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Abstract
We study an initial boundary value problem on a ball for the isentropic system

of compressible Navier–Stokes equations, in particular, acriterion of breakdown of
the classical solution. For smooth initial data away from vacuum, it is proved that
the classical solution which is spherically symmetric loses its regularity in a finite
time if and only if theconcentrationof massforms around the center inLagrangian
coordinate system. In other words,in Euler coordinate system, either thedensity
concentratesor vanishesaround the center. For the latter case, one possible situation
is that a vacuum ball appears around the center and the density may concentrate on
the boundary of the vacuum ball simultaneously.

1. Introduction and main results

We are concerned with the isentropic system of compressibleNavier–Stokes equa-
tions which reads as

(1.1)

�

�t C div(�U ) D 0,
(�U )t C div(�U 
U )CrP D �4U C (�C �)r(div U ),

where t � 0, x 2 � � RN (N D 2, 3), � D �(t, x) andU D U (t, x) are the density and
fluid velocity respectively, andP D P(�) is the pressure given by a state equation

(1.2) P(�) D a�

with the adiabatic constant > 1 and a positive constanta. The shear viscosity� and
the bulk one� are constants satisfying the physical hypothesis

(1.3) � > 0, �C

N

2
� � 0.
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The domain� is a bounded ball with a radius R, namely,

(1.4) � D BR D {x 2 RN
I jxj � R<1}.

We study an initial boundary value problem for (1.1) with theinitial condition

(1.5) (�, U )(0, x) D (�0, U0)(x), x 2 �,

and the boundary condition

(1.6) U (t, x) D 0, t � 0, x 2 ��,

and we are looking for the smooth spherically symmetric solution (�,U ) of the problem
(1.1), (1.5), (1.6) which enjoys the form

(1.7) �(t, x) D �(t, jxj), U (t, x) D u(t, jxj)
x

jxj
.

Then, for the initial data to be consistent with the form (1.7), we assume the initial
data (�0, U0) also takes the form

(1.8) �0 D �0(jxj), U0 D u0(jxj)
x

jxj
.

In this paper, we further assume the initial density is uniformly positive, that is,

(1.9) �0 D �0(jxj) � � > 0, x 2 �

for a positive constant�. Then it is noted that as long as the classical solution of (1.1),
(1.5), (1.6) exists the density� is positive, that is, the vacuum never occurs. It is also
noted that since the assumption (1.7) implies

(1.10) U (t, x)CU (t, �x) D 0, x 2 �,

we necessarily haveU (t, 0)D 0 (alsoU0(0)D 0).
There are many results about the existence of local and global strong solutions in

time of the isentropic system of compressible Navier–Stokes equations when the initial
density is uniformly positive (refer to [1, 5, 6, 7, 13, 14, 15, 18, 19] and their generalization
[10, 11, 12, 17] to the full system including the conservation law of energy). On the
other hand, for the initial density allowing vacuum, the local well-posedness of strong
solutions of the isentropic system was established by Kim [8]. For strong solutions with
spatial symmetries, the authors in [9] proved the global existence of radially symmetric
strong solutions of the isentropic system in an annular domain, even allowing vacuum
initially. However, it still remains open whether there exist global strong solutions which
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are spherically symmetric in a ball. The main difficulties lie on the lack of estimates of
the density and velocity near the center. In the case vacuum appears, it is worth noting
that Xin [20] established a blow-up result which shows that if the initial density has a
compact support, then any smooth solution to the Cauchy problem of the full system of
compressible Navier–Stokes equations without heat conduction blows up in a finite time.
The same blowup phenomenon occurs also for the isentropic system. Indeed, Zhang–
Fang ([21], Theorem 1.8) showed that if (�, U ) 2 C1([0, T ]I H k) (k > 3) is a spherically
symmetric solution to the Cauchy problem with the compact supported initial density,
then the upper limit ofT must be finite. On the other hand, it’s unclear whether the
strong (classical) solutions lose their regularity in a finite time when the initial density
is uniformly away from vacuum. Therefore, it is important tostudy the mechanism of
possible blowup of smooth solutions, which is a main issue inthis paper.

