# REMARKS ON "THE DORFMEISTER-NEHER THEOREM ON ISOPARAMETRIC HYPERSURFACES" 

REIKO MIYAOKA

(Received June 12, 2013, revised November 7, 2013)


#### Abstract

Sections 7 and 8 of "The Dorfmeister-Neher theorem on isoparametric hypersurfaces", (Osaka J. Math. 46, 695-715) are the heart of the paper, but a lack of clear argument causes some questions, although the statement is true. The purpose of the present paper is to make it clear.


## 1. $\operatorname{Dim} E=2(\$ 7[2])$

We follow the notation and the argument in [2]. First, we correct a typo in the last term of the displayed formula right above (35) of [2]: $\left(\Lambda_{63}^{3}\right)^{2}$ should be $\left(\Lambda_{63}^{4}\right)^{2}$.

We call a vector field $v(t)$ along $L_{6}$ parametrized by $p(t)$ even when $v(t+\pi)=$ $v(t)$, and odd when $v(t+\pi)=-v(t)$. Note that $E$ consists of $\nabla_{e_{6}}^{k} e_{3}(t), k=0,1, \ldots$ which are all odd or all even, and $W$ consists of $\nabla_{e_{6}}^{k} \nabla_{e_{3}} e_{6}(t)$ of which evenness and oddness is the opposite of $E$, since $L(t+\pi)=-L(t)$.

Proposition 7.1 ([2]) $\quad \operatorname{dim} E=2$ does not occur at any point of $M_{+}$.

Proof. $\operatorname{dim} E=2$ implies $\operatorname{dim} W=1$, and so $W$ consists of even vectors $\left(\nabla_{e_{3}} e_{6}\right.$ never vanish by Remark 5.3 of [2]). Thus $E$ consists of odd vectors. For $X_{1}, Z_{1}, X_{2}$, $Z_{2}$ on p. $709, X_{1}$ is parallel to $\nabla_{e_{6}} e_{3}$ at $p_{0}=p(0)$ and $p(\pi)$, and so has opposite sign at $p(0)$ and $p(\pi)$. Note that $Z_{1} \in W$ is a constant unit vector parallel to $\nabla_{e_{3}} e_{6}(t)$. Also, $\operatorname{span}\left\{X_{2}, Z_{2}\right\}$ is parallel since this is the orthogonal complement of $E \oplus W$. Because $D_{1}(\pi)=D_{5}(0)$ and $D_{2}(\pi)=D_{4}(0)$ etc. hold, four cases occur;

$$
\begin{aligned}
& \left(e_{1}+e_{5}\right)(\pi)=\left(e_{1}+e_{5}\right)(0) \quad \text { and } \quad\left(e_{2}+e_{4}\right)(\pi)=\left(e_{2}+e_{4}\right)(0) \\
& \left(e_{1}+e_{5}\right)(\pi)=\left(e_{1}+e_{5}\right)(0) \quad \text { and } \quad\left(e_{2}+e_{4}\right)(\pi)=-\left(e_{2}+e_{4}\right)(0) \\
& \left(e_{1}+e_{5}\right)(\pi)=-\left(e_{1}+e_{5}\right)(0) \quad \text { and } \quad\left(e_{2}+e_{4}\right)(\pi)=\left(e_{2}+e_{4}\right)(0) \\
& \left(e_{1}+e_{5}\right)(\pi)=-\left(e_{1}+e_{5}\right)(0) \quad \text { and } \quad\left(e_{2}+e_{4}\right)(\pi)=-\left(e_{2}+e_{4}\right)(0)
\end{aligned}
$$

[^0]In the first case, $\alpha(\pi)=-\alpha(0)$ and $\beta(\pi)=-\beta(0)$ follow. Then $X_{2}$ becomes even and $Z_{2}$ becomes odd, which contradicts that $\operatorname{span}\left\{X_{2}, Z_{2}\right\}$ is parallel. In the second case, $\alpha(\pi)=-\alpha(0)$ and $\beta(\pi)=\beta(0)$ hold, and so $X_{2}$ is odd, and $Z_{2}$ is even, again a contradiction. Other cases are similar.

