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Abstract
We consider the percolation on thek-out graphGout(n,k). The critical probability

of it is pc D 1=(kC
p

k2
� k). Similarly to the random graphG(n, p), in a scaling

window pc(1 C O(n�1=3)), the sequence of sizes of large components rescaled by
n�2=3 converges to the excursion lengths of a Brownian motion withsome drift. Also,
the size of the largest component isO(log n) in the subcritical phase, andO(n) in
the supercritical phase. The proof is based on the analysis of the exploration process.

1. Introduction

The random graphG(n, p) hasn vertices{1, : : : , n} and each edgehi , j i is real-
ized independently with probabilityp. The random graph is interpreted as the percola-
tion on the complete graph havingn vertices with percolation probabilityp. It is well
known that the random graph has “double jump”. Namely, forG(n,c=n), the size of the
largest componentC1 is of order logn for c< 1, of ordern2=3 for cD 1, and of ordern
for c> 1, we refer the reader to [5], [6]. Furthermore, it became clear that the structure
of the random graph rapidly changes in a “scaling window” (1=n)(1CO(n�1=3)), we re-
fer the reader to [7]. In the scaling window, the rescaled size of the largest component
jC1j �n�2=3 converges in distribution to a non-trivial random variable, we refer the reader
to [8]. Aldous [1] showed that the sequence of sizes of components (jC1j, jC2j, : : : ) ar-
ranged in decreasing order converges to the sequence of excursion lengths of Brownian
motion with some drift when scaled byn2=3. This fact is provided by the analysis of
the exploration process. In this process, we explore one vertex wt at each timet , i.e.,
we count vertices connected towt by an edge. So, the exploration process reveals the
structure of connected components ofG(n, p).

The convergence to the Brownian excursions appears in another graph model too.
In [9], Nachmias and Peres investigated it in the randomd-regular graphGreg(n, d). It
is known that thed-regular graph is almost surely connected ford � 3. But when we
consider the percolation onGreg(n, d), i.e., each edge remains with probabilityp and
is removed with probability 1� p independently, we can consider a similar problem for

2010 Mathematics Subject Classification. Primary 05C80, 60K35; Secondary 60C05.



678 Y. OTA

percolation clusters. For this model, in the scaling windowpD (1CO(n�1=3))=(d�1),
the sequence of the rescaled sizes of the connected components converges to the se-
quence of the excursion lengths of a Brownian motion with some drift, both arranged
in decreasing order, we refer the reader to [2].

We prove this convergence for thek-out graphGout(n, k), wherek � 2 is a given
integer and we fix it throughout this paper. Thek-out graph model is explained in [9].

First we construct the graph with directed edgesEGout(n,k). The vertex set ofEGout(n,k)
is V D {1, : : : , n}. For eachv 2 V, choosek distinct edges (v, v1), : : : , (v, vk) uniformly

from {(v, 1), (v, 2), : : : , (v, n)} n {(v, v)}. This is a construction of theEGout(n, k). The
vertex set ofGout(n, k) is V too and a non-directed edgehv, wi is in the edge set of

Gout(n, k) if either (v, w) or (w, v) is an edge ofEGout(n, k). However, it is convenient
to keep the information of the direction of each edge until weconstruct the exploration
process. We also consider percolation onGout(n,k). Each edge is open with probability
p and closed with probability 1� p independently. Our exploration process explores
open clusters ofGout(n, k).

The k-out graph model is related to the Watts–Strogatz model, which was intro-
duced in [11] to explain the small world property of real networks (for more details, see
[11] and references therein.). The Watts–Strogatz model isconstructed in the follow-
ing way. We start the one-dimensional lattice ring. For eachedge, we rewire each edge
at random with probabilityp. When the rewiring probability is 1, the Watts–Strogatz
model resembles thek-out graph. Further, the critical point of percolation on a graph
can be considered as an indicator of the robustness of the graph model. We hope that
our analysis of thek-out graph model will lead to knowing the critical point of percola-
tion on the Watts–Strogatz model, hence the robustness of it.

Bollobás and Riordan [4] proved the phase transition of the growing k-out graph.
It is constructed in the following way. At time 0, we preparek vertices having no
edges. For each timet � 1, we add one vertex, and reach undirected edges from new
vertex to k vertices chosen uniformly at random. We continue this untilthe number
of vertices becomen. Similar to thek-out graph, without firstk vertices, each vertex
reachk edges from itself. But this model has inhomogeneous degree of vertices, and
it belongs to the group of the uniformly grown graph. The growing k-out graph has
more robustness than thek-out graph. In fact, it is interesting to see that the critical
point of the growingk-out graph is half of the critical point of thek-out graph.

In Section 2 we state main results. There are some theorems ineach phase of the
percolation for thek-out graph. Section 3 introduces the construction of the exploration
process for thek-out graph. Proofs of Theorems 1, 3 and 4 are in Section 4. In Section 5
the proof of Theorem 2 is provided by the convergence of the exploration process.

For the construction and the calculation of the explorationprocess of thek-out
graph, we follow the argument in [2]. However, we have to overcome some difficulties
peculiar to thek-out graph.
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2. Main results

Let Cl be thel -th largest open cluster ofGout(n, k).

Theorem 1 (critical phase). Let � 2 R be fixed and let

p D p(�) D
1C �n�1=3

kC
p

k2
� k

.

Then there exist positive constants c(�, k), C(�, k) such that for a large enough n and
a large enough A,

P (jC1j � An2=3) �
C(�, k)e�c(�,k)A3

A
.

Even if A is not a constant, the above inequality is correct when AD O(n1=10).

Let {B(s) W s 2 [0,1)} be a standard Brownian motion. For� 2 R, we define the
processB� by

(1) B�(s) D B(2(k �
p

k2
� k)s)C 2(k �

p

k2
� k)�s� (

p

k2
� k � kC 1)s2

for s 2 [0,1). Next we define the reflected process ofB� by

(2) W�(s) D B�(s) � min
0�s0�s

B�(s0).

Let (j
 j j) j�1 be the sequence of all excursion lengths ofW� arranged in a decreas-
ing order. Also let (jC j j) j�1 be the sequence of sizes of open clusters in a decreasing
order, concatenated by zeros to form a vector inl 2.

Theorem 2 (scaling window). Let � 2 R be fixed and let

p D p(�) D
1C �n�1=3

kC
p

k2
� k

.

Then

n�2=3
� (jC j j) j�1

f.d.
H) (j
 j j) j�1

as n!1.

Next, we state the results of the largest open cluster size insubcritical and super-
critical phases. Letp D c=(kC

p

k2
� k).

Theorem 3 (subcritical phase). If c < 1 and A> 0 is sufficiently large, then

P (jC1j > A log n)! 0, as n!1.
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Theorem 4 (supercritical phase). If c > 1 and Æ > 0 is sufficiently small, then

P (jC1j < Æn)! 0, as n!1.

3. Exploration process of thek-out graph

We consider thek-out graph with directed edgesEGout(n, k). Each vertex has state
neutral or active or explored, and each edge has statecheckedor unchecked. We ex-

plain the algorithm of the exploration ofEGout(n, k).

3.1. The algorithm of the exploration process. For each time, we explore one
vertex. Letwt be the vertex that we explore at timet . Let Nt be the set of neutral ver-
tices at timet , At be the set of active vertices at timet , andEt be the set of explored
vertices at timet . Let N (i )

t be the set of vertices at timet such that, forv 2 N (i )
t ,

(i) v is neutral, and
(ii) among k edges starting fromv, exactly i edges are checked.
ThereforeNt equals the union ofN (0)

t ,N (1)
t , : : : ,N (k)

t . Similarly, let A(i )
t be the set of

active vertices at timet with exactly i edges being checked. SoAt equals the union

of A(0)
t , A(1)

t , : : : , A(k)
t . Further we define the setN (�i )

t as
Sk

jDi N
( j )

t . Similarly we

defineN (�i )
t , A(�i )

t , A(�i )
t .

Let Nt and N(i )
t denote the cardinalities ofNt andN (i )

t , respectively. Also letAt

and A(i )
t denote the cardinalities ofAt andA(i )

t , respectively.
At time 0, all vertices are inN (0)

0 , and all edges are unchecked. The exploration
at each time consists ofk C 2 steps. Let (t � 1, l ) denote thel -th step at timet for
0� l � kC 1. We writeNt�1,l for N at the step (t � 1, l ). Similarly we defineAt�1,l ,

N (i )
t�1,l andA(i )

t�1,l .
At the step (t �1, 0), we choosewt . At the step (t �1,l ) for 1� l � k, we explore

each directed edge fromwt . At the step (t �1,kC1), we explore one directed edge to
wt . The number of edges fromwt depends on the state ofwt at time t � 1. So, it is
necessary to divide the exploration of directed edges fromwt . From now on, we will
explain these steps in more detail.

The step (t �1, 0); choosingwt . If A(i )
t�1 > 0 and A(�iC1)

t�1 D 0, thenwt is chosen

from A(i )
t�1 uniformly. If At�1D 0, wt is chosen fromNt�1 uniformly. We putN (i )

t�1,0D

N (i )
t�1 n {wt } andA(i )

t�1,0D A(i )
t�1 n {wt} for 0� i � k.

The step (t � 1, l), 1� l � k; directed edge from wt . At this step, we execute
the arm stretch process (AS process)�t�1,l . Let Tl be the total time required for AS

processes�t�1,1, : : : , �t�1,l . �t�1,l and Tl will be described later. Ifwt 2 N (�l�1)
t�1 [

A(�l�1)
t�1 , we execute the AS process�t�1,l . If wt 2 N (�l )

t�1 [ A(�l )
t�1 , do nothing and put

N (i )
t�1,l D N (i )

t�1,l�1, A(i )
t�1,l D A(i )

t�1,l�1 for 0� i � k, and Tl D Tl�1 at this step.
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The construction of the AS process. The AS process is composed of the follow-
ing algorithm. We start withT0 D 0.

First, we check one directed edge fromwt , and write�t�1,Tl�1C1 for the head of
this edge. We declare that the edge (wt , �t�1,Tl�1C1) is checked. If�t�1,Tl�1C1 is chosen

from N (0)
t�1,l�1 and the edgehwt , �t�1,Tl�1C1i is open, we say that�t�1,Tl�1C1 is good,

and let�t�1,Tl�1C1 change to active. Otherwise we say that�t�1,Tl�1C1 is bad, and stop
the process here.

Next, for x � 1, suppose that we have distinctx good vertices{�t�1,Tl�1C1, : : : ,
�t�1,Tl�1Cx}. Then we check one directed edge from�t�1,Tl�1Cx, and write�t�1,Tl�1CxC1

for the head of this edge. We declare that the edge (�t�1,Tl�1Cx,�t�1,Tl�1CxC1) is checked.

If �t�1,Tl�1CxC1 is chosen fromN (0)
t�1,l�1 and the edgeh�t�1,Tl�1Cx, �t�1,Tl�1CxC1i is open,

we say that�t�1,Tl�1CxC1 is good, and let�t�1,Tl�1CxC1 change to active. Otherwise we
say that�t�1,Tl�1CxC1 is bad, and stop the process here. We continue it until we get to
a bad vertex, where we stop this process.

By this construction, new good vertices{�t�1,Tl�1C1,:::,�t�1,Tl�1} at the step (t�1,l )

are inA(1)
t�1,l .

We consider the state of the bad vertex and renew the states ofvertices. Let
{�t�1,Tl�1C1, : : : , �t�1,Tl�1Cx} be vertices obtained by the above procedure. ThenTl D

Tl�1C x, �t�1,Tl�1Cy is good for y < x and �t�1,Tl�1Cx is bad.
a) If �t�1,Tl is chosen fromAt�1,l�1 [ {wt} [ {�t�1,Tl�1C1, : : : , �t�1,Tl�1}, or �t�1,Tl is
chosen fromNt�1,l�1 and the edgeh�t�1,Tl�1, �t�1,Tl i is closed, then we put

N (0)
t�1,l D N (0)

t�1,l�1 n {�t�1,Tl�1C1, : : : , �t�1,Tl�1},

N (i )
t�1,l D N (i )

t�1,l�1 for 1� i � k,

A(1)
t�1,l D A(1)

t�1,l�1 [ {�t�1,Tl�1C1, : : : , �t�1,Tl�1},

A(i )
t�1,l D A(i )

t�1,l�1 for i ¤ 1.

b) If �t�1,Tl is chosen fromN (1)
t�1,l�1 and the edgeh�t�1,Tl�1, �t�1,Tl i is open, then we

do the same thing as in the case a) except that we put

N (1)
t�1,l D N (1)

t�1,l�1 n {�t�1,Tl },

A(1)
t�1,l D A(1)

t�1,l�1 [ {�t�1,Tl�1C1, : : : , �t�1,Tl }.

c) If �t�1,Tl is chosen fromN (i )
t�1,l�1 for 2 � i � k and the edgeh�t�1,Tl�1, �t�1,Tl i is

open, then we do the same thing as a) except that we put

N (i )
t�1,l D N (i )

t�1,l�1 n {�t�1,Tl },

A(i )
t�1,l D A(i )

t�1,l�1 [ {�t�1,Tl }.