In the spherical coordinates, the original system (1.1) under the assumption (1.7)
takes the form

(1.11)

8

�

<

�

:

�t C (�u)r C (N � 1)
�u

r
D 0,

(�u)t C
�

�u2
C P(�)

�

r C (N � 1)
�u2

r
D �

�

ur C (N � 1)
u

r

�

r

where� D 2�C �. Now, we consider the following Lagrangian transformation:

(1.12) t D t , y D
Z r

0
�(t, s)sN�1 ds.

Then, it follows from (1.10) that

(1.13) yt D ��ur N�1, r t D u, r y D (�r N�1)�1,

and the system (1.11) can be further reduced to

(1.14)

�

�t C �
2(r N�1u)y D 0,

r 1�Nut C py D "(�(r N�1u)y)y

where t � 0, y 2 [0, M0] and M0 is defined by

(1.15) M0 D

Z R

0
�0(r )r N�1 dr D

Z R

0
�(t, r )r N�1 dr,

according to the conservation of mass. Note that

(1.16) r (t, 0)D 0, r (t, M0) D R.

We denote byE0 the initial energy

(1.17) E0 D

Z R

0

�

�0
u2

0

2
C

a�0
 � 1

�

r N�1 dr,
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and define a cuboidQt,y, for t � 0 and y 2 [0, M0], as

(1.18) Qt,y D [0, t ] � [y, M0].

Our main result is stated as follows.

Theorem 1.1. Assume that the initial data(�0, U0) satisfy (1.8), (1.9)and

(1.19) (�0, U0) 2 H3(�).

Let (�, U ) be a classical spherically symmetric solution to the initial boundary value
problem (1.1), (1.5), (1.6)in [0, T ] � �, and T� be the upper limit of T, that is,
the maximal time of existence of the classical solution. Then, if T �

< 1, it holds
the following.
1. In Euler coordinate system(1.1), for any r0 2 (0, R),

(1.20) lim sup
t!T��0

�

sup
jxj�r0

�

�(t, x)C
1

�(t, x)

��

D1.

2. In Lagrangian coordinate system(1.14), for any y0 2 (0, M0),

(1.21) lim sup
t!T��0

�

sup
y2[0,y0]

�(t, y)

�

D1.

Moreover, for system(1.14) in Lagrangian coordinate, there exists a constant C de-
pending only on a,  , N such that for any given y0 2 (0, M0) it holds
(1.22)

�(t, y) � C

�

sup�0

inf �0

��

E0

M0 � y0

�1=(�1)

exp(C"�1H )

� exp

�

CT

�

sup�0

inf �0

�



�

E0

M0 � y0

�

 =(�1)

exp(C"�1H )

�

, (t, y) 2 QT,y0,

where

(1.23) H D y�(N�1) =(N(�1))
0 M1=2

0 E(NCN�2)=(2N(�1))
0 C y� =(�1)

0 E =(�1)
0 T .

REMARK 1.1. The local existence of smooth solution with initial data as in The-
orem 1.1 is classical and can be found, for example, in [8] andreferences therein. So
the maximal timeT� is well defined.

REMARK 1.2. There are several results on the blowup criterion for classical so-
lutions to the system (1.1) (refer to [2, 3, 4, 16] and references therein). Especially, the
authors in [3] established the following Serrin-type blowup criterion:
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• When N D 3,

(1.24) lim
T!T��0

(k�kL1(0,T I L1) C kukLr (0,T I Ls)) D 1,

for any r 2 [2,1] and s 2 (3,1] satisfying

(1.25)
2

r
C

3

s
� 1.

• When N D 2,

(1.26) lim
T!T��0

k�kL1(0,T I L1) D 1.

REMARK 1.3. Theorem 1.1 asserts that the formation of singularity is only due
to the concentrationof the massaround the center inLagrangian coordinate system.
More precisely, the mass anywhere away from the center is bounded up to the max-
imal time.

