} in the proof of Theorem 1,

t t
E Z Z 1{w5<—v, closed — E Z Z l{w5<—v, closed

s=1 UENS(S)l,k s=1 UENS(S)l,k
t t
=E ; 1;55 1{w559v, closed —E ; 1;85 1[w5ﬁv, closed

t t

+ Z Z 1{w5<—v, closed — E Z Z 1{w5<—v, closed

=10en g, =1 en

t t

- ; 1;6‘5 l{u;s@v, closed +E 52::4- 1;55 l{ws@v, closed |’

By Schwarz’s inequality,

= O(V1) = O(n*%).

t t
E Z Z 1{w5@u, closed —E Z Z 1{w5@v, closed

s=1 v¢&s s=1 v¢&s

Also, using Lemma 2,

t t
E Z Z 1{w5<—v, closed — E Z Z 1{ws<—v, closed

=L ven =L e
t t
Y T g FE D D
{ws<v, closed {ws<v, closed
s=1 v¢&s s=1 v¢&s

t
_ 1/3
=2 ZE Z 1{w5@v,closed = 0(M™).

=1 [peAHUA 1k

ThereforeE|N{Y — EN®| = O(en?/? + n1/3).
Finally by N©® =n - >¥ N — A, —t and the above facts, we obtain that
E|N® —EN?| = O(en?3 + n'/3). 0

5.2. Convergence of the exploration process.Recall B* and W* in (1) and
(2), respectively. Hereafter for a procesS} indexed by positive integers we write
S for t € R to denote the continuous linear interpolation &f Recall that{t;} are
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times at whichA; equals zero. We define the proceésby Xo = Xo = 0 and for any
te[t), tjy1),

- Xe if X=X,
46 X = : !
(46) t {th otherwise,

and Xt = X, for anyt > n. By this definition, the times when the minima &t
updates are onlyt;}. Recording minima for the proceé%t occurs only whenA; = 0.
Since we explore one vertex at each time, the size ofjtkle explored open cluster is
tj+1 —t;. Therefore the analysis of the proceXs characterizes open clusters of the
k-out graph.

Theorem 5. Let A be inR and ¢ = An~Y3. Then

N d
n71/3xn2/3. = BA( -), as n— oo,
where this convergence is on finite intervals.

Recall thatsy € [0, oo) and m = |son%3]. Lett € [0, 1]. We define a function
Um(f) by ¥m(f) = Flii<mus. Let xs 1y = ¢¥m(fe_q)) for L <1 <K, xs1k11 =
k
Y50 Um(Xsen0), Liwsev, open).

k+1
s(m) = Z Xs-1) — 1,
=2

and X{(M = y>°_ &m.
To prove the convergence of the proce$€’, we use a central limit theorem for
martingales (cf. [10] Chapter 7, Theorem 7.2). Namely, if

1. |mY2EM —E[EM™ | Fs4])| < em for all s < m with €, — 0, and
[mt]
@7 2. m Y E[EM —E[E™ | Feal)? | Feal > Ctoip.
s=1

for anyt € [0, 1] and someC > 0,

d
then m Y2y MM _ geM | £ ) = B(Ct), where B(t) is a standard
Brownian motion.
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We start the calculation dE[£{™ | Fs_1]. Similarly to the calculation ofE[f, , |
Fs_11-1] in the proof of Lemma 3,

0
[m*/3]A Néf)u -1

E[xs-1) | Fs-1)-1] = ]E|: Z XL, =x) ]:t—1,|—1:|

x=0
(1) 1/3
p p2 stl -1 m 1/3 ..m3
= - : O m/3p™
1-p (1-p? n-s + ( n + P
>2 >1 2
4 Ns(:fl,)lfl + As-1)-1 o) + (Ns(:fl,)lfl + Asflylfl) 0(1)

n2
+ 1{NS(2)1‘|71<m1/3} O(l).

Also, similarly to the calculation oE[ZUeNHk Lwev, open ‘ ]-'S,l,k] in the proof of
Lemma 3, we have

N(l) .
E[xs1xs1 | Foory] = kp— ——2& o P O (k)" )

N(> + As
]'kf o) + 1{ NO), , <mb/3) o).

ThusE[£{™ | Fs 4] is equal to

N(l) m/3 1/3
Dye — p{(k— 1)(1 _p o7 + 1} 1 4 O(T + m3kp™" + 62)

(48) N(>2) A (N(>1) nee )2
+ + A
+ —“0(1) n—“oa) +E[L{\o ey | Fo-1]O().