When all the above operations are over, the AS process�t�1,l is finished.
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The step (t � 1, k C 1); directed edge towt . For v 2 N (i )
t�1,k, if there is an

unchecked edge (v,wt ) in EGout(n, k), then we declare that the edge (v,wt ) is checked.
Further, if the non-directed edgehv, wti is open, thenv 2 A(iC1)

t�1,kC1, if this edge is

closed, thenv 2 N (iC1)
t�1,kC1. If there is not such an edge, thenv 2 N (i )

t�1,kC1. For v 2

A(i )
t�1,k, if there is an unchecked edge (v, wt ) in EGout(n, k), then we declare (v, wt )

checked andv 2 A(iC1)
t�1,kC1. If there is not such an edge, thenv 2 A(i )

t�1,kC1.

REMARK 1. For the directed edge (v,wt ) checked at the step (t �1,kC1), there
are cases when the revers edge (wt , v) is checked before the step (t � 1, k). In this
case, the non-directed edgehwt , vi has already decided open or closed. So, the state
of this edge must not change. This fact influences the calculation of the exploration
process. We solve this problem in Remark 3.

When all the above steps are over, we putEt D Et�1 [ {wt}, N (i )
t D N (i )

t�1,kC1,

A(i )
t D A(i )

t�1,kC1 for 0� i � k, and the exploration ofwt is finished.

3.2. The stochastic process characterizing the exploration process. We define
�t by

(3) �t D At � At�1,1� 1.

Namely, �t C 1 is the number of vertices changing their state from neutralto active,
from step (t � 1, 2) to step (t � 1, kC 1).

Next we defineN(wt ) by N(wt ) D At�1,1 � At�1,0C 1{wt2Nt�1}. Roughly N(wt )
is the number of vertices changing their state from neutral to active, during the step
(t � 1, 1) (includingwt ). Thus At D At�1C N(wt )C �t .

The processN(wt ) is positive exactly whenAt�1 D 0, and At can be written as
At D

Pt
sD1 N(ws)C

Pt
sD1 �s. We will investigate the behavior of

Xt D

t
X

sD1

�s.

REMARK 2. By the above construction,A(0)
t D A(0)

t,l D ; for any t and l .

By definition, we have

(4) Xt D At � Zt ,

where Zt is a non-decreasing process given by

Zt D

t
X

sD1

N(ws).
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Let 0D t0 < t1 < � � � be the times at whichAt vanishes. ThenZt D Zt jC1 for all
t 2 {t j C 1, : : : , t jC1}. Since Xt j D �Zt j , we haveXt jC1 D �Zt jC1 D �Zt < Xt for all
t 2 {t j C 1, : : : , t jC1 � 1}. Therefore eacht j is one of renewal times of the process
min0�s�t Xs.

4. Proofs of Theorems 1, 3, and 4

For verticesu and v, we mean byu  v that there is a directed edge (v, u) in
EGout(n, k), and we mean by{�t�1,Tl 2 N (i )

t�1,l�1, open} that �t�1,Tl 2 N (i )
t�1,l�1 and the

edgeh�t�1,Tl�1, �t�1,Tl i is open (if�t�1,Tl�1 D �t�1,Tl�1, then hwt , �t�1,Tl i is open). Also,
{wt  v, closed} means thatwt  v and the edgehwt , vi is closed.r t�1,l denotes the
number of good vertices in the AS process�t�1,l . Let

r 0t�1,l D r t�1,l C 1{�t�1,Tl 2N
(�1)

t�1,l�1, open} ,

i.e., it is the number of new active vertices in�t�1,l .

Assume thatwt 2N
(i )

t�1[A
(i )
t�1 for some 1� i � k. Then we introduce fictitious AS

processesO� t�1,l for l D 1, : : : , i , which are independent copies of an AS process with

data {N
( j )

t�1,l�1 [ A
( j )
t�1,l�1}, 0 � j � k, which always executes, andN ( j )

t�1,l , A
( j )
t�1,l are

unchanged fromN ( j )
t�1,l�1, A( j )

t�1,l�1. Let Or t�1,l and Or 0t�1,l be the number of good vertices
in O� t�1,l and the number of new active vertices inO� t�1,l . For l � i C1, we put O� t�1,l as
the l -th AS process as before. ThereforeOr t�1,l D r t�1,l and Or 0t�1,l D r 0t�1,l for l � i C 1.
By (3), �t also has the following expression.

�t D

k
X

lD2

1{wt2N
(�l�1)

t�1 [A
(�l�1)
t�1 } Or

0

t�1,l C
X

v2Nt�1,k

1{wt v, open} � 1

D

k
X

lD2

Or 0t�1,l C
X

v2Nt�1,k

1{wt v, open} � 1

�

k
X

jD2

{

1{A( j )
t�1>0,A(� jC1)

t�1 D0} C 1{At�1D0,wt2N
( j )

t�1}

}

j
X

lD2

Or 0t�1,l .

Let Ft be the� -algebra generated by all the information up to timet , and let
Ft�1,l � Ft�1 be the� -algebra generated by all the information up to the end of the
step (t � 1, l ).

Hereafter, we use the following notation forfn D fn(!) and gn D gn(!). fn D

o(gn) if there is�0 such thatP (�0) D 1 and limn!1 sup
!2�0

fn=gn D 0. fn D O(gn)
if there existsC > 0 such thatj fnj � Cjgnj for any n and almost every!.

We use following notations for some distributions. LetBe(p), Ge(p), Bin(nI p) and
NB(kI p) denote distributions of the Bernoulli distribution with the success probability
p, the geometric distribution with the success probabilityp starting 1, the binomial dis-
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tribution with the populationn and the success probabilityp, and the negative binomial
distribution with the number of failuresk and the success probabilityp, respectively.

Next, we introduce an abbreviated notation,

X � NB(nI p)C Bin(mI q)C c,

to mean thatX D X1 C X2 C c for independent random variablesX1 and X2 and a
constantc such thatX1 � NB(nI p) and X2 � Bin(mI q).

4.1. Fundamental lemmas.

Lemma 1. Let {�t�1,l } be independent random variables distributed as

�t�1,l � Ge(1� p) (1� l � k),(5)

�t�1,kC1 �

8

<

:

Bin

�

n� t I
kp

n� t

�

(t � n� 1),

Be(kp) (t D n)
(6)

for each1 � t � n and 1 � l � kC 1. Then we can couple{Or 0t�1,l } and {�t�1,l } such
that almost surelyOr 0t�1,l � �t�1,l and �t�1,l is independent ofFt�1,l�1 for each1� t � n

and 1 � l � k. Also we can couple
{
P

v2Nt�1,k
1{wt v, open}

}

and {�t�1,kC1} such that

almost surely
P

v2Nt�1,k
1{wt v, open} � �t�1,kC1 and �t�1,kC1 is independent ofFt�1,k for

each1� t � n. Further, let �t D
Pk

lD2 �t�1,l C �t�1,kC1 � 1. Then�t is distributed as

(7) �s �

8

<

:

NB(k � 1I 1� p)C Bin

�

n� t I
kp

n� t

�

� 1 (t � n� 1),

NB(k � 1I 1� p)C Be(kp) � 1 (t D n)

for each 1 � t � n, and we can couple{�t} and {�t } such that almost surely�t � �t

for each t and�t is independent ofFt�1.

Proof. We have for eachd � 1,

P (Or 0t�1,l � d j Ft�1,l�1) � P ({�t�1,Tl�1C1, : : : , �t�1,Tl�1Cd�1 are good,

h�t�1,Tl�1Cd�1, �t�1,Tl�1Cdi is openj Ft�1,l�1)

� pd.

So we can coupleOr 0t�1,l and �t�1,l such that almost surelyOr 0t�1,l � �t�1,l .
Other facts are trivial.

Lemma 2. Let Æ 2 [0, 1). For any 0� t � Æn, there exist positive constants C1 D

C1(k) and C2 D C2(k),

E

�

N(�1)
t C At

�

� C1t , E

��

N(�1)
t C At

�2�
� C2t2.
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Proof. Let �t D
�

N(�1)
t C At

�

�

�

N(�1)
t�1 C At�1

�

. Also, let N�t be a random variable

distributed asNB(kI 1� p) C Bin(n � t I k=(n � t)), where N�t is independent ofFt�1.
By Lemma 1, we can couple�t and N�t , such that almost surely�t � N�t for all t � Æn.
Hence we get some constantC1 D C1(k) depending onk,

E[N(�1)
t C At ] D

t
X

sD1

E�s �

t
X

sD1

E

N

�s �

t
X

sD1

�

kp

1� p
C k

�

� C1t .

Also there existsC2 D C2(k) depending onk,

E

��

N(�1)
t C At

�2�
D E

��

N(�1)
t�1 C At�1C �t

�2�

� E

��

N(�1)
t�1 C At�1

�2�
C 2C2

1t C C3 � C2t2,

whereC3 D C3(k) depends onk.

Lemma 3. Let 0� p< 1 and mDm(n) � n be a sequence such that m(n)!1
as n!1. Then

(8)

E[�t j Ft�1] D (k � 1)
p

1� p
C kp� 1�

k
X

jD2

F j
N( j )

t�1

n� t
� G

At�1

n� t

�

k
X

jD2

{

1{A( j )
t�1>0,A(� jC1)

t�1 D0} C 1{At�1D0,wt2N
( j )

t�1}

}

�

�

( j � 1)
p

1� p
�

( j � 1)p2

(1� p)2

N(�1)
t�1

n� t
�

( j � 1)p

(1� p)2

At�1

n� t

�

C

�

N(�1)
t�1 C At�1

�2

(n� t)2
O(1)C O

�

m1=3

n� t
Cm1=3 pm1=3

�

C E

�

1{N(0)
t <m1=3}O(1)

�

� Ft�1
�

,

where Fj D (k�1)p2
=(1� p)2

C j p and GD (k�1)p=(1� p)2
C kp. Furthermore, let

Dk D 2(k �
p

k2
� k).

If p D (1C �)=(kC
p

k2
� k) for some� D o(1), then

(9) (k � 1)
p

1� p
C kp� 1D Dk� C O(�2).

REMARK 3. (i) Suppose thatwt is a good vertex of the AS process�s�1,l for
some s < t and some 1� l � k. Namely, there exists < t , 1 � l � k and y 2 N
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such thatwt D �s�1,Tl�1Cy and Tl�1 C y < Tl . Then we have checked the directed
edge (�s�1,Tl�1Cy,�s�1,Tl�1CyC1). Hence we have to exclude�s�1,Tl�1CyC1 when we check
other directed edges fromwt (D �s�1,Tl�1Cy). Furthermore, when we execute thel -th
AS process�t�1,l , �t�1,Tl�1C1 is chosen fromNt�1,l�1 [ At�1,l�1 outside {�t�1,T0C1,
�t�1,T1C1, : : : , �t�1,Tl�2C1}. However, if we take conditional expectation without con-
sidering these things, then the error isO(1=(n� t)).
(ii) Suppose thatwt appears in the AS process�s�1,l for somes < t and some 1�
l � k. Namely, there exists < t , 1 � l � k and y 2 N such thatwt D �s�1,Tl�1Cy

and Tl�1 C y � Tl . When y D 1, we understand that�s�1,Tl�1Cy�1 D ws. Then we
have already decided the edgeh�s�1,Tl�1Cy, �s�1,Tl�1Cy�1i to be open or closed at time
s. However, since�s�1,Tl�1Cy�1 is not neutral, so we don’t have to exclude�s�1,Tl�1Cy�1

when we execute AS processes at timet .
(iii) Suppose that there exists� t , 1� l � k and y 2 N[ {0} such thatwt D �s�1,Tl�1Cy

andTl�1Cy< Tl , where we understandt D s if yD 0. We consider the step (t�1,kC1).
If {wt  �s�1,Tl�1CyC1} occurs, then we have already decided the edgehwt , �s�1,Tl i is
open or closed at times. However, similarly to (i), if we take conditional expectation
without considering these things, then the error isO(1=(n� t)).