On the hand,in Euler coordinate system, either thedensity concentratesor van-
ishes around the center. For the latter case, one possible situation is that a vacuum
ball appears around the center and the density may concentrate on the boundary of the
vacuum ball simultaneously.

2. Proof of Theorem 1.1

We only prove the case whenN D 3 since the caseN D 2 is even simpler. Through-
out of this section, we assume that (�, U ) is a classical spherically symmetric solution
with the form (1.7) to the initial boundary value problem (1.1), (1.5), (1.6) in [0,T ]��,
and the maximal timeT�, the upper limit ofT , is finite, and we denote byC generic
positive constants only depending on the initial data and the maximal timeT�.

We first have the following basic energy estimate. Since the proof is standard, we
omit it.

Lemma 2.1. It holds for any0� t � T ,

(2.1)
Z

�

�

�

jU j2

2
C

a�

 � 1

�

dxC "
Z t

0

Z

�

jrU j2 dx d� �
Z

�

�

�0
jU0j

2

2
C

a�0
 � 1

�

dx,

or equivalently,

(2.2)

Z R

0

�

�

u2

2
C

a�

 � 1

�

r N�1 dr C "
Z t

0

Z R

0

�

u2
r C

u2

r 2

�

r N�1 dr d�

�

Z R

0

�

�0
u2

0

2
C

a�0
 � 1

�

r N�1 dr D E0.



276 X. HUANG AND A. M ATSUMURA

Next, using the basic energy estimate above, we can refine theblowup criterion (1.24)
in the present case of spherically symmetric solutions as follows.

Lemma 2.2.

(2.3) lim
T!T��0

k�kL1(0,T I L1) D1.

Proof. Due to the Serrin type condition (1.24), it suffices toshow that

(2.4) sup
t2[0,T�)

k�(t, � )kL1 <1

implies

(2.5) lim
T!T��0

kukL4(0,T I L12) <1.

To do that, making use of the identity

(2.6) 4U D r div U D

�

ur C (N � 1)
u

r

�

r

x

r
,

we rewrite the equation of momentum as

(2.7) (�U )t C div(�U 
U )CrP D "4U , " D 2�C �.

Multiplying the equation (2.7) by 4jU j2U and integrating it over�, we have

(2.8)

d

dt

Z

�

�jU j4 dxC "
Z

�

(rjU j2)2 dx � C
Z

�

PjU j2jrU j dx

� C
Z

�

�jU j4 dxC C
Z

�

jrU j2 dx

where we used the assumption (2.4). Then, it easily follows from the Gronwall’s in-
equality and Lemma 2.1 that

(2.9)
Z t

0

Z

�

(rjU j2)2 dx d� � C, t 2 [0, T�),

which implies the desired estimate (2.5) by Sobolev’s embedding theoremH1(�) �
L6(�). Thus, the proof of Lemma 2.2 is completed.

Due to the refined criterion above, to prove Theorem 1.1, it remains to show that
the density away from the center stays bounded up to the maximal time T�. To do
that, we prepare the next lemma which gives a relationship betweenr and y.
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Lemma 2.3. There exists a positive constant C depending only on a,  , N
such that

(2.10) r (t, y) � Cy =(N(�1))E�1=(N(�1))
0

and

(2.11) RN
� r (t, y)N

� C(M0 � y) =(�1)E�1=(�1)
0 , (t, y) 2 [0, T ] � [0, M0].

Proof. By the energy inequality (2.2), we have

(2.12)

y D
Z r

0
�sN�1 dsD

Z r

0
�s(N�1)= sN�1�(N�1)= ds

�

�

Z r

0
�

 sN�1 ds

�1=�Z r

0
sN�1 ds

�1�1=

� Cr N(1�1= )E1=
0 ,

which implies

(2.13) r (t, y) � Cy =(N(�1))E�1=(N(�1))
0 .