In the last line we used the fact that®®, > N{. Furthermore using Lemmas 4, 7
and 9, we get for a large enough

S
n—s

) p
E£M™ = Dye — kp(1 — P){(k_ 1)(1— p)? " 1}

+ O(e? + en 13 4 n"23),

Lemma 11. If n is large enoughthen for all s< sn?/?
(i) E&M —Dye +kp(1—p){(k—1)(p/(1— p)?) +1}s/(n—5) = O(e® +en 34 n"2/3),
(i) E|E[EM | Fo_q] —E&M| = O(e? + en Y3 4 n2/3),
(iii) E[(E{M)? | Four] = 2k — VK2 —K) + O(e + n~23) + (NEP + Ac1)O(1/n) +
[0 | Fo 210D



710 Y. OTA

Proof. (i) has already been confirmed. By (48) and Lemmas 3, &hd 10,

p 1 1 1
EE[E{™ | Foa] —E&™| = p{(k Dot 1} —— EIND —END)|
+ O(e? + en Y3 4 n~23)
= O(e2 +en 13 4 n‘2/3),

which proves (ii).
To prove (iii), we consider&™ + 1)2. We have

k

k 2
E[(£{™ + 1) | Fsa] = ]E|:<Z Xs—l,l) + X1kt 2 Z Xs—1) Xs—1k+1
=2

=2

Rﬁ'

Similarly to the calculation of[&s | Fs—1] in the proof of Lemma 3, we have for<I’,
E[xs-1)1xs-1)" | Fs-1]
=1)
p2 —2/3 N 1 + Asfl
= O(n / _s1 -
a-pp PO

+E[Lno, sy | Fs1]OW +E[Ljo, ey | Fs-1]O().

o(1)

Also we have

Ns(g)l‘l—l/\mlﬁ
E[(f51)*Lis, <mvsy | Fs-a] = ]E|: > XLy fs—l}
x=0
_ P+ p)
(1- p)?
+E[L, oy | Foa]OW.

+ O(n 23 +

>1
NED + As 4 o)
n

By N&,,_, > NO, we obtain tha[(31, xs-11)° | Fs-1] is equal to

KoDk-2- "+ k—nPLtP) L 2

(1- p)? (1-p)?

N(Zl) + A7
+ =0 + EfL o sy | Foa]O).

On the other hand, for a large enough

N =1 + As 1
n

E[xZ 11 | Foal = K2p® + kp+ O(n~3) + —-2 o(1)

+ ]E[l{ N§O)<ml/3} | fs,]_]O(l),
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also we obtain thaE[Zl":2 Xse1) Xs—1 kil \ Fs-1] is equal to

N(Zl) + A7
s—lfslo(l) +E[Lo ey | Fs-1]O(D),

k- l)lTppkp + 028+

where we usedN\”, | > N© again. Using

PA+pP) | 12 p
+(k—1)—"—F +K2p? + kp+ 2(k — 1)——k
( )(1_p)2 p” 4+ kp+ 2( )1_p p

p2
(1-p)?
=2(k — Vk2—K) + 1 + O(e),

k—1k-2)

we obtain that
E[(eM™ + 1) | Fs_1] = 2(k — VK2 —K) + 1+ O(e + n~?/3)

NED + A
+ S_lf810(1) + ]E[l{NS(O)<m1/3} ‘ ]:5,1]0(1).

Also we have
E[(E{™ + 1) | Fea] = E[(EM™)? | Foua] + 2B[EM™ | Foa] + 1,
so, combining Lemma 3, we obtain (iii). ]
Lemma 12. Let A be inR and e = An~Y/3, Then for te [0, 1],

m 22X S Bk - ViE— k)
Sg/th

+ 2(k — VK2 —K)A/Sot — (1 — (k — \/M)Z)T

Proof. By definition, the condition 1 of (47) is satisfied. &lby Lemmas 2, 4
and the part (iii) of Lemma 11,

E[(M)? | Fs 1] = 2k — VK2 —k) i.p.

for 1 <s < |mt|, thus by Lemma 3,

[mt]
m Y E[(EM - E[E™ | Foa])? | Fea] > 2k—ViE—Kt ip.,

s=1
and it means that the condition 2 of (47) is satisfied. Theeefo

[mt|
M2 3 (e B[N | Foal) S Bk - ViE— K.