Proof of Lemma 3. First we consider steps (t � 1, l ) for 2� l � k. Note that

(10)

1{Or 0t�1,lDx} D 1{Or t�1,lDx�1}1{�t�1,Tl 2N
(�1)

t�1,l�1, open}

C 1{Or t�1,lDx}

�

1{�t�1,Tl 2Nt�1,l�1n{�t�1,Tl�1C1,:::,�t�1,Tl�1}, closed}

C 1{�t�1,Tl 2At�1,l�1[{wt }[{�t�1,Tl�1C1,:::,�t�1,Tl �1}}

�

.

By (i) and (ii) of Remark 3,

P (�t�1,Tl�1C1 is goodj Ft�1,l�1) D
N(0)

t�1,l�1

n� t
pC O

�

1

n� t

�

,

P (�t�1,Tl�1C1 is bad and changes to active from neutralj Ft�1,l�1)

D

N(�1)
t�1,l�1

n� t
pC O

�

1

n� t

�

,

P (�t�1,Tl�1C1 is bad and doesn’t change its statej Ft�1,l�1)

D

Nt�1,l�1

n� t
(1� p)C

At�1,l�1

n� t
C O

�

1

n� t

�

.

Further for y � 2,

P (�t�1,Tl�1Cy is goodj {�t�1,Tl�1C1, : : : , �t�1,Tl�1Cy�1} are good)

D

N(0)
t�1,l�1 � (y � 1)

n� t
p,
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P (�t�1,Tl�1Cy is bad and changes to active from neutralj

{�t�1,Tl�1C1, : : : , �t�1,Tl�1Cy�1} are good)

D

N(�1)
t�1,l�1

n� t
p,

P (�t�1,Tl�1Cy is bad and doesn’t change its statej

{�t�1,Tl�1C1, : : : , �t�1,Tl�1Cy�1} are good)

D

Nt�1,l�1 � (y � 1)

n� t
(1� p)C

At�1,l�1C (y � 1)C 1

n� t
.

Therefore, from (10),

E[ Or 0t�1,l j Ft�1,l�1] D E

"

n
X

xD0

x1{Or 0t�1,lDx} Ft�1,l�1

#

D

N(0)
t�1,l�1
X

xD1

x �

"

x�2
Y

yD0

(

N(0)
t�1,l�1 � y

n� t
pC 1{yD0} � O

�

1

n� t

�

)(

N(�1)
t�1,l�1

n� t
pC O

�

1

n� t

�

)

C

x�1
Y

yD0

(

N(0)
t�1,l�1 � y

n� t
pC 1{yD0} � O

�

1

n� t

�

)

�

�

Nt�1,l�1 � x

n� t
(1� p)C

At�1,l�1C x

n� t
C O

�

1

n� t

��

#

D

Nt�1,l�1

n� t
p

 

1�
N(0)

t�1,l�1

n� t
p

!N(0)
t�1,l�1
X

xD1

x
x�2
Y

yD0

(

N(0)
t�1,l�1 � y

n� t
p

)

CO

�

1

n� t

�

,

where we understand that
Q

�1
xD0{ � } D 1. Here

N(0)
t�1,l�1
X

xD1

x
x�2
Y

yD0

(

N(0)
t�1,l�1 � y

n� t
p

)

D 1
{N(0)

t�1,l�1�m1=3}

2

4

bm1=3



X

xD1

x
x�2
Y

yD0

(

N(0)
t�1,l�1 � y

n� t
p

)

C

N(0)
t�1,l�1
X

xDbm1=3

C1

x
x�2
Y

yD0

(

N(0)
t�1,l�1 � y

n� t
p

)

3

5

C 1{N(0)
t�1,l�1<m1=3}

N(0)
t�1,l�1
X

xD1

x
x�2
Y

yD0

(

N(0)
t�1,l�1 � y

n� t
p

)

D

1
�

1�
�

N(0)
t�1,l�1=(n� t)

�

p
�2 C O

�

m1=3

n� t
Cm1=3 pm1=3

�

C1{N(0)
t�1,l�1<m1=3}O(1).
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Thus

E[ Or 0t�1,l j Ft�1,l�1] D
Nt�1,l�1

n� t
p

1

1�
�

N(0)
t�1,l�1=(n� t)

�

p
C O

�

m1=3

n� t
Cm1=3 pm1=3

�

C 1{N(0)
t�1,l�1<m1=3}O(1).

By the Taylor expansion in
�

N(�1)
t�1,l�1 C At�1,l�1

�

=(n � t), the right hand side of the
above equality is equal to

p

1� p
�

p2

(1� p)2

N(�1)
t�1,l�1

n� t
�

p

(1� p)2

At�1,l�1

n� t
C

�

N(�1)
t�1,l�1C At�1,l�1

�2

(n� t)2
O(1)

C O

�

m1=3

n� t
Cm1=3 pm1=3

�

C1{N(0)
t�1,l�1<m1=3}O(1).

By the proof of Lemma 2, we have

E

"

N(�1)
t�1,l�1C At�1,l�1

n� t
Ft�1

#

D

N(�1)
t�1 C At�1

n� t
C O

�

1

n� t

�

,

E

"

�

N(�1)
t�1,l�1C At�1,l�1

�2

(n� t)2
Ft�1

#

D

�

N(�1)
t�1 C At�1

�2

(n� t)2
C O

�

1

n� t

�

.

So we obtain thatE
�

Pk
lD2 Or

0

t�1,l Ft�1
�

is equal to

(11)

(k � 1)
p

1� p
� (k � 1)

p2

(1� p)2

N(�1)
t�1

n� t
� (k � 1)

p

(1� p)2

At�1

n� t

C

�

N(�1)
t�1 C At�1

�2

(n� t)2
O(1)C O

�

m1=3

n� t
Cm1=3 pm1=3

�

C E

�

1{N(0)
t <m1=3}O(1) j Ft�1

�

,

where we used thatN(0)
t�1,l�1 � N(0)

t .
Next, we consider the step (t � 1, kC 1). By (iii) of Remark 3,

E

"

X

v2Nt�1,k

1{wt v, open} Ft�1,k

#

D

k
X

jD0

N( j )
t�1,k

(k � j )p

n� t
C O

�

1

n� t

�

D kp�
k
X

jD1

j p
N( j )

t�1,k

n� t
� kp

At�1,k

n� t
C O

�

1

n� t

�

,
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hence we have

(12) E

"

X

v2Nt�1,k

1{wt v, open} Ft�1

#

D kp�
k
X

jD1

j p
N( j )

t�1

n� t
� kp

At�1

n� t
C O

�

1

n� t

�

.

Combining (11) and (12), we have (8).
(9) is trivial.

Lemma 4. Let Æ 2 (0, 1) and p< 1.
If a > k(p=(1� p)C1=(1� Æ)), then there exists some constantNI (a) > 0 such that

(13) P (N(0)
t < n� t � at) � e�

NI (a)t

for any t� Æn. In particular, if p < 1=3 and Æ < (1� 2p)=(2� 3p), then we can take
a D 2k in (13).

If b < (k�1�kÆ)=(1CkÆ) for someÆ > 0, then there exists some constant I(b)> 0
such that

(14) P (N(0)
t > n� t � bt) � e�I (b)t

for any t � Æn. In particular, if Æ < (2k � 3)=(k(k C 3)), then we can take bD k=3
in (14).

Proof. Take ans� t . Recall�s in the proof of Lemma 2 and let{ NXs} be i.i.d. ran-
dom variables distributed asNB(kI 1 � p) C Bin(nI k=((1 � Æ)n)) for eachs � t . We
couple�s and NXs for eachs� t such that almost surely�s � NXs. Therefore (13) follows
from usual large deviation estimates forNX (for usual large deviation estimates, we refer
the reader to the Section 1.9 of [10].).

Next, let Xs be i.i.d. random variables distributed asBin(n� (1C b)ÆnI k=n) � 1.

We can couple�s and Xs such that�s � Xs on
{

N(0)
s�1,k > n� (1Cb)Æn

}

for eachs� t ,

and Xs is independent ofFs�1,k. Since N(0)
s,l is decreasing for each time and step, and

P (N(0)
t > n� t � bt) � E

�

1{N(�1)
t CAt<bt}1{N(0)

t >n�(1Cb)Æn}

�

,

we obtain (14) from usual large deviation estimates forX.

4.2. Proof of Theorem 1. Let {�s} be defined by (7), where we extend the def-
inition for s > n to be independent copies of�n. Let Wt D d C

Pt
sD1 �s, whered is

a fixed positive integer withd < n1=3. Let h D n1=3 and


h D min{t W Wt D 0 or Wt � h}.



690 Y. OTA

When s� n� 1, expanding inc aroundcD 0, we obtain that

logEe�c�s
D c

�

�(k � 1)
p

1� p
� kpC 1

�

C

c2

2

�

(k � 1)
p

1� p
C (k � 1)

�

p

1� p

�2

C kp�
k2 p2

n� s

�

C O(c3).

Writing � D �n�1=3, from (9) we can see that the right hand side of the above equality
is equal to

(15) �Dkc� C
c2

2

�

(k � 1)
p

1� p
C (k � 1)

�

p

1� p

�2

C kp�
k2 p2

n� s

�

C O(c3
C c�2).

When s� n, we get the same equality, except thatk2 p2
=(n� s) in the second term of

the right hand side of (15) is replaced withk2 p2.
Using these facts, we first prove that for a large enoughn,

(16) P (W

h > 0)�

8

�

�

�

�

�

<

�

�

�

�

�

:

4d�

1� e�4�
n�1=3

� > 0,

�2d�

e�� � 1
n�1=3

� < 0,

dn�1=3
� D 0.

When � > 0, we put c D 4� and we have�Dkc� D �8(k �
p

k2
� k)�2. Since

p D 1=(kC
p

k2
� k)C O(�), by (15) and the remark after (15), we can see that

logEe�c�s
� 8(�kpC kp2

� k2 p2
C 1)�2

C O(�3).

Noting that p � 1=(2k � 1), the right hand side of the above inequality is positive
for a small� and this implies thate�cWs is a submartingale. By the optional stopping
theorem we have

e�cd
D Ee�cW0

� Ee�cW

h
� e�cn1=3

P (W

h > 0)C P (W


h D 0).

This proves the first part of (16).
When � < 0, we put c D ��. By a similar argument we can see thatecWs is

a supermartingale. Also when� D 0, Ws is a martingale. By the optional stopping
theorem we obtain the second and the third part of (16).

Lemma 5. For a large enough n,

EW

h � (3kn1=3

C 1)P (W

h > 0),(17)

EW2

h
� (9k2n2=3

C 1)P (W

h > 0).(18)
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Proof. SinceEW

h D E[W


h I W

h > 0], noting thatW


h D W

h�1 C �
h , and that

W

h�1 � n1=3, we can see thatEW


h is not larger than

n1=3
P (W


h > 0)C (3k � 1)n1=3
P (W


h > 0)C E[�

h I �
h > (3k � 1)n1=3].

To prove (17), we will show that the third term is not larger than P (W

h > 0) for a

large enoughn. In fact,

(19)

E[�

h I �
h > (3k � 1)n1=3]

�

n1=3
�1

X

xD1

1

X

sD1

E[�s1{�s>(3k�1)n1=3} j 0< W1, : : : , Ws�2 < n1=3,

Ws�1 D x, �s � n1=3
� x]

� P (0< W1, : : : , Ws�2 < n1=3, Ws�1 D x, �s � n1=3
� x)

�

1

X

sD1

E[�s1{�s>(3k�1)n1=3}]

P (�s � n1=3)
P (
h D s, Ws > 0)

� (3k � 1)n1=3
1

X

sD1

1

X

jD1

( j C 1)
P (�s � (3k � 1) jn1=3)

P (�s � n1=3)
P (
h D s, Ws > 0).

By (5)–(7), since�s � �s�1,2, the denominator in the right hand side of the above

inequality is not less thanP (�s�1,2 � n1=3) D pn1=3
.