## 2. $\operatorname{Dim} E=3$ (§8 [2])

When $\operatorname{dim} E=3, e_{3}(t)$ is an even vector, since $E$ is parallel along $L_{6}$. Using Proposition 8.1 [2], we extend $e_{1}, e_{2}, e_{4}, e_{5}$ as follows: Taking the double cover $\tilde{c}(t)$ of $c(t)$, i.e., $t \in[0,4 \pi)$, if necessary, we choose a differentiable frame $e_{i}(t)$ as follows: First take $e_{1}(t), e_{2}(t)$ continuously for $t \in[0,4 \pi)$. Then we define $e_{5}(t)=e_{1}(t+\pi)$ and $e_{4}(t)=e_{2}(t+\pi)$ for $t \in[0,3 \pi)$. Thus we have a differentiable frame $e_{i}(t)$ for $t \in[0,3 \pi)$, though we only need $t \in[0,2 \pi]$.

With respect to this frame, we can take a differentiable orthonormal frame of $E$ and $E^{\perp}$ by

$$
\begin{align*}
& e_{3}(t), \quad X_{1}=\alpha(t)\left(e_{1}+e_{5}\right)(t)+\beta(t)\left(e_{2}+e_{4}\right)(t), \\
& X_{2}(t)=\frac{1}{\sqrt{\sigma(t)}}\left(\frac{\beta(t)}{\sqrt{3}}\left(e_{1}-e_{5}\right)(t)-\sqrt{3} \alpha(t)\left(e_{2}-e_{4}\right)(t)\right) \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
& Z_{1}(t)=\frac{1}{\sqrt{\sigma(t)}}\left(\sqrt{3} \alpha(t)\left(e_{1}-e_{5}\right)(t)+\frac{\beta(t)}{\sqrt{3}}\left(e_{2}-e_{4}\right)(t)\right),  \tag{2}\\
& Z_{2}(t)=\beta(t)\left(e_{1}+e_{5}\right)-\alpha(t)\left(e_{2}+e_{4}\right)(t)
\end{align*}
$$

where $\alpha(t), \beta(t), \sigma(t)$ are differentiable for $t \in[0,3 \pi]$, satisfying

$$
\begin{equation*}
\alpha^{2}(t)+\beta^{2}(t)=\frac{1}{2}, \quad \sigma(t)=2\left(3 \alpha^{2}(t)+\frac{\beta^{2}(t)}{3}\right) . \tag{3}
\end{equation*}
$$

Note that $\sigma(t)=\sigma(t+\pi)$ holds, since $\sigma(t)$ is an eigenvalue of $T(t)={ }^{t} R R(t)$ (see (45) [2] and the statement after it).

Proposition 8.2 ([2]) $\quad \sigma(t)$ is constant and takes values $1 / 3$ or 3.
Remark. We need not distinguish the case $\sigma=1$ in the proof.
Proof of Proposition 8.2 ([2]). From (3), the conclusion follows if we show $\alpha(t) \beta(t) \equiv 0$. Suppose $\alpha(t) \beta(t) \not \equiv 0$. By definition, we have

$$
\begin{equation*}
e_{1}(\pi)=e_{5}(0), \quad e_{2}(\pi)=e_{4}(0) . \tag{4}
\end{equation*}
$$

We must be careful for

$$
e_{5}(\pi)=e_{1}(2 \pi)=\epsilon_{1} e_{1}(0), \quad e_{4}(\pi)=e_{2}(2 \pi)=\epsilon_{2} e_{2}(0)
$$

where $\epsilon_{i}= \pm 1$. However, since $e_{3}$ is even and by (4), we obtain

$$
\epsilon:=\epsilon_{1}=\epsilon_{2} .
$$

CASE $1 \epsilon=1$. In this case, we have

$$
\begin{align*}
X_{1}(\pi) & =\alpha(\pi)\left(e_{1}(\pi)+e_{5}(\pi)\right)+\beta(\pi)\left(e_{2}(\pi)+e_{4}(\pi)\right)  \tag{5}\\
& =\alpha(\pi)\left(e_{5}(0)+e_{1}(0)\right)+\beta(\pi)\left(e_{4}(0)+e_{2}(0)\right),
\end{align*}
$$

which belongs to $E$, and is orthogonal to $e_{3}(0)$ and $X_{2}(0)$. Thus we obtain

$$
\begin{equation*}
X_{1}(\pi)=\bar{\epsilon} X_{1}(0), \quad \text { namely }, \quad \alpha(\pi)=\bar{\epsilon} \alpha(0), \quad \beta(\pi)=\bar{\epsilon} \beta(0) \tag{6}
\end{equation*}
$$