Similarly, we have

(2.14)

M0 � y D
Z R

r
�sN�1 dsD

Z R

r
�s(N�1)= sN�1�(N�1)= ds

�

�

Z R

r
�

 sN�1 ds

�1=�Z R

r
sN�1 ds

�1�1=

� C(RN
� r (t, y)N)1�1= E1=

0 ,

which implies

(2.15) RN
� r (t, y)N

� C(M0 � y) =(�1)E�1=(�1)
0 .

Thus, the proof of Lemma 2.3 is completed.

We are now in a position to establish the pointwise estimatesof the density away
from the center.

Lemma 2.4. For any given y0 2 (0, M0), there exists a constant C exactly as in
Theorem 1.1such that

(2.16) �(t, y) � C, (t, y) 2 [0, T ] � [y0, M0].
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Proof. In view of (1.14), it holds

(2.17)

"(log �)ty D "

�

�t

�

�

y

D �"(�(r N�1u)y)y D �r 1�Nut � py

D �(r 1�Nu)t � py � (N � 1)
u2

r N
.

Thus, for y > y0 > 0, integrating (2.17) over (0,t) � (y0, y), we deduce that

(2.18)

" log
�(t, y)

�(t, y0)
D " log

�0(y)

�0(y0)
C

Z y

y0

((r 1�Nu)(0, z) � (r 1�Nu)(t, z)) dz

C

Z t

0
(p(s, y0) � p(s, y)) ds�

Z t

0

Z y

y0

(N � 1)
u2(s, z)

r N
dz ds,

which is equivalent to

(2.19)

�(t, y)

�(t, y0)
D

�0(y)

�0(y0)
exp

�

"

�1
Z y

y0

((r 1�Nu)(0, z) � (r 1�Nu)(t, z)) dz

�

� exp

�

"

�1
Z t

0
(p(s, y0) � p(s, y)) ds

�

� exp

�

�"

�1
Z t

0

Z y

y0

(N � 1)
u2(s, z)

r N
dz ds

�

.

We can rewrite (2.19) as

(2.20) �(t, y) D P(t)U (t, y) exp

�

�"

�1
Z t

0
p(s, y) ds

�

where

(2.21) P(t) D
�(t, y0)

�0(y0)
exp

�

"

�1
Z t

0
p(s, y0) ds

�

and

(2.22)

U (t, y) D �0(y) exp

�

"

�1
Z y

y0

((r 1�Nu)(0, z) � (r 1�Nu)(t, z)) dz

�

� exp

�

�"

�1
Z t

0

Z y

y0

(N � 1)
u2(s, z)

r N
dz ds

�

.
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Hence, it follows from the equation of mass, the energy inequality (2.2) and
Lemma 2.3 that

(2.23)

Z M0

y0

r 1�N
juj dyD

Z R

r (y0)
�juj dr � Cr1�N(y0)

Z R

r (y0)
�jujr N�1 dr

� Cr1�N(y0)

�

Z R

0
�r N�1 dr

�1=2�Z R

0
�u2r N�1 dr

�1=2

� Cr1�N(y0)M1=2
0 E1=2

0

� Cy�(N�1) =(N(�1))
0 M1=2

0 E(NCN�2)=(2N(�1))
0

and

(2.24)

Z T

0

Z M0

y0

r 1�N juj
2

r
dy dtD

Z T

0

Z R

r (y0)

�juj2

r
dr dt

� Cr�N(y0)
Z T

0

Z R

0
�juj2r N�1 dr dt

� Cr�N(y0)E0T � Cy� =(�1)
0 E =(�1)

0 T .

Consequently, we have

(2.25)

U (t, y)

� C

��

sup
x2�

�0(x)

�

exp
{

C"�1y�(N�1) =(N(�1))
0 M1=2

0 E(NCN�2)=(2N(�1))
0

}

�

and

(2.26)

U (t, y)�1

� C

��

inf
x2�

�0(x)

�

�1

exp
{

C"�1y�(N�1) =(N(�1))
0 M1=2

0 E(NCN�2)=(2N(�1))
0

C C"�1y� =(�1)
0 E =(�1)

0 T
}

�

, (t, y) 2 QT,y0.