If �s � (3k�1) jn1=3, then either�s�1,l � 2 jn1=3 for some 2� l � k, or �s�1,kC1 �

(kC 1) jn1=3. Therefore we have

(20) P (�s � (3k � 1) jn1=3) � (k � 1)p2 jn1=3
C C1(kp)(kC1) jn1=3

for some constantsC1 D C1(k) > 0. Sincek(kp)k
� k(1=(2� 1=k))k

� 8=9, we have

(21)
P (�s � (3k � 1) jn1=3)

P (�s � n1=3)
� (k � 1)p jn1=3

C C1

�

8

9

� jn1=3

.

From (19) and (21), there is a constantC2 D C2(k) > 0 such that

(22) E[�

h I �
h > (3k � 1)n1=3] � C2n1=3

(

pn1=3
C

�

8

9

�n1=3)

P (W

h > 0).

To prove (18), we proceed as above. ByW

h D W


h�1C �
h and (22),

EW2

h
� 9k2n2=3

P (W

h > 0)C 2n1=3

� C2n1=3

(

pn1=3
C

�

8

9

�n1=3)

P (W

h > 0)

C E[�2

h
I �


h > (3k � 1)n1=3].
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By (21), it is easy to see that there is a constantC3 D C3(k) > 0 such that

E[�2

h
I �


h > 3(k � 1)n1=3] � C3n2=3

(

pn1=3
C

�

8

9

�n1=3)

P (W

h > 0),

which proves (18) for a large enoughn.

Lemma 6. For a large enough n,

(23) E
h � 100k2dn1=3.

Proof. Assume first that� > 1=4. By E�s D Dk�n�1=3
C O(n�2=3) and Dk > 1,

if n is large, then{Wt � t�n�1=3} is a submartingale. By the optional stopping theorem
and (17),

d � EW

h � �n�1=3

E
h � (3kn1=3
C 1)P (W


h > 0)� �n�1=3
E
h.

From (16), this shows that (23) is correct when� > 1=4.
When n is large, it is easy to see thatP (�s D 0)< 3=4, and that (E�t )2

D O(�2).
Hence{(Wt �EWt )2

� (1=5)t} is a submartingale, and by the optional stopping theorem
we get

0� E

�

(W

h � EW


h )
2
�

1

5

h

�

D EW2

h
�

1

5
E
h.

Combining this with (16) and (18), we see that (23) is correctfor � � 1=4, as well.

Let v be a vertex in the component explored first, and letC(v) be the compo-
nent includingv. By definition t1 is the first time Xt hits �N(w1), and jC(v)j D t1.
ThereforejC(v)j � An2=3 implies that Xt never hits�N(w1) until t D An2=3. Setting
W0 D N(w1), by our coupling we haveWt � N(w1)C Xt almost surely.

Following [2], we introduce
 �h D 
h ^ n2=3, and note that ifjC(v)j � An2=3 for
some A> 1, thenW




�

h
> 0 as well asX




�

hC(A�1)n2=3
> �N(w1) almost surely. We shall

estimate this probability.
By Lemma 1,N(w1) is stochastically dominated by a random variable distributed as

Ge(1� p)C 1. So the probability thatN(w1) � n1=3 is bounded bypn1=3
�1 from above.

Let D andDt for n1=3
� 1� t < Æn be events given by

Dt D

�

N(0)
t � n� t �

k

3
t

�

, and D D
\

n1=3
�1�t<Æn

Dt ,

whereÆ > 0 is a small constant. By Lemma 4, we have

P (DC) �
Æn�1
X

sDn1=3
�1

P

�

N(0)
s � n� s�

k

3
s

�

� ne�I (k=3)n1=3
.
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Therefore we can concentrate on the eventD \ {N(w1) < n1=3}. For c > 0, we have

(24)

P (D \ {N(w1) < n1=3, W



�

h
> 0, X




�

hC(A�1)n2=3
� �N(w1)})

�

n1=3
�1

X

dD1

n2=3
X

sD1

E

�

ec
PsC(A�1)n2=3

uDsC1 �uCcWsCcd1{D} I N(w1) D d, 
 �h D s, Ws > 0
�

.

To estimateE[ec�u
j Fu�1], we introduce another coupling. Let{wt

(l )
 � v} be the event

that we choose uniformlyl directed edges from{(v, v0) W v0 � Et�1 [ {v}}, and (v, wt )

is among these chosen edges. Ift � k� l , then we understand that{wt
(l )
 � v} is equal

to the total set�. Further we mean by{wt
(l )
 � v, open} the event that{wt

(l )
 � v}

occurs and the edgehv, wti is open. LetGt (v) denote the family of events{{wt
(l )
 �

v, open} W 0 � l � k}. Then we can couple{{wt  v, open} W v 2 V n {Et�1 [ {wt }}}

with {Gt (v) W v 2 V n {Et�1 [ {wt }}} such that
(i) Gt (v) is independent of{Gt (v0) W v0 2 V n {Et�1 [ {wt}}, v0 ¤ v},

(ii) {wt
(l )
 � v, open} � {wt

(m)
 �� v, open} almost surely ifm> l , and

(iii) if v 2 N (k�l )
t�1,k , then {wt

(l )
 � v, open} D {wt  v, open}.

Then sinceN(0)
t � N(0)

t�1,k, we have

X

v2Nt�1,k

1{wt v, open}

�

X

v2N
(0)

t�1

1
{wt

(k)
 v, open}

C

X

v2N
(�1)

t�1 [At�1

1
{wt

(k�1)
 v, open}

.

Therefore, sinceDk < 2, we obtain that fort < n and for smallc > 0,

(25)

E[ec�t
j Ft�1]

� exp

�

(k � 1)

�

p

1� p
(cC c2)C

�

p

1� p

�2

(
p

2c)2

�

C N(0)
t�1

�

kp

n� t
(cC c2)

�

C (n� t � N(0)
t�1)

�

(k � 1)p

n� t
(cC c2)

�

� c

�

� exp

�

2(cC c2)j�j C

�

1C
2(k � 1)p2

(1� p)2

�

c2
�

n� t � N(0)
t�1

n� t
p(cC c2)

�

for a large enoughn. Since� D �n�1=3, when n1=3
� t � Æn, (25) implies that

E[ec�t
j Ft�1]1{Dt�1} � exp

�

3cj�j �
kpct

3n
C 2c2

�

for a large enoughn. Also by (25), we haveE[ec�t
j Ft�1] � e2cj�jC2c2

for every 1�
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t < n. SinceDu � D if u 2 [n1=3
� 1, Æn), we have fors� 0 and 0� sC t � Æn,

E

�

ec
PsCt

uDsC1 �u1{D} Fs
�

� exp

"

sCt
X

uDsC1

�

3cj�j �
kpcu

3n
C 2c2

�

C 2cj�jn1=3
C 2c2n1=3

#

� exp

�

3cj�jt �
kpct2

6n
C 2c2t C 2cj�jn1=3

C 2c2n1=3

�

,

if c > (kp=6)n�2=3
� (3=2)j�j. But since� D �n�1=3, this is true as long asc > 0 and

n is large enough. Now we putt D (A� 1)n2=3. If A is large, then the minimizer of
the quadratic form in the exponent is

cD
kpt2=(6n) � 3j�jt � 2j�jn1=3

4(t C n1=3)
,

and this is positive. Also, note that thisc is of ordern�1=3. So, hereafter we use this
c. Then we have

(26) E

�

ec
PsCt

uDsC1 �u1{D}

�

� Fs
�

� exp

�

�

{kpt2=(6n) � 3j�jt � 2j�jn1=3}2

8(t C n1=3)

�

.

Next, we estimateE[ecWs
I N(w1) D d, 
 �h D s, Ws > 0]. If 
 �h D s, then Ws D

Ws�1C �s � n1=3
C �s, and we have

E[ecWs
I N(w1) D d, 
 �h D s, Ws > 0]

� e3kcn1=3
P (N(w1) D d, 
 �h D s, Ws > 0)C ecn1=3

E[ec�s
I �s > (3k � 1)n1=3].

Using (20), we obtain that

E[ec�s
I �s > (3k � 1)n1=3]

�

1

X

jD1

ec(3k�1)( jC1)n1=3
{(k � 1)p2 jn1=3

C C1(kp)(kC1) jn1=3
}.

The right hand side converges and is bounded by

C4(pn1=3
C (kp)(kC1)n1=3

)

for some constantC4 D C4(k, �) > 0, sincec is of ordern�1=3. Therefore we have

n1=3
X

dD1

n2=3
X

sD1

E[ecWs
I N(w1) D d, 
 �h D s, Ws > 0]

� C5

(

n1=3
X

dD1

P (N(w1) D d)P (W



�

h
> 0 j N(w1) D d)C n(pn1=3

C (kp)(kC1)n1=3
)

)

(27)
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for some constantC5 D C5(k, �) > 0. Finally by definition,

P (W



�

h
> 0 j N(w1) D d)

� P (W

h � n1=3

j N(w1) D d)C P (
h � n2=3
j N(w1) D d).

By (16) and (23), we obtain that

(28) P (W



�

h
> 0 j N(w1) D d) � C6dn�1=3

for some constantC6 D C6(k, �) > 0. Substituting (26), (27) and (28) into (24), we
obtain that

P (D \ {N(w1) < n1=3, W



�

h
> 0, X




�

hC(A�1)n2=3
� �N(w1)})

� C7n�1=3e�r (A�1)3

for some constantsC7 D C7(k, �) > 0, and r D r (k, �) > 0 if A is large but A D
O(n1=10). From this we have

P (jC(v)j � An2=3) � Cn�1=3e�r (A�1)3

for some constantC D C(k, �) > 0.
A similar argument applies to components explored after thefirst one.
Denote byST the number of vertices contained in components larger thanT . Then

jC1j � T implies thatST � T . So, takingT D An2=3, we have

P (jC1j � T) � P (ST � T) �
EST

T
�

nP (jC(v)j � T)

T
�

C

A
e�r (A�1)3,

completing the proof of Theorem 1.

4.3. Proofs of Theorems 3, 4. In cases of above or below the critical point, we
also use the calculation of theXt .

Proof of Theorem 3. Let{�s} be the random variables given by (7).
By a calculation similar to (25), we have for a small� > 0,

Ee��s
� exp

��

(k � 1)
p

1� p
C kp� 1

�

(� C �2)C

�

1C
2(k � 1)p2

(1� p)2

�

�

2

�

.

The right hand side of the above inequality is not larger thane�r � for somer > 0 and
a small enough� > 0. We have the same estimate forsD n. Let v be a vertexv such
that it is included in the component explored at first. Lemma 1and jC(v)j > A log n



696 Y. OTA

imply that
PA log n

sD1 �s � XA log n > �N(w1) almost surely. Also,N(w1) is stochastically
dominated by a random variable distributed asGe(1� p)C 1. Therefore we have

P (jC(v)j > A log n) �
1

X

dD1

P (N(w1) D d)P (XA log n > �d)

�

1

X

dD1

P (N(w1) D d)e�r �A log nC�d

� Cn�r �A

for some constantC > 0. The argument is similar for the components explored after
first time. Similarly to the proof of Theorem 1,

P (jC1j > A log n) �
nP (jC(v)j > A log n)

A log n
�

Cn1�r �A

A log n
.

If A is large enough,P (jC1j > A log n)! 0 asn!1.

Proof of Theorem 4. WhencD kC
p

k2
� k (i.e., pD 1), since thek-out graph

is almost surely connected,jC1j D n. We consider the case where 1< c< kC
p

k2
� k

(i.e., p < 1). Let r D (k� 1)(p=(1� p))C kp� 1. Thenr is positive in this case. Let

(29)

�

0

t D

k
X

lD2

Or 0t�1,l C
X

v2Nt�1,k

1{wt v, open} � 1,

�

00

t D

k
X

jD2

{

1{A( j )
t�1>0,A(� jC1)

t�1 D0} C 1{At�1D0,wt2N
( j )

t�1}

}

j
X

lD2

Or 0t�1,l .

Then �t D �
0

t � �
00

t . Further, letX0t D
Pt

sD1 �
0

s and X00t D
Pt

sD1 �
00

s . So Xt D X0t � X00t .
Therefore, we can see that

{jC1j < Æn} �

2Æn
[

tDÆnC1

{Xt < 0} �

2Æn
[

tDÆnC1

�

X0t <
r t

2
or X00t �

r t

2

�

.