s=1
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On the other hand,

[mt] [mt] [mt]
(49) M2 "E[E™ | Foq] = m2 Y " EE™ 4 m 2 ) (B[ | Fo 4] - BE™).
s=1 s=1 s=1

By the part (i) of Lemma 11,

|_m tJ 2

‘1/221E$(m)—>2(k VK2 —k)r /St — (1 — (k— vk — )2)

asn — oo. Also, by the part (i) of Lemma 11, expectation of absolutdue of the
second term of the right hand side of (49) converges to @ as oo. Therefore, we
obtain the statement of this lemma. ]

Lemma 13. Let A be inR and e = An~Y3, Then for te [0, 1],

[mt] 3/2,2

t .
71/221 @ -0,AZ9—0) Sz—)—(k vk ZSO 1.p.

as n— oo.

Proof. Leths = 1,2 .o ac9-q)fs2 fOr 1 =s < [mt]. We have

(A

[mt Lmt]

m~1/2 Z hs — m~1/2 Z Ehs
s=1 s=1

[mt] Lmt|

m 23 he—m V2" Efhs | Foo]
s=1

<E

[mt]
+m Y23 "E|E[hs | Fso] — Eh|.
s=1

First, (38) and Lemmas 4, 8 imply th&h2 = O(n/3) for (1/i(2k))logn <'s < |mt].
Also, Eh? is bounded from above by the second momenGefl — p). Therefore

Lmt) Imt] 2
m2% " hg—m 23 "E[hs | Fs 2]
s=1 s=1
[mt]
<2m* ) E[(hs1 —E[hs 1 | Fsal}{hs — E[hs | Fs2]}]
(50) s=3
[mt]
+m 1Y E[{hs — Efhs | Feo]}]

s=2

= O(n Y3 +n?2logn) = O(n3).
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Next, from (11) in the proof of Lemma 3,

NED + A
Efhs | Fs-1] = L9, 20,4590 {1fp + == n =

o)

(Ns(i]l_) + As—l)2
T

1/3
o(1) + o(mn ml/3 pm1/3)
+ ]E[l{Ns(O)<m1/3] O(l) | -7:5—1]}-

So, E[hs | Fs—2] is equal to
]E[l{Aﬁ)l>O,A§3)=O | Fs—2]

N(>1)+ A N(>1)+A
x{ P 4 520(1)+( sz)
1-p n2

o(1)

m/3 Ui L
+ O(—n +m / pm ) + E[l{N§°)<m1/3} | ]‘—372]0(1) + O(ﬁ)

Recallal) in (37), and lets be (/1(2k)) logn <s < mt]. We have
1{A§2) ~0,AF9=0) = 1{A<32) -0, AE920,a?,>1) T 1{Ag2> ~0, AE9-0, 2, <0)
= 1{ @ 1) ~ 1{A§31)>0,a§2)121}
+ L{a2, 50, Az9-042, <0}
Using Lemmas 4 and 7-9,
ELac9.0,40,21) < Elaco_g = Elea_gy + O(M™%7),

EL50,-0 A2-0.4%,0) = FL{eg2) = O )

Furthermore,a;3) > 1 implies that some bad vertex of the AS process is chosen from

N( % or there is a directed edge from’s( ok U Agz,k to ws_1. So, by Lemmas 7
and 9,

(51) Elieo.yy = o(n~23).

We again use Lemmas 2, 4, 8 and the above facts to obtain that

1)
p Ng™y + As1 _
Ehs = ]E[{l_ . + —=1 - = 0(1)}1{ @ >1}} + O(n~%3)

(52)

_ b —2/3
=1-5 p]El{aéz,)lzl} 4+ O(n™").
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Now
1{ @ >1) = 1{ ® —y + L@, >2)

- 1{A§Z)zk 1 As 2k71} N 1{ (2) (2) 0=1 Aé2)2k+1 ()Zk:l}

+ 10, e A, 21,42, =1} +1{ @, =2}

AQZK - (3)2’0 > 1 implies that some bad vertex of the AS process is chosen from
/\/3(3)2 So, by Lemmas 4, 8 and 9,

_ —2/3
Eli0,21) = ELa,, a2, =) + OO,

Furthermore,
1{&2)21«-1 Af) 71} 1{V“EA —2kr Ws-177, As zk+1*A§€)z,k:l}

X {1{N(E) K =N—t—2kt) +1 Néﬁ)z,k<nft72kt}}

+ 1{EIv€.A(2)2k Ws-1<-V, (27)2,k+17 (2—)2.k:1}‘
So,

]E[l{Af)z, @, 1} | Fo-2x]
n (k=1p -1/3

(53) = Ns(—)z,kn—(l—‘r O(n Y ))1{N(°) >n—t— 2kt}r

(2)
—2k
+1{Ns(9)2vk<n—t—2kt}o(1)+ n O(1).