If we set

(2.27) H D y�(N�1) =(N(�1))
0 M1=2

0 E(NCN�2)=(2N(�1))
0 C y� =(�1)

0 E =(�1)
0 T,

the above estimates forU (t, y) can be simply written as

(2.28)

U (t, y) � C

�

sup
x2�

�0(x)

�

exp(C"�1H ),

U�1(t, y) � C

�

inf
x2�

�0(x)

�

�1

exp(C"�1H ).
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On the other hand, it follows from (2.20) that

(2.29)

d

dt
exp

�



"

Z t

0
p(s, y) ds

�

D

a

"

�(t, y) exp

�



"

Z t

0
p(s, y) ds

�

D

a

"

(P(t)U (t, y)) ,

which implies

(2.30) exp

�

1

"

Z t

0
p(s, y) ds

�

D

�

1C
a

"

Z t

0
(P(s)U (s, y)) ds

�1=

.

Next, we are in a position to estimateP(t). First, observe that

(2.31)

Z M0

y0

dy

�(t, y)
D

Z R

r (y0)
r N�1 dr D

RN
� r (y0)N

N

� C(M0 � y0) =(�1)E�1=(�1)
0 .

In view of (2.20) and (2.30), we have

(2.32) �(t, y) D
P(t)U (t, y)

�

1C (a =")
R t

0 (P(s)U (s, y)) ds
�1= .

Then,P(t) can be estimated as

(2.33)

RN
� r N(y0)

N
P(t) D

Z M0

y0

P(t)

�(t, y)
dy

D

Z M0

y0

�

1C (a =")
R t

0 (P(s)U (s, y)) ds
�1=

U (t, y)
dy

� C
Z M0

y0

1

U (t, y)
dy

C C

�

a

"

�1=�

sup
QT,y0

U (t, y)

��

sup
QT,y0

U�1(t, y)

�

Z M0

y0

�

Z t

0
P(s) ds

�1=

dy

� C(M0 � y0)

 

sup
QT,y0

U�1(t, y)

!

C C(M0 � y0)

�

sup
QT,y0

U (t, y)

��

sup
QT,y0

U�1(t, y)

��

Z t

0
P(s) ds

�1=

.
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Using (2.31) and taking -th power on both sides of (2.33), we have
(2.34)
�

M0 � y0

E0

�

 =(�1)

P(t) � C

�

sup
QT,y0

U�1(t, y)

�



C C

�

sup
QT,y0

U�1(t, y)

�



�

sup
QT,y0

U (t, y)

�



�

Z t

0
P(s) ds

�

.

Therefore, by Gronwall’s inequality, we deduce from (2.34)that

(2.35)

P(t) � C

�

E0

M0 � y0

�1=(�1)�

sup
QT,y0

U�1(t, y)

�

� exp

�

CT

�

sup
QT,y0

U�1(t, y)

�



�

sup
QT,y0

U (t, y)

�



�

.

Finally, recalling (2.32), we have

(2.36) �(t, y) � P(t)

 

sup
QT,y0

U (t, y)

!

,

and plugging the estimates (2.25), (2.26) and (2.35) into (2.36), we can deduce the
desired pointwise estimate (2.16). Thus the proof of Lemma 2.4 is completed.

3. Proof of Theorem 1.1

Note that (1.21) and (1.22) are direct consequences of Lemma2.2 and Lemma 2.4.
Now we are in a position to prove (1.20).

We argue by contradiction. Suppose (1.20) fails to hold. In Euler coordinate sys-
tem (1.11), there exist positive constantsC, � (< T�) and r1 (< R) such that

(3.1) C�1
� �(t, r ) � C, for all (t, r ) 2 [T�

� ", T�) � [0, r1].

Then we claim that in Lagrangian coordinate system (1.14), there exist a positive con-
stant y1 (< M0) such that

(3.2) �(t, y) � C for all (t, y) 2 [T�

� ", T�) � [0, y1].