Takea > k(p=(1� p)C1=(1�2Æ)) with a smallÆ > 0. For 0� s� 2Æn and 1� l � k,
we define the eventsQDs and QDs,l by

QDs D {N(0)
s > n� 2(1C a)Æn},

QDs,l D {N(0)
s,l > n� 2(1C a)Æn� 1� 2kÆn}.
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For s � t and 2� l � k, let �s�1,l be following independent non-negative ran-
dom variables;

P (�s�1,l D x) D
x�1
Y

yD0

�

n� 2(1C a)Æn� 1� 2kÆn� y

n� s
p

�

(1� p),

for an integerx � 1, and it puts on 0 the remaining probability. We can coupleOr 0s�1,l

and �s�1,l such thatOr 0s�1,l � �s�1,l on QDs�1,l�1. We also let�s�1,kC1 be independent
random variables distributed asBin(n�2(1Ca)Æn�1�2kÆnI kp=n) for eachs. We can
couple

P

v2Ns�1,k
1{ws v, open} and�s�1,kC1 such that

P

v2Ns�1,k
1{ws v, open} � �s�1,kC1 on

QDs�1,k. We get for� > 0,

Ee��X0

t
� E

"

t�1
Y

sD0

kC1
Y

lD2

{

e���s,l 1{ QDs,l�1}
C 1{ QDC

s,l�1}

}

e�
#

.

Since QDs,l is decreasing in boths and l , and 0< e���s,l
< 1, the right hand side of the

above inequality is not larger than

E

"

t�1
Y

sD0

 

kC1
Y

lD2

e���s,l 1{ QD2Æn,k}
C 1{ QDC

2Æn,k}

!

e�
#

� E

"

t�1
Y

sD0

(

kC1
Y

lD2

e���s,l

)

e�
 

1C
t�1
Y

sD0

kC1
Y

lD2

e��s,l 1{ QDC
2Æn,k}

!#

.

By Schwarz’s inequality and Minkowski’s inequality, the right hand side is not
larger than

v

u

u

t

E

"

t�1
Y

sD0

(

kC1
Y

lD2

e�2��s,l

)

e2�

#

�

2

41C

v

u

u

t

E

"

t�1
Y

sD0

(

kC1
Y

lD2

e2��s,l

)

1{ QDC
2Æn,k}

#

3

5.

Again by Schwarz’s inequality,

E

"

t�1
Y

sD0

(

kC1
Y

lD2

e2��s,l

)

1{ QDC
2Æn,k}

#

�

t�1
Y

sD0

kC1
Y

lD2

p

Ee4��s,l
�

q

P ( QDC
2Æn,k).

By definition, we can find positive constants{Cl }
kC1
lD2 and �0 > 0 such that we have

(30) Ee��s,l
� e�E�s,lC(�2

=2)Cl
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for every 2� l � kC 1, 0� s� 2Æn, and j� j � �0. Now we have for 0� s� 2Æn,

E�s,l D
p

1� p
C O(Æ), and E�s,l �

p

1� p
, 2� l � k,(31)

E�s,kC1 D kpC O(Æ), and E�s,kC1 � kp.(32)

From (30)–(32), and from the fact that

P

�

QDC
2Æn,k

�

� P

�

QDC
2Æn

�

C P

�

N(0)
2Æn � N(0)

2Æn,k � 1C 2kÆn
�

� e�
NI (a)�2Æn

C kp2Æn,

choosing� > 0 small enough, we get

E

"

t�1
Y

sD0

(

kC1
Y

lD2

e4��s,l

)#

P
�

QDC
2Æn,k

�

D o(1)

as n!1. Also from (30)–(32), and by the definition ofr ,

v

u

u

t

E

t�1
Y

sD0

(

kC1
Y

lD2

e�2��s,l

)

e2�
� exp

"

��{r C O(Æ)}t C �2
kC1
X

lD2

Cl t

#

.

ChoosingÆ > 0 and� > 0 small enough, we can findr1 > 0 such that

(33) P

�

X0t <
r t

2

�

� e�r1t .

To estimateEe�X00

t , take a vertexv which appears asws 2 N (�2)
s�1 [ A(�2)

s�1 . Then

there is some timeu � s � 1 such thatv 2 N (1)
u�1,k [ A(1)

u�1,k and that{wu  v} oc-

curs. Therefore
Pt

sD1 �
00

s �
Pt

sD1 1{ws2N
(�2)

s�1 [A
(�2)
s�1 }

Pk
lD2 Or

0

s�1,l and the right hand side is

stochastically dominated by

t
X

uD1

X

v2N
(1)

u�1,k[A
(1)
u�1,k

1
{wu

(k�1)
 v}

k
X

lD2

�u�1,l (v),

where{�u�1,l (v)} for 1� u � t , 2� l � k, v 2 V are i.i.d. random variables distributed
as Ge(1� p). Here we define random variablesf (x), gs and hs by

f (x) � NB((k � 1)x I 1� p),

gs � Bin

�

2(1C a)ÆnI
k � 1

(1� 2Æ)n

�

,

hs � Bin

�

nI
k � 1

(1� 2Æ)n

�

.
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We can couplef (gs) and f (hs) such that almost surelyf (gs) � f (hs). Thus, using
Lemma 4, we obtain that

Ee�X00

t
� E

"

t
Y

sD1

{

e� f (gs)1{ QDs�1}
C e� f (hs)1{ QDC

s�1}

}

#

� E

"

t
Y

sD1

e� f (gs)
C

t
Y

sD1

e� f (hs)1{ QDC
2Æn}

#

�

t
Y

sD1

Ee� f (gs)
C

v

u

u

t

t
Y

sD1

Ee2� f (hs)
q

P

�

QDC
2Æn

�

� eO(Æ)t� .

Therefore

(34) P

�

X00t �
r t

2

�

� e�r2t

for somer2 > 0.
Combining (33) and (34), we get the proof of the theorem.

5. Proof of Theorem 2

5.1. Detailed calculation. From now on, we assume that� D �(n) is a sequence
such that�(n) ! 0 as n ! 1 and we write p D p(n) D (1C �(n))=(k C

p

k2
� k).

Also we assume thats0 2 [0,1) and mD bs0n2=3

.

Lemma 7. If n is large enough, then for all t� s0n2=3,

EAt D O(�n2=3
C n1=3), EZt D O(�n2=3

C n1=3).

Proof. By Lemma 1, we can couple�t and �t such that almost surely�t � �t

and �t is independent ofFt�1 for 1� t � s0n2=3. From (9), we have

E[�t j Ft�1] � E�t D Dk� C O(�2) a.s.

Recall that{t0, t1, : : : } are times at whichAt equals zero. By definition, we have
N(wt ) D 0 for any t ¤ t j C 1. Let {�t}

n
tD1 be i.i.d. random variables distributed as

Ge(1 � p) C 1. By Lemma 1, we can coupleN(wt jC1) and a random variable�t jC1

such that almost surelyN(wt jC1) � �t jC1 and �t jC1 is independent ofFt j . Also from
(4), Zt jC1 D �Xt jC1C N(wt jC1)C �t jC1. Thus by coupling, almost surely

(35)
Zt D

1

X

jD0

1{t j<t�t jC1}{�Xt jC1C N(wt jC1)C �t jC1}

� �min
s�t

XsCmax
s�t

{�sC �s}.
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Here Xt �
Pt

sD1 E[�s j Fs�1] is an (Ft )-martingale. So, using Doob’sL2 maximal in-
equality and Lemmas 2, 3 and 4, we have

�E

�

min
s�t

Xs

�

� E

"

max
s�t

�

�

�

�

�

Xs �

s
X

uD1

E[�u j Fu�1]

�

�

�

�

�

Cmax
s�t

�

�

�

�

�

s
X

uD1

E[�u j Fu�1]

�

�

�

�

�

#

�

v

u

u

t4E

"

�

�

�

�

�

Xt �

t
X

sD1

E[�s j Fs�1]

�

�

�

�

�

2#

C E

"

t
X

sD1

jE[�s j Fs�1]j

#

�

t
X

sD1

E

�

1{A(�2)
s�1>0} C 1{As�1D0,wt2N

(�2)
s�1 }

�

O(1)

C O(�n2=3
C n1=3).

(36)

For 1� i � k, let

(37) a(i )
s D A(i )

s � A(i )
s�1,0.

Further we definea(�i )
s D A(�i )

s � A(�i )
s�1,0. By definition, a(i )

s 2 Fs and

(38) 1{A(�2)
s�1>0} � 1{a(�2)

s�1 �1} C 1{A(�2)
s�2�2}.

Now we use the following lemma. We prove this later.

Lemma 8. For s� t � s0n2=3 and d2 N [ {0},

P ({a(�2)
s D d} \ {N(0)

t � n� t � 2kt} j Fs�1) � 2k1{d¤0}

�

k(t C 2kt)

n� t

�d

,

P ({A(�2)
s � 2} \ {N(0)

t � n� t � 2kt}) D O(n�2=3).

Using (38) and Lemmas 4, 8, we have

(39)
t
X

sD1

E1{A(�2)
s�1>0}O(1)D O(n1=3).

Next, we have

E

�

1{As�1D0,wt2N
(�2)

s�1 } j Fs�1
�

� 1{As�1D0}

N(�2)
s�1

Ns�1
�

N(�2)
s�1

n� s
.

By Lemma 2,

(40)
t
X

sD1

E1{As�1D0,wt2N
(�2)

s�1 }O(1)D O(n1=3).
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Combining (36), (39) and (40), we have

(41) �E

�

min
s�t

Xs

�

D O(�n2=3
C n1=3).

Therefore, using (35) and (41), we obtain that

EZt � �E

�

min
s�t

Xs

�

C O(log n) D O(�n2=3
C n1=3).

Also, by Lemmas 2, 3, 4 and (39), (40), we have

EXt D O(�n2=3
C n1=3).

From this and (4), we obtain thatEAt D EXt C EZt D O(�n2=3
C n1=3).

Proof of Lemma 8. Whend D 0, the first part of this lemma is trivially true.
So we assume thatd is a natural number. We set (I)s,c D

{

A(�2)
s�1,k � A(�2)

s�1,0 D c
}

and

(II) s,c D
{

A(�2)
s�1,kC1 � A(�2)

s�1,k D c
}

. Then we have

1
{a(�2)

s Dd}
D

d^k
X

cD0

1{(I)s,c}1{(II) s,d�c}.

For eachc with 0� c � d ^ k, we have

1{(I)s,c} D

X

1�l1<l2<���<lc�k

c
Y

iD1

1{(II) s,i },

where we set (III)s,i D
{

A(�2)
s�1,l i
� A(�2)

s�1,l i�1 D 1
}

. Since (III)s,i is a subset of
{

�s�1,Tl i
2

N (�2)
s�1,l i�1

}

, we have

E[1{(III) s,i } j Fs�1,l i�1] �
N(�2)

s�1,l i�1

n� s
�

N(�1)
s�1,l i�1C As�1,l i�1

n� s
.

Note thatN(�1)
s�1,l i�1C As�1,l i�1 � t � sC 2kt if N(0)

s�1,l i�1 � n� t � 2kt occurs. Therefore

E

�

1{(III) s,i }1{N(0)
s�1,l i �1�n�t�2kt}

�

� Fs�1,l i�1
�

�

t � sC 2kt

n� s
�

k(t C 2kt)

n� t
.

Next, we estimate (II)s,d�c. If v 2 A(�2)
t�1,kC1 nA

(�2)
t�1,k, then either
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(i) v 2 N (�1)
t�1,k and {wt  v, open} occurs, or

(ii) v 2 A(1)
t�1,k and {wt  v} occurs. This means also that{wt  v} � {wt

(k�1)
 v}

because we have already checked at least one edge starting from v.
Therefore

E[1{(II) s,d�c} j Fs�1,k] �
X

{v1,:::,vd�c}2N
(�1)

s�1,k[A
(1)
s�1,k

d�c
Y

jD1

P (ws
(k�1)
 v j )

�

�

N(�1)
s�1,k C As�1,k

d � c

��

k � 1

n� s

�d�c

�

�

(N(�1)
s�1,k C As�1,k)

k

n� s

�d�c

,

so on the event
{

N(0)
s�1,k � n� t � 2kt

}

, we have

E[1{(II) s,d�c} j Fs�1,k] �

�

k(t � sC 2kt)

n� s

�d�c

�

�

k(t C 2kt)

n� t

�d�c

.