By Lemmas 2, 4 and (52), (53), we have

p (k=1p —2/3
Ehe =E| — >~ /% + 0
4) s |:1—pn—s+1N (™).

Therefore, by Lemma 10, and facts that> 0 and thatEhg is bounded from above
by the expectation oGeg1— p),

[mt|
m=Y2% " E[E[hs | Fs 5] — Ehg]

s=1

(mt]
9 _gwe 3r P (k-Dp

T—pn_sx 1]E|N(1) —ENS,| + 0(n 2 logn)

s=(1/1(2k)) logn
= O(n3logn).



CRITICAL PERCOLATION ON THE k-OuT GRAPH 715

Using (50) and (55), we get

[mt] [mt]

m1/2 Z hs —m /2 Z Ehs|— 0
s=1 s=1

asn — co. So we considem—%/2 Zé’:% Ehs. However, by (54) and Lemma 9,

P (k=21p —2/3
Eh. = [ —
hs 1o on—s 1k(l p)s + O(n~%)

k(k —1)p? ﬁ +0(n??),

for (2/1(2k))logn < s < |mt]. Therefore, by this and the fact tha@hs <
(k—1)p*/(1 - p),

[mt] 3/2;2
M2 3" Ehg = k(k - 1)p2$0 + o(n 3 logn).
s=1
Taking the limit, we complete the proof of this lemma. ]

Proof of Theorem 5. Recall the definition (46) B, which means that
| X¢ — Xt| < N(wy+1)

for eacht € [tj, tj;1). By Lemma 1, we can coupl&l(w;) and a random variable;
distributed asGe(1 + p) + 1, hence we have

max «s| —> 0

1<s<m

(56) mY2E|X; — X;| < m™Y?E

asn — oo for t < m. Therefore it suffices to prove the convergenceXef
Recall £ in (29). Let

t k+1
—z[@sm > ros
s=1
k j k j
a7
I SETTIENI SIS S P Nz}
j=3 =2 j=2 =2

and recallhg in the proof of Lemma 13. We have

[mt|
M2 X g = mVEX(y =2 Y s 4 w2 .



716 Y. OTA

Using the coupling in Lemma 1, we have

k+1 (kp)m1/3
E [(ég +1-) xsl,.] < (k= Dm*ep™" 4 T 1ok
1=2

By Lemmas 4, 8 and (51), we have

k
E[Z 1{A§”1>0,A(s>'1“)=0}j| = Elacd-q

j=3

< ]El 921 +]E1 =950 = O(n‘2/3)

(ACS

for (1/1(2k)) logn <s < |[mt|. Also Lemma 9 implies that

k
) — -2/3
E[Z 1{A31—o,wsex\f§’h} =EL,ene) = O(n™%).
j=2

Thus m~Y/2Y|m — O in probability asn — 0.
Therefore, combining Lemma 12 and Lemma 13, we obtain that

M Y2X oy = B2k — VK~ Kt
+ 2(k — VK2 — K)A/Sot — (VK2 —k — k + 1)57/%t2

This, together with (56) implies the statement of Theorem 5. ]

We have proved the convergence of the exploration procegstobstate the con-
vergence of the sequence of component sizes, we need a 8t wak.

Lemma 14. Let » be inR and ¢ = An~Y3, We definecf"”z/s) by the largest
component explored after timgng/3. Then for anya > 0 we have

lim lim supP( |C(S’n )| > an??) = 0.

7% nooo

Proof. Recall (9) and the fact th@y < 2. Similarly to (25),

p 0 kp 0, (k—=1)p
Efg | Froa] = (k= 1)7— 5 + Nt(_)ln—t +(n—t—Nt(_)1)ﬁ—
n—t—N©
= Dke—ftlp%— 0(62)
0
<2€_n—t—Nth
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for a large enoughn. Let somes > 0 be fixed. We define
(0) k : 2/3
D=1N fn—t—ét, for everyt with ssn“’° <t < ényg,
(0) k : 2/3
Di=3IN7~“"<n—-t— :—%t , for eacht with sn“> <t <én.