In fact, by virtue of (3.1), it holds

(3.3) y(t, r1) D
Z r1

0
�(t, r )r 2 dr �

Z r1

0
C�1r 2 dr �

1

3
C�1r1

3, t 2 [T�

� ", T�)

which immediately implies (3.2). Now, it follows from (3.2)and Lemma 2.4 that the
density is bounded on [0,T�)��, which contradicts to the blowup criterion Lemma 2.2.
Thus the proof of Theorem 1.1 is completed.
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ment of compressible viscous fluid, Kōdai Math. Sem. Rep.23 (1971), 60–120.

[6] V.A. Vaı̆gant and A.V. Kazhikhov:On existence of global solutions to the two-dimensional
Navier–Stokes equations for a compressible viscous fluid, Sib. Math. J.36 (1995), 1283-1316.

[7] A.V. Kažihov: Stabilization of solutions of the initial-boundary value problem for barotropic
viscous fluid equations, Differ. Equ. 15 (1979), 463–467.

[8] Y. Cho and H. Kim: On classical solutions of the compressible Navier–Stokes equations with
nonnegative initial densities, Manuscripta Math.120 (2006), 91–129.

[9] H.J. Choe and H. Kim:Global existence of the radially symmetric solutions of theNavier–
Stokes equations for the isentropic compressible fluids, Math. Methods Appl. Sci.28 (2005),
1–28.

[10] A. Matsumura and T. Nishida:The initial value problem for the equations of motion of com-
pressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A Math. Sci.55 (1979),
337–342.

[11] A. Matsumura and T. Nishida:The initial value problem for the equations of motion of viscous
and heat-conductive gases, J. Math. Kyoto Univ.20 (1980), 67–104.

[12] A. Matsumura and T. Nishida:Initial-boundary value problems for the equations of motion of
compressible viscous and heat-conductive fluids, Comm. Math. Phys.89 (1983), 445–464.

[13] J. Nash: Le problème de Cauchy pour les équations différentielles d’un fluide général, Bull.
Soc. Math. France90 (1962), 487–497.

[14] R. Salvi and I. Straškraba:Global existence for viscous compressible fluids and their behavior
as t!1, J. Fac. Sci. Univ. Tokyo Sect. IA Math.40 (1993), 17–51.

[15] V.A. Solonnikov: Solvability of the initial boundary value problem for the equation of a viscous
compressible fluid, J. Sov. Math. 14 (1980), 1120–1133.

[16] Y. Sun, C. Wang and Z. Zhang:A Beale–Kato–Majda blow-up criterion for the3-D compress-
ible Navier–Stokes equations, J. Math. Pures Appl. (9)95 (2011), 36–47.

[17] A. Tani: On the first initial-boundary value problem of compressibleviscous fluid motion, Publ.
Res. Inst. Math. Sci. Kyoto Univ. 13 (1971), 193–253.

[18] A. Valli: An existence theorem for compressible viscous fluids, Ann. Mat. Pura Appl. (4)130
(1982), 197–213.

[19] A. Valli: Periodic and stationary solutions for compressible Navier–Stokes equations via a sta-
bility method, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)10 (1983), 607–647.

[20] Z. Xin: Blowup of smooth solutions to the compressible Navier–Stokes equation with compact
density, Comm. Pure Appl. Math.51 (1998), 229–240.

[21] T. Zhang and D. Fang:Compressible flows with a density-dependent viscosity coefficient, SIAM
J. Math. Anal.41 (2009), 2453–2488.



BREAKDOWN CRITERION OF CLASSICAL SOLUTION 283

Xiangdi Huang
NCMIS, AMSS
Chinese Academy of Sciences
Beijing 100190
P.R. China
and
Department of Pure and Applied Mathematics
Graduate School of Information Science and Technology
Osaka University
Toyonaka, Osaka 560-0043
Japan
e-mail: xdhuang@amss.ac.cn

Akitaka Matsumura
Department of Pure and Applied Mathematics
Graduate School of Information Science and Technology
Osaka University
Toyonaka, Osaka 560-0043
Japan
e-mail: akitaka@math.sci.osaka-u.ac.jp