Now, sinceN(0)
t,l is decreasing in botht and l , we have

1{N(0)
t �n�t�2kt} �

t
Y

sD1

k
Y

lD0

1{N(0)
s�1,l�n�t�2kt}

for s� t . Thus

E

�

1
{a(�2)

s Dd}
1{N(0)

t �n�t�2kt}

�

� Fs�1,k
�

�

d^k
X

cD0

X

1�l1<l2<���<lc�k

c
Y

iD1

1{(III) s,i }1{N(0)
s�1,l i �1�n�t�2kt}

�

k(t C 2kt)

n� t

�d�c

,

and therefore

E

�

1
{a(�2)

s Dd}
1{N(0)

t �n�t�2kt}

�

� Fs�1
�

�

d^k
X

cD0

�

k

c

��

k(t C 2kt)

n� t

�c�k(t C 2kt)

n� t

�d�c

� 2k

�

k(t C 2kt)

n� t

�d

.

This proves the first part of this lemma.
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To prove the second part of this lemma, let{d(q)}s
qDr be non-negative integers for

0� r � s< t . Using notations (I)–(III) again, we obtain that

s
Y

qDr

1
{a(�2)

q Dd(q)}1{N(0)
t �n�t�2kt}

�

s
Y

qDr

d(q)^k
X

c(q)D0

X

1�l1<l2<���<lc(q)�k

c(q)
Y

iD1

1{(III) q,i }1{N(0)
q�1,l i �1�n�t�2kt}1{(II)q,d(q)�c(q)}1{N(0)

q�1,k�n�t�2kt} .

Thus, by the first part of this lemma,

(42)

E

"

s
Y

qDr

1
{a(�2)

q Dd(q)}1{N(0)
t �n�t�2kt} Fr�1

#

�

s
Y

qDr

2k1{d(q)¤0}

�

k(t C 2kt)

n� t

�d(q)

�

�

2kk(t C 2kt)

n� t

�

Ps
qDr d(q)

.

Now

1{A(�2)
s �2} � 1{A(�2)

s �2}

�

1
{8u�s, a(�2)

u �2}
C 1

{9u�s, a(�2)
u D3,8u0¤u,a(�2)

u �2}

C 1{9u, u0�s, a(�2)
u Da(�2)

u0 D3} C 1
{9u�s, a(�2)

u �4}

�

.

When A(�2)
u�1 D 0, if a(�2)

u D x then A(�2)
u D x. When A(�2)

u�1 � 1, sincewu is chosen

from A(�2)
u�1 , if a(�2)

u D x then A(�2)
u D A(�2)

u�1 C x � 1. On the event{A(�2)
s � 2, 8u �

s, a(�2)
u � 2}, if

#{u 2 [s� r, s] I a(�2)
u D 2} � #{u 2 [s� r, s] I a(�2)

u D 0} � 0

for all r � s, then A(�2)
0 > 0, which is a contradiction. So there exists a timer 2 [0, s]

such that

#{u 2 [s� r, s] I a(�2)
u D 2} � #{u 2 [s� r, s] I a(�2)

u D 0} D 1.

Therefore

1{A(�2)
s �2}1

{8u�s,a(�2)
u �2}

�

s
X

rD0

1
{#{u2[s�r,s] I a(�2)

u D2}�#{u2[s�r,s] I a(�2)
u D0}D1}

1
{8u�s,a(�2)

u �2}

D

s
X

rD0

br =2

X

xD0

1
{#{u2[s�r,s] I a(�2)

u D0}Dx}
1#{u2[s�r,s] I a(�2)

u D2}DxC1}
1

{#{u2[s�r,s] I a(�2)
u D1}Dr�2x}

.

(43)
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Thus from (42),

E

�

1{A(�2)
s �2}1

{8u�s,a(�2)
u �2}

1{N(0)
t �n�t�2kt}

�

�

s
X

rD0

br =2

X

xD0

(r C 1)!

x!(x C 1)!(r � 2x)!

�

2kk(t C 2kt)

n� t

�2(xC1)Cr�2x

�

s
X

rD0

�

2kk(t C 2kt)

n� t

�rC2

3rC1
D O

�

t2

n2

�

.

Next, we have

(44)

1{A(�2)
s �2}1

{9u�s,a(�2)
u D3,8u0¤u,a(�2)

u �2}

� 1
{a(�2)

s �2}
C 1

{a(�2)
s�1 �2}

C {1
{a(�2)

s D1}
C 1

{a(�2)
s�1 D1}

}1
{9u�s�2,a(�2)

u D3}

C 1
{9u�s�2,a(�2)

u D3,8u0¤u,a(�2)
u �2}

1
{a(�2)

s Da(�2)
s�1 D0}

1
{A(�2)

s�2�4}
.

From the first part of this lemma, we know that

E

�

{the first and the second term of (44)}1{N(0)
t �n�t�2kt}

�

D O

�

t2

n2

�

,

E

�

{the third term of (44)}1{N(0)
t �n�t�2kt}

�

D O

�

t

n
t

t3

n3

�

D O

�

t5

n4

�

.

We consider the fourth term of (44). Using a similar argumentto get (43) for the event
{A(�2)

s � 2} \ {8u � s, a(�2)
u � 2}, there is a timer 2 [0, s] such that

#{u 2 [s� r, s] I a(�2)
u D 2} � #{u 2 [s� r, s] I a(�2)

u D 0} D 1

in this case too. Therefore

E

�

1{A(�2)
s �2}1

{9u�s,a(�2)
u D3,8u0¤u,a(�2)

u �2}
1{N(0)

t �n�t�2kt}

�

D O

�

t2

n2
C

t5

n4

�

.

Finally, by a straightforward calculation

E

�

1
{9u,u0�s�2,a(�2)

u Da(�2)
u0 D3}

1{N(0)
t �n�t�2kt}

�

D O

�

t2

n2

�

,

E

�

1
{9u�s�2, a(�2)

u �4}
1{N(0)

t �n�t�2kt}

�

D O

�

t2

n2

�

.

Thus we have proved the second part of this lemma.
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Lemma 9. If n is large enough, then for all t� s0n2=3,

EN(0)
t D n�

�

(k � 1)
p

1� p
C k

�

t C O(�n2=3
C n1=3),

EN(1)
t D k(1� p)t C O(�n2=3

C n1=3),

EN(i )
t D O(�n2=3

C n1=3), 2� i � k.

Proof. N(0)
t � N(0)

t�1 is equal to

�

k
X

lD2

Or t�1,l �
X

v2N
(0)

t�1,k

1{wt v} � 1{At�1D0,wt2N
(0)

t�1}
{1C Or t�1,1}

C

k
X

jD2

{

1{A( j )
t�1>0, A(� jC1)

t�1 D0} C 1{At�1D0,wt2N
( j )

t�1}

}

j
X

lD2

Or t�1,l .

Recall mD bs0n2=3

 for somes0 2 [0,1). Similarly to (11), we have

E[ Or t�1,l j Ft�1,l�1] D E

"

n
X

xD0

x1{Or t�1,lDx} Ft�1,l�1

#

D

p

1� p
C

N(�1)
t�1,l�1C At�1,l�1

n
O(1)C O(n�2=3)C 1{N(0)

t�1,l�1<m1=3}O(1).

Therefore

E[N(0)
t j Ft�1] D N(0)

t�1 � (k � 1)
p

1� p
� kC 1{A(�2)

t�1 >0}O(1)

C 1{At�1D0} O(1)C
N(�1)

t�1,l�1C At�1,l�1

n
O(1)

C O(n�2=3)C 1{N(0)
t�1,l�1<m1=3}O(1).

Since
Pt

sD1 1{As�1D0} � Zt , by Lemma 7,E
�

Pt
sD1 1{As�1D0}

�

D O(�n2=3
C n1=3). By

(38) and Lemmas 4, 8, we haveE
�

Pt
sD1 1{A(�2)

s�1>0}

�

D O(n1=3). Combining these with

Lemma 4, we obtain the first statement of the lemma.
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Next, for i � 1, N(i )
t � N(i )

t�1 is equal to

�

k
X

lD2

1{�t,Tl 2N
(i )

t�1,l�1, open} C
X

v2N
(i�1)

t�1,k

1{wt v, closed} �
X

v2N
(i )

t�1,k

1{wt v}

C

k
X

jD2

{

1{A( j )
t�1>0, A(� jC1)

t�1 D0} C 1{At�1D0,wt2N
( j )

t�1}

}

�

j
X

lD2

1{�t,Tl 2N
(i )

t�1,l�1, open}

� 1
{wt2N

(i )
t�1}
� 1

{wt2N
(0)

t�1}
1{�t,T12N

(i )
t�1,0, open} .

(45)

So, we have

E[N(i )
t j Ft�1] D N(i )

t�1C N(i�1)
t�1

(k � i C 1)(1� p)

n� t
C 1{At�1D0} O(1)

C 1{A(�2)
t�1 >0}O(1)C

N(�1)
t�1 C At�1

n
O(1)

C O(n�2=3)C E
�

1{N(0)
t�1,l�1<m1=3}

�

� Ft�1
�

O(1).

Using (38) and Lemmas 2, 4 and 8, we complete the proof this lemma.

Lemma 10. If n is large enough, then for all t� s0n2=3 and 0� i � k,

EjN(i )
t � EN(i )

t j D O(�n2=3
C n1=3).

Proof. By Lemma 9, fori � 2, EjN(i )
t �EN(i )

t j � 2EN(i )
t D O(�n2=3

C n1=3), also
by Lemma 7,EjAt � EAt j � O(�n2=3

C n1=3). So we first assume thati D 1. Recall
(45). By (38) and Lemmas 2, 4 and 8, we have

EjN(1)
t � EN(1)

t j � E

�

�

�

�

�

�

t
X

sD1

X

v2N
(0)

s�1,k

1{ws v, closed}

� E

t
X

sD1

X

v2N
(0)

s�1,k

1{ws v, closed}

�

�

�

�

�

�

C O(�n2=3
C n1=3).
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Here recall the definition of{ws
(l )
 � v} in the proof of Theorem 1,

E

�

�

�

�

�

�

t
X

sD1

X

v2N
(0)

s�1,k

1{ws v, closed} � E

t
X

sD1

X

v2N
(0)

s�1,k

1{ws v, closed}

�

�

�

�

�

�

D E

�

�

�

�

�

t
X

sD1

X

v�Es

1
{ws

(k)
 v, closed}

� E

t
X

sD1

X

v�Es

1
{ws

(k)
 v, closed}

C

t
X

sD1

X

v2N
(0)

s�1,k

1{ws v, closed} � E

t
X

sD1

X

v2N
(0)

s�1,k

1{ws v, closed}

�

t
X

sD1

X

v�Es

1
{ws

(k)
 v, closed}

C E

t
X

sD1

X

v�Es

1
{ws

(k)
 v, closed}

�

�

�

�

�

.

By Schwarz’s inequality,

E

�

�

�

�

�

t
X

sD1

X

v�Es

1
{ws

(k)
 v, closed}

� E

t
X

sD1

X

v�Es

1
{ws

(k)
 v, closed}

�

�

�

�

�

D O(
p

t) D O(n1=3).

Also, using Lemma 2,

E

�

�

�

�

�

�

t
X

sD1

X

v2N
(0)

s�1,k

1{ws v, closed} � E

t
X

sD1

X

v2N
(0)

s�1,k

1{ws v, closed}

�

t
X

sD1

X

v�Es

1
{ws

(k)
 v, closed}

C E

t
X

sD1

X

v�Es

1
{ws

(k)
 v, closed}

�

�

�

�

�

�

� 2
t
X

sD1

E

�

�

�

�

�

�

X

v2N
(�1)

s�1,k[As�1,k

1
{ws

(k)
 v, closed}

�

�

�

�

�

�

D O(n1=3).

ThereforeE
�

�N(1)
t � EN(1)

t

�

�

D O(�n2=3
C n1=3).

Finally by N(0)
t D n �

Pk
iD1 N(i )

t � At � t and the above facts, we obtain that

E

�

�N(0)
t � EN(0)

t

�

�

D O(�n2=3
C n1=3).

5.2. Convergence of the exploration process.Recall B� and W� in (1) and
(2), respectively. Hereafter for a process{St } indexed by positive integers we write
St for t 2 R to denote the continuous linear interpolation ofSt . Recall that{t j } are
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times at whichAt equals zero. We define the processOXt by OX0 D X0 D 0 and for any
t 2 [t j , t jC1),

(46) OXt D

�

Xt if Xt � Xt j ,
Xt j otherwise,

and OXt D Xn for any t � n. By this definition, the times when the minima ofOXt

updates are only{t j }. Recording minima for the processOXt occurs only whenAt D 0.
Since we explore one vertex at each time, the size of thej -th explored open cluster is
t jC1 � t j . Therefore the analysis of the processOXt characterizes open clusters of the
k-out graph.