Then we have
kt

E[&1 gl <2n B ——
[5:1ip. o | Fi-a] =220 3(n—t)p

for all t € (55n%3,8n] and a large enough. Now if sp = (8, 1) > 0 is large enough,
then for allt € (5n%2, 8n],

(67) E[&1p, ) | Fi1] < -8 n "3,

Let fy > $on%2 be the first time afteson?? such thatA; = 0. We define the stop-
ping time y such that

y = minft > 0: X+ = X, — N(wg44)}-

By Lemma 1, we can coupl®(wz, ) and a random variable distributed asGe(1l —
p) + 1. Let N(w;,,,) = d be fixed. We define an/;)-supermartingaleQ; by Q; =
Seoi &, +slipy,.y + 87073 By (57) and the optional stopping theorem,

0> ]E[Q)//\Bn | N(wf0+1) =d]

yASN yASN
> E[Z Siprs— Sorsling, )+ 573y Asn) | N(wiyq) = d}
s=1 s=1
> —d +P(DF)O(n) + 57 n"3E[y A 8n | N(wg, 1) = d].
By Lemma 4,]P’(Df‘;) < n~? for a large enougm. Thus we have

E[y Adn | N(wg,,q) = d] < 25dn*/3,

and it provides

E[y Adn] <) P(N(wg,4q) = dE[y A 80 | N(wg,q) = d]
d=1

> 2
< > P(N(wy 1) = d) - 25dn?/® < 1Tpan1/3.
d=1
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Also by y = |C(w;,,1)| and Theorem 1P(y > én) < n~! for a large enougm. Thus
3 1/3
Ey =nP(y > én) + E[yl<sm] < 1+ E[y Adn] < 1—p8n

for a large enougtyy and a large enough. Similar argument applies to components
explored after first time. HencE|C(v)| = O(5)nY3 for any v € V' \ Eqnzs. Therefore
for any fixeda > 0, we get

P(|C(v)| > an?3) = O()n~ Y3,

Let S be the number of vertices € V' \ Egnze such that|C(v)| > en?3. We have
checked thaES < nP(|C(v)] > an?3) = O@E)n%3. Also [C*")| > an?/? implies that
S> an?3. Hence

o(s)n%/3
an?/3

P(C&"™))| > an?3) < P(S> an?d) = = O(s).

Sinced > 0 was arbitrary andy, was large enough depending only érand A, this
completes the proof. ]

Finally, we prove Theorem 2. This can be done parallel to tle®fpof Theorem 5
in [2].

Proof of Theorem 2. We define fof € C|[0, 9],
E= {(r, )c[0,s]: f(r)= ()= miln f (u),
us

and f(x) > f(r) for everyx withr < x < I}

and
(,C]_,,Cz,...)=(|1—|’1,|2—r2,...) with |i—riZ|i+1—I’i+1 for all .

(L1, Ly, ...) is the sequence of lengths of members&firranged in decreasing order,
i.e., it is the decreasing sequence of excursion lengths (of — ming<, f(q). Since
the sum of excursion lengths is at mastwe can get such sequence. We daklin
ending pointif (r,l) € E for some 0<r <. If for almost everyx € [0, s], there
exists ¢, 1) € E such thatr < x < |, we saythe function fe C[O, ] is good For
m € N, we define the functiom,: C[0, s] — R™ by

¢m(f) = (El! EZ& sty Lm)

Now we use the following proposition in [2].
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Proposition 1 (Nachmias and Peres [2]))If f € C[O, s] is good then ¢n(f) is
continuous at f with respect to the- || norm.

A sample path of a Brownian motion is good with probabilityBy the Cameron
Martin theorem, the process*(-) is good with probability 1 too, see [3]. Thus,(f)
is continuous on almost every sample point&¥. Furthermore, using Theorem 5 and
Theorem 2.3 in Durrett [10], Chapter 2, we have

N 2pn(X) > gn(BY).

Now we rescale byn=%3 and order the sequence of the sizes of components ex-
plored before timesr?/3. Then this sequence converges in distribution to the oddere
sequence of excursion lengths W*[0, s]. By Lemma 14, we get the proof of The-
orem 2. O
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