where $\bar{\epsilon}= \pm 1$. On the other hand, we have

$$
\begin{align*}
X_{2}(\pi) & =\frac{1}{\sqrt{\sigma(\pi)}}\left(\frac{\beta(\pi)}{\sqrt{3}}\left(e_{1}(\pi)-e_{5}(\pi)\right)-\sqrt{3} \alpha(\pi)\left(e_{2}(\pi)-e_{4}(\pi)\right)\right)  \tag{7}\\
& =\frac{1}{\sqrt{\sigma(0)}}\left(\frac{\beta(\pi)}{\sqrt{3}}\left(e_{5}(0)-e_{1}(0)\right)-\sqrt{3} \alpha(\pi)\left(e_{4}(0)-e_{2}(0)\right)\right),
\end{align*}
$$

where we use $\sigma(\pi)=\sigma(0)$. Thus from (6), we obtain

$$
X_{2}(\pi)=-\bar{\epsilon} X_{2}(0) .
$$

However, because $E$ is parallel, $X_{1}$ and $X_{2}$ should be both even or both odd, a contradiction.

CASE $2 \epsilon=-1$. In this case, we have

$$
\begin{align*}
X_{1}(\pi) & =\alpha(\pi)\left(e_{1}(\pi)+e_{5}(\pi)\right)+\beta(\pi)\left(e_{2}(\pi)+e_{4}(\pi)\right) \\
& =\alpha(\pi)\left(e_{5}(0)-e_{1}(0)\right)+\beta(\pi)\left(e_{4}(0)-e_{2}(0)\right), \tag{8}
\end{align*}
$$

which belongs to $E$, and is orthogonal to $e_{3}(0)$ and $X_{1}(0)$. Thus we obtain
(9) $\quad X_{1}(\pi)=\bar{\epsilon} X_{2}(0), \quad$ namely, $\quad \alpha(\pi)=-\bar{\epsilon} \frac{\beta(0)}{\sqrt{3 \sigma(0)}}, \quad$ and $\quad \beta(\pi)=\bar{\epsilon} \frac{\sqrt{3} \alpha(0)}{\sqrt{\sigma(0)}}$,
for $\bar{\epsilon}= \pm 1$. On the other hand, we see that

$$
\begin{align*}
X_{2}(\pi) & =\frac{1}{\sqrt{\sigma(\pi)}}\left(\frac{\beta(\pi)}{\sqrt{3}}\left(e_{1}(\pi)-e_{5}(\pi)\right)-\sqrt{3} \alpha(\pi)\left(e_{2}(\pi)-e_{4}(\pi)\right)\right)  \tag{10}\\
& =\frac{1}{\sqrt{\sigma(0)}}\left(\frac{\beta(\pi)}{\sqrt{3}}\left(e_{5}(0)+e_{1}(0)\right)-\sqrt{3} \alpha(\pi)\left(e_{4}(0)+e_{2}(0)\right)\right)
\end{align*}
$$

where we use $\sigma(\pi)=\sigma(0)$. Because it belongs to $E$ and is orthogonal to $e_{3}(0)$ and $X_{2}(0)$, and further because $\left(X_{1}(0), X_{2}(0)\right) \mapsto\left(X_{1}(\pi), X_{2}(\pi)\right)$ should be orientation preserving, we obtain,
(11) $X_{2}(\pi)=-\bar{\epsilon} X_{1}(0), \quad$ namely, $\quad \frac{\beta(\pi)}{\sqrt{3 \sigma(0)}}=-\bar{\epsilon} \alpha(0) \quad$ and $\quad-\frac{\sqrt{3} \alpha(\pi)}{\sqrt{\sigma(0)}}=-\bar{\epsilon} \beta(0)$.

However, then (9) and (11) have no solution.

These contradictions are caused by the assumption $\alpha(t) \beta(t) \not \equiv 0$. Thus $\alpha(t) \beta(t) \equiv 0$ follows. Now, by the argument in §9 [2], we obtain

Theorem 2.1 ([1], [2]) Isoparametric hypersurfaces with $(g, m)=(6,1)$ are homogeneous.

Acknowledgment. The author thanks to U. Abresch and A. Siffert for their questions and indication.

## References

[1] J. Dorfmeister and E. Neher: Isoparametric hypersurfaces, case $g=6, m=1$, Comm. Algebra 13 (1985), 2299-2368.
[2] R. Miyaoka: The Dorfmeister-Neher theorem on isoparametric hypersurfaces, Osaka J. Math. 46 (2009), 695-715.

Mathematical Institute
Graduate School of Sciences
Tohoku University
Sendai, 980-8578
Japan
e-mail: r-miyaok@m.tohoku.ac.jp


[^0]:    2000 Mathematics Subject Classification. 53C40.
    Partly supported by Grants-in-Aid for Scientific Research, 23340012, The Ministry of Education, Japan.