Theorem 5. Let � be in R and � D �n�1=3. Then

n�1=3
OXn2=3

�

d
) B�( � ), as n!1,

where this convergence is on finite intervals.

Recall thats0 2 [0,1) and m D bs0n2=3

. Let t 2 [0, 1]. We define a function

 m( f ) by  m( f ) D f 1{ f�m1=3}. Let �s�1,l D  m(Or 0s�1,l ) for 1 � l � k, �s�1,kC1 D
Pk

jD0  m
�

P

v2N
( j )

s�1,k
1{ws v, open}

�

,

�

(m)
s D

kC1
X

lD2

�s�1,l � 1,

and X(m)
s D

Ps
uD1 �

(m)
u .

To prove the convergence of the processX(m), we use a central limit theorem for
martingales (cf. [10] Chapter 7, Theorem 7.2). Namely, if

(47)

1. jm�1=2(� (m)
s � E[� (m)

s j Fs�1])j � �m for all s� m with �m! 0, and

2. m�1
bmt

X

sD1

E[(� (m)
s � E[� (m)

s j Fs�1])2
j Fs�1] ! Ct i.p.

for any t 2 [0, 1] and someC > 0,

then m�1=2 Pbmt

sD1 (� (m)

s � E[� (m)
s j Fs�1])

d
) B(Ct), where B(t) is a standard

Brownian motion.
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We start the calculation ofE[� (m)
s j Fs�1]. Similarly to the calculation ofE[ Or 0s�1,l j

Fs�1,l�1] in the proof of Lemma 3,

E[�s�1,l j Fs�1,l�1] D E

2

4

bm1=3

^N(0)

s�1,l�1
X

xD0

x1{Or 0t�1,lDx} Ft�1,l�1

3

5

D

p

1� p
�

p2

(1� p)2

N(1)
s�1,l�1

n� s
C O

�

m1=3

n
Cm1=3 pm1=3

�

C

N(�2)
s�1,l�1C As�1,l�1

n
O(1)C

�

N(�1)
s�1,l�1C As�1,l�1

�2

n2
O(1)

C 1
{N(0)

s�1,l�1<m1=3}
O(1).

Also, similarly to the calculation ofE
�

P

v2Ns�1,k
1{ws v, open} Fs�1,k

�

in the proof of
Lemma 3, we have

E[�s�1,kC1 j Fs�1,k] D kp�
N(1)

s�1,k

n� s
pC O(m1=3(kp)m1=3

)

C

N(�2)
s�1,k C As�1,k

n
O(1)C 1{N(0)

s�1,k<m1=3}O(1).

ThusE[� (m)
s j Fs�1] is equal to

(48)
Dk� � p

�

(k � 1)
p

(1� p)2
C 1

�

N(1)
s�1

n� s
C O

�

m1=3

n
Cm1=3(kp)m1=3

C �

2

�

C

N(�2)
s�1 C As�1

n
O(1)C

(N(�1)
s�1 C As�1)2

n2
O(1)C E

�

1{N(0)
s <m1=3}

�

� Fs�1
�

O(1).

In the last line we used the fact thatN(0)
s�1,l > N(0)

s . Furthermore using Lemmas 4, 7
and 9, we get for a large enoughn,

E�

(m)
s D Dk� � kp(1� p)

�

(k � 1)
p

(1� p)2
C 1

�

s

n� s

C O(�2
C �n�1=3

C n�2=3).

Lemma 11. If n is large enough, then for all s� s0n2=3

(i) E�

(m)
s �Dk�Ckp(1� p){(k�1)(p=(1� p)2)C1}s=(n�s)D O(�2

C�n�1=3
Cn�2=3),

(ii) EjE[� (m)
s j Fs�1] � E� (m)

s j D O(�2
C �n�1=3

C n�2=3),

(iii) E[(� (m)
s )2

j Fs�1] D 2(k �
p

k2
� k) C O(� C n�2=3) C

�

N(�1)
s�1 C As�1

�

O(1=n) C

E

�

1{N(0)
s <m1=3}

�

� Fs�1
�

O(1).
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Proof. (i) has already been confirmed. By (48) and Lemmas 2, 7,9 and 10,

EjE[� (m)
s j Fs�1] � E� (m)

s j D p

�

(k � 1)
p

(1� p)2
C 1

�

1

n� s
E

�

�N(1)
s�1 � EN(1)

s�1

�

�

C O(�2
C �n�1=3

C n�2=3)

D O(�2
C �n�1=3

C n�2=3),

which proves (ii).
To prove (iii), we consider (� (m)

s C 1)2. We have

E[(� (m)
s C 1)2 j Fs�1] D E

" 

k
X

lD2

�s�1,l

!2

C �

2
s�1,kC1C 2

k
X

lD2

�s�1,l�s�1,kC1 Fs�1

#

.

Similarly to the calculation ofE[�s j Fs�1] in the proof of Lemma 3, we have forl < l 0,

E[�s�1,l�s�1,l 0 j Fs�1]

D

p2

(1� p)2
C O(n�2=3)C

N(�1)
s�1 C As�1

n
O(1)

C E

�

1{N(0)
s�1,l�1<m1=3}

�

� Fs�1
�

O(1)C E
�

1{N(0)
s�1,l 0�1<m1=3}

�

� Fs�1
�

O(1).

Also we have

E[( Or 0s,l )
21{Or 0s,l�m1=3} j Fs�1] D E

2

4

N(0)
s�1,l�1^m1=3

X

xD0

x21{Or 0s,lDx} Fs�1

3

5

D

p(1C p)

(1� p)2
C O(n�2=3)C

N(�1)
s�1 C As�1

n
O(1)

C E

�

1{N(0)
s�1,l�1<m1=3}

�

� Fs�1
�

O(1).

By N(0)
s�1,l�1 � N(0)

s , we obtain thatE
��

Pk
lD2 �s�1,l

�2
Fs�1

�

is equal to

(k � 1)(k � 2)
p2

(1� p)2
C (k � 1)

p(1C p)

(1� p)2
C O(n�2=3)

C

N(�1)
s�1 C As�1

n
O(1)C E

�

1{N(0)
s <m1=3}

�

� Fs�1
�

O(1).

On the other hand, for a large enoughn,

E[�2
s�1,kC1 j Fs�1] D k2 p2

C kpC O(n�2=3)C
N(�1)

s�1 C As�1

n
O(1)

C E

�

1{N(0)
s <m1=3}

�

� Fs�1
�

O(1),
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also we obtain thatE
�

Pk
lD2 �s�1,l�s�1,kC1 Fs�1

�

is equal to

(k � 1)
p

1� p
kpC O(n�2=3)C

N(�1)
s�1 C As�1

n
O(1)C E

�

1{N(0)
s <m1=3}

�

� Fs�1
�

O(1),

where we usedN(0)
s�1,l > N(0)

s again. Using

(k � 1)(k � 2)
p2

(1� p)2
C (k � 1)

p(1C p)

(1� p)2
C k2 p2

C kpC 2(k � 1)
p

1� p
kp

D 2(k �
p

k2
� k)C 1C O(�),

we obtain that

E[(� (m)
s C 1)2 j Fs�1] D 2(k �

p

k2
� k)C 1C O(� C n�2=3)

C

N(�1)
s�1 C As�1

n
O(1)C E

�

1{N(0)
s <m1=3}

�

� Fs�1
�

O(1).

Also we have

E[(� (m)
s C 1)2 j Fs�1] D E[(� (m)

s )2
j Fs�1] C 2E[� (m)

s j Fs�1] C 1,

so, combining Lemma 3, we obtain (iii).

Lemma 12. Let � be in R and � D �n�1=3. Then for t2 [0, 1],

m�1=2X(m)
bmt


d
) B(2(k �

p

k2
� k)t)

C 2(k �
p

k2
� k)�

p

s0t � (1� (k �
p

k2
� k)2)

s3=2
0 t2

2
.

Proof. By definition, the condition 1 of (47) is satisfied. Also by Lemmas 2, 4
and the part (iii) of Lemma 11,

E[(� (m)
s )2

j Fs�1] ! 2(k �
p

k2
� k) i.p.

for 1� s � bmt
, thus by Lemma 3,

m�1
bmt

X

sD1

E[(� (m)
s � E[� (m)

s j Fs�1])2
j Fs�1] ! 2(k �

p

k2
� k)t i.p.,

and it means that the condition 2 of (47) is satisfied. Therefore

m�1=2
bmt

X

sD1

{� (m)
s � E[� (m)

s j Fs�1]}
d
) B(2(k �

p

k2
� k)t).
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On the other hand,

m�1=2
bmt

X

sD1

E[� (m)
s j Fs�1] D m�1=2

bmt

X

sD1

E�

(m)
s Cm�1=2

bmt

X

sD1

{E[� (m)
s j Fs�1] � E� (m)

s }.(49)

By the part (i) of Lemma 11,

m�1=2
bmt

X

sD1

E�

(m)
s ! 2(k �

p

k2
� k)�

p

s0t � (1� (k �
p

k2
� k)2)

s3=2
0 t2

2

as n! 1. Also, by the part (ii) of Lemma 11, expectation of absolute value of the
second term of the right hand side of (49) converges to 0 asn! 1. Therefore, we
obtain the statement of this lemma.

Lemma 13. Let � be in R and � D �n�1=3. Then for t2 [0, 1],

m�1=2
bmt

X

sD1

1
{A(2)

s�1>0,A(�3)
s�1D0}

Or 0s,2!
k � 1

k
(k �
p

k2
� k)2 s3=2

0 t2

2
, i.p.

as n!1.

Proof. Let hs D 1
{A(2)

s�1>0,A(�3)
s�1D0}

Or 0s,2 for 1� s� bmt
. We have

E

�

�

�

�

�

m�1=2
bmt

X

sD1

hs �m�1=2
bmt

X

sD1

Ehs

�

�

�

�

�

� E

�

�

�

�

�

m�1=2
bmt

X

sD1

hs �m�1=2
bmt

X

sD1

E[hs j Fs�2]

�

�

�

�

�

Cm�1=2
bmt

X

sD1

EjE[hs j Fs�2] � Ehsj.

First, (38) and Lemmas 4, 8 imply thatEh2
s D O(n�1=3) for (1= NI (2k)) logn � s� bmt
.

Also, Eh2
s is bounded from above by the second moment ofGe(1� p). Therefore

(50)

E

�

�

�

�

�

m�1=2
bmt

X

sD1

hs �m�1=2
bmt

X

sD1

E[hs j Fs�2]

�

�

�

�

�

2

� 2m�1
bmt

X

sD3

E[{hs�1 � E[hs�1 j Fs�3]}{hs � E[hs j Fs�2]}]

Cm�1
bmt

X

sD2

E[{hs � E[hs j Fs�2]}2]

D O(n�1=3
C n�2=3 log n) D O(n�1=3).
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Next, from (11) in the proof of Lemma 3,

E[hs j Fs�1] D 1
{A(2)

s�1>0,A(�3)
s�1D0}

(

p

1� p
C

N(�1)
s�1 C As�1

n
O(1)

C

(N(�1)
s�1 C As�1)2

n2
O(1)C O

�

m1=3

n
Cm1=3 pm1=3

�

C E[1
{N(0)

s <m1=3}
O(1) j Fs�1]

)

.

So, E[hs j Fs�2] is equal to

E[1
{A(2)

s�1>0,A(�3)
s�1D0}

j Fs�2]

�

(

p

1� p
C

N(�1)
s�2 C As�2

n
O(1)C

�

N(�1)
s�2 C As�2

�2

n2
O(1)

C O

�

m1=3

n
Cm1=3 pm1=3

�

)

C E

�

1{N(0)
s <m1=3}

�

� Fs�2
�

O(1)C O

�

1

n

�

.

Recall a(i )
s in (37), and lets be (1= NI (2k)) log n � s � bmt
. We have

1{A(2)
s�1>0,A(�3)

s�1D0} D 1{A(2)
s�1>0, A(�3)

s�1D0, a(2)
s�1�1} C 1{A(2)

s�1>0, A(�3)
s�1D0, a(2)

s�1�0}

D 1{a(2)
s�1�1} � 1{A(�3)

s�1>0, a(2)
s�1�1}

C 1{A(2)
s�1>0, A(�3)

s�1D0,a(2)
s�1�0} .

Using Lemmas 4 and 7–9,

E1{A(�3)
s�1>0, a(2)

s�1�1} � E1{A(�3)
s�1>0} D E1{a(�3)

s�1 �1} C O(n�2=3),

E1{A(2)
s�1>0, A(�3)

s�1D0, a(2)
s�1�0} � E1{A(�2)

s�2�2} D O(n�2=3).

Furthermore,a(�3)
s�1 � 1 implies that some bad vertex of the AS process is chosen from

N (�3)
s�2 or there is a directed edge fromN (�2)

s�2,k [ A(2)
s�2,k to ws�1. So, by Lemmas 7

and 9,

(51) E1{a(�3)
s�1 �1} D O(n�2=3).

We again use Lemmas 2, 4, 8 and the above facts to obtain that

Ehs D E

��

p

1� p
C

N(1)
s�1C As�1

n
O(1)

�

1{a(2)
s�1�1}

�

C O(n�2=3)

D

p

1� p
E1{a(2)

s�1�1} C O(n�2=3).

(52)
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Now

1{a(2)
s�1�1} D 1{a(2)

s�1D1}
C 1

{a(2)
s�1�2}

D 1{A(2)
s�2,kC1�A(2)

s�2,kD1} � 1{A(2)
s�2,k�A(2)

s�2,0�1, A(2)
s�2,kC1�A(2)

s�2,kD1}

C 1{A(2)
s�2,k�A(2)

s�2,0�1, a(2)
s�1D1}

C 1{a(2)
s�1�2} .

A(2)
s�2,k � A(2)

s�2,0 � 1 implies that some bad vertex of the AS process is chosen from

N (2)
s�2. So, by Lemmas 4, 8 and 9,

E1{a(2)
s�1�1} D E1{A(2)

s�2,kC1�A(2)
s�2,kD1} C O(n�2=3).

Furthermore,

1{A(2)
s�2,kC1�A(2)

s�2,kD1} D 1{8v2A
(2)
s�2,k, ws�1¸v, A(2)

s�2,kC1�A(2)
s�2,kD1}

�

{

1{N(0)
s�2,k�n�t�2kt} C 1

{N(0)
s�2,k<n�t�2kt}

}

C 1{9v2A
(2)
s�2,k, ws�1 v, A(2)

s�2,kC1�A(2)
s�2,kD1}.

So,

(53)

E

�

1{A(2)
s�2,kC1�A(2)

s�2,kD1}

�

� Fs�2,k
�

D N(1)
s�2,k

(k � 1)p

n� sC 1
(1C O(n�1=3))1{N(0)

s�2,k�n�t�2kt}r

C 1{N(0)
s�2,k<n�t�2kt}O(1)C

A(2)
s�2,k

n
O(1).

By Lemmas 2, 4 and (52), (53), we have

(54) Ehs D E

�

p

1� p

(k � 1)p

n� sC 1
N(1)

s�2

�

C O(n�2=3).

Therefore, by Lemma 10, and facts thaths � 0 and thatEhs is bounded from above
by the expectation ofGe(1� p),

(55)

m�1=2
bmt

X

sD1

EjE[hs j Fs�2] � Ehsj

� m�1=2
bmt

X

sD(1= NI (2k)) log n

p

1� p

(k � 1)p

n� sC 1
E

�

�N(1)
s�2 � EN(1)

s�2

�

�

C O(n�1=3 log n)

D O(n�1=3 log n).



CRITICAL PERCOLATION ON THE k-OUT GRAPH 715

Using (50) and (55), we get

E

�

�

�

�

�

m�1=2
bmt

X

sD1

hs �m�1=2
bmt

X

sD1

Ehs

�

�

�

�

�

! 0,

as n!1. So we considerm�1=2 Pbmt

sD1 Ehs. However, by (54) and Lemma 9,

Ehs D
p

1� p

(k � 1)p

n� sC 1
k(1� p)sC O(n�2=3)

D k(k � 1)p2 s

n
C O(n�2=3),

for (2= NI (2k)) log n � s � bmt
. Therefore, by this and the fact thatEhs �

(k � 1)p2
=(1� p),

m�1=2
bmt

X

sD1

Ehs D k(k � 1)p2 s3=2
0 t2

2
C O(n�1=3 log n).

Taking the limit, we complete the proof of this lemma.

Proof of Theorem 5. Recall the definition (46) ofOXt , which means that

j

OXt � Xt j � N(wt jC1)

for each t 2 [t j , t jC1). By Lemma 1, we can coupleN(wt ) and a random variable�t

distributed asGe(1C p)C 1, hence we have

(56) m�1=2
Ej

OXt � Xt j � m�1=2
E

�

�

�

�

max
1�s�m

�s

�

�

�

�

! 0

as n!1 for t � m. Therefore it suffices to prove the convergence ofXt .
Recall � 0s in (29). Let

Yt D

t
X

sD1

"

(� 0sC 1)�
kC1
X

lD2

�s�1,l

�

k
X

jD3

1
{A( j )

s�1>0,A(� jC1)
s�1 D0}

j
X

lD2

Or 0s�1,l �

k
X

jD2

1
{As�1D0,ws2N

( j )
s�1}

j
X

lD2

Or 0s�1,l

#

,

and recallhs in the proof of Lemma 13. We have

m�1=2X
bmt
 D m�1=2X(m)

bmt
 �m�1=2
bmt

X

sD1

hsCm�1=2Y
bmt
.
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Using the coupling in Lemma 1, we have

E

"

(� 0sC 1)�
kC1
X

lD2

�s�1,l

#

� (k � 1)m1=3 pm1=3
C

(kp)m1=3

1� kp
.

By Lemmas 4, 8 and (51), we have

E

"

k
X

jD3

1
{A( j )

s�1>0,A(� jC1)
s�1 D0}

#

� E1
{A(�3)

s�1>0}

� E1
{a(�3)

s�1 �1}
C E1

{A(�3)
s�2�2}

D O(n�2=3),

for (1= NI (2k)) log n � s � bmt
. Also Lemma 9 implies that

E

"

k
X

jD2

1
{As�1D0,ws2N

( j )
s�1}

#

� E1
{ws2N

(�2)
s�1 }
D O(n�2=3).

Thus m�1=2Y
bmt
 ! 0 in probability asn! 0.

Therefore, combining Lemma 12 and Lemma 13, we obtain that

m�1=2X
bmt


d
) B(2(k �

p

k2
� k)t)

C 2(k �
p

k2
� k)�

p

s0t � (
p

k2
� k � kC 1)s3=2

0 t2.

This, together with (56) implies the statement of Theorem 5.

We have proved the convergence of the exploration process, but to state the con-
vergence of the sequence of component sizes, we need a bit more work.

Lemma 14. Let � be in R and � D �n�1=3. We defineC(s0n2=3)
1 by the largest

component explored after time s0n2=3. Then for any� > 0 we have

lim
s0!1

lim sup
n!1

P

�

�

�C(s0n2=3)
1

�

�

� �n2=3
�

D 0.

Proof. Recall (9) and the fact thatDk < 2. Similarly to (25),

E[�t j Ft�1] � (k � 1)
p

1� p
C N(0)

t�1

kp

n� t
C

�

n� t � N(0)
t�1

� (k � 1)p

n� t
� 1

D Dk� �
n� t � N(0)

t�1

n� t
pC O(�2)

� 2� �
n� t � N(0)

t�1

n� t
p
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for a large enoughn. Let someÆ > 0 be fixed. We define

D D

�

N(0)
t � n� t �

k

3
t , for every t with s0n2=3

� t � Æn

�

,

Dt D

�

N(0)
t � n� t �

k

3
t

�

, for eacht with s0n2=3
� t � Æn.

Then we have

E[�t1{Dt�1} j Ft�1] � 2�n�1=3
�

kt

3(n� t)
p

for all t 2 (s0n2=3, Æn] and a large enoughn. Now if s0 D s0(Æ, �) > 0 is large enough,
then for all t 2 (s0n2=3, Æn],

(57) E[�t1{Dt�1} j Ft�1] � �Æ�1n�1=3.

Let Ot0 > s0n2=3 be the first time afters0n2=3 such thatAt D 0. We define the stop-
ping time 
 such that


 D min{t > 0W X
Ot0Ct D X

Ot0 � N(w
Ot0C1)}.

By Lemma 1, we can coupleN(w
Ot0C1) and a random variable� distributed asGe(1�

p) C 1. Let N(w
Ot0C1) D d be fixed. We define an (Ft )-supermartingaleQt by Qt D

Pt
sD1 �Ot0Cs1{D

Ot0Cs�1}
C Æ

�1n�1=3t . By (57) and the optional stopping theorem,

0� E[Q

^Æn j N(w

Ot0C1) D d]

� E

"


^Æn
X

sD1

�

Ot0Cs �


^Æn
X

sD1

�

Ot0Cs1{DC
Ot0Cs�1}

C Æ

�1n�1=3{
 ^ Æn} N(w
Ot0C1) D d

#

� �dC P
�

DC
Ot0

�

O(n)C Æ�1n�1=3
E[
 ^ Æn j N(w

Ot0C1) D d].

By Lemma 4,P (DC
Ot0

) � n�2 for a large enoughn. Thus we have

E[
 ^ Æn j N(w
Ot0C1) D d] � 2Ædn1=3,

and it provides

E[
 ^ Æn] �
1

X

dD1

P (N(w
Ot0C1) D d)E[
 ^ Æn j N(w

Ot0C1) D d]

�

1

X

dD1

P (N(w
Ot0C1) D d) � 2Ædn1=3

�

2

1� p
Æn1=3.
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Also by 
 D jC(w
Ot0C1)j and Theorem 1,P (
 > Æn) � n�1 for a large enoughn. Thus

E
 � nP (
 > Æn)C E[
1{
�Æn}] � 1C E[
 ^ Æn] �
3

1� p
Æn1=3

for a large enoughs0 and a large enoughn. Similar argument applies to components
explored after first time. HenceEjC(v)j D O(Æ)n1=3 for any v 2 V n Es0n2=3. Therefore
for any fixed� > 0, we get

P (jC(v)j > �n2=3) D O(Æ)n�1=3.

Let S be the number of verticesv 2 V n Es0n2=3 such thatjC(v)j > �n2=3. We have

checked thatES� nP (jC(v)j > �n2=3) D O(Æ)n2=3. Also jC(s0n2=3)
1 j > �n2=3 implies that

S> �n2=3. Hence

P (jC(s0n2=3)
1 j > �n2=3) � P (S> �n2=3) D

O(Æ)n2=3

�n2=3
D O(Æ).

Since Æ > 0 was arbitrary ands0 was large enough depending only onÆ and �, this
completes the proof.

Finally, we prove Theorem 2. This can be done parallel to the proof of Theorem 5
in [2].

Proof of Theorem 2. We define forf 2 C[0, s],

4 D

�

(r, l ) � [0, s] W f (r ) D f (l ) D min
u�l

f (u),

and f (x) > f (r ) for every x with r < x < l

�

and

(L1, L2, : : : ) D (l1 � r1, l2 � r2, : : : ) with l i � r i � l iC1 � r iC1 for all i .

(L1,L2, : : : ) is the sequence of lengths of members of4 arranged in decreasing order,
i.e., it is the decreasing sequence of excursion lengths off (r ) � minq�r f (q). Since
the sum of excursion lengths is at mosts, we can get such sequence. We calll an
ending point if (r, l ) 2 4 for some 0� r < l . If for almost everyx 2 [0, s], there
exists (r, l ) 2 4 such thatr < x < l , we say the function f2 C[0, s] is good. For
m 2 N, we define the function�m W C[0, s] ! R

m by

�m( f ) D (L1, L2, : : : , Lm).

Now we use the following proposition in [2].
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Proposition 1 (Nachmias and Peres [2]). If f 2 C[0, s] is good, then �m( f ) is
continuous at f with respect to thek � k

1

norm.

A sample path of a Brownian motion is good with probability 1.By the Cameron
Martin theorem, the processB�( � ) is good with probability 1 too, see [3]. Thus�m( f )
is continuous on almost every sample point ofB�. Furthermore, using Theorem 5 and
Theorem 2.3 in Durrett [10], Chapter 2, we have

n�2=3
�m( OX)

d
) �m(B�).

Now we rescale byn�2=3 and order the sequence of the sizes of components ex-
plored before timesn2=3. Then this sequence converges in distribution to the ordered
sequence of excursion lengths ofW�[0, s]. By Lemma 14, we get the proof of The-
orem 2.
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