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Abstract
Let k be an algebraically closed field. A polynomigl e k[X, Y] is said to be
generally rationalif, for almost all » € k, the curve F = A" is rational. It is well
known that, if chak = 0, F is generally rational iff there exist& € k(X, Y) such
that k(F, G) = k(X, Y). We give analogous results valid in arbitrary charactietis

1. Definitions and statements of results

Given ringsR € S, we write S = RI" to indicate thatS is isomorphic, as arR-
algebra, to the polynomial algebra mvariables overR. If L/K is a field extension,
we write L = K™ to indicate thatL is a purely transcendental extension Kf of
transcendence degree The field of fractions of a domaiR is denoted Fra®k. We
write R* for the multiplicative group of units of a ringr.

DEFINITION 1.1. Letk be a field andF € A = k2,
(1) We define the phraseAY(F) is k-rational” to mean:F is an irreducible element
of A and the field of fractions ofA/(F) is kY.
(2) Suppose thak is algebraically closed. We say thktis a generally rational poly-
nomial in Aif A/(F — A1) is k-rational for almost all. € k, where by “almost all” we
mean “all except possibly finitely many”.

REMARK. In Lemma 2.4, below, we show that ih/(F — 1) is k-rational for
infinitely many A € k then it is k-rational for almost all € k.

REMARK. In the literature, generally rational polynomials are stimes called
“generically rational polynomials” or simply “rational pmomials”. The term “gener-
ically rational polynomial” is particularly misleadingrsie it suggests that the fiber of
SpecA — Sped[F] over the generic point of SpégF] is rational, which is not the
intended meaning. (Note that the fiber over the generic geimational if and only if
F is a field generator, cf. Definition 1.2.)
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DEFINITION 1.2. Letk be a field andF € A = k[?. We say thatF is a field
generator in Aif there existsG € FracA such thatk(F, G) = FracA. If G can be
chosen inA, we say thatF is a good field generator inA; if not, we say thatF is
bad (Cf. [9], [14], [15], [2].)

It is known that if k is an algebraically closed field of characteristic zeronthe
F € K[X, Y] is a field generator if and only if it is a generally rationablynomial
(this is mentioned, for instance, in the introduction of [J13n positive characteristic,
one knows examples of generally rational polynomials wtach not field generators,
but, apparently, the precise relation between the two nsti@mains to be clarified.
It is the aim of the present paper to provide such clarificatim order to do so, we
propose the following

DEFINITION 1.3. Letk be a field andF € A = ki?. We say thatF is a pseudo
field generator(PFG) in A if there existsG € FracA such that Fra@ is a purely
inseparable extension &f(F, G). If G can be chosen iA, we say thatF is a good
pseudo field generator iA; if not, we say thatF is bad

REMARKS 1.4. Letk be a field andF € A = k2,
(1) It is clear that “field generator” implies “pseudo fieldngeator”, and that the two
notions are equivalent if chéar= 0.
(2) If chark = p > 0 then the following hold:

e FisaPFGinAiff FPis a PFG inA.

e F is agood PFG inA iff FP is a good PFG inA.

Our aim is to prove Theorems 1.5, 1.8, 1.10 and 1.11 (the praoé given in
Section 3). Throughout, our base field is algebraically edoand of arbitrary charac-
teristic. Our results are well known in the case dbar 0. In fact, we recover the case
chark = 0 as a special case of our results.

Theorem 1.5. Letk be an algebraically closed field and let-Ak?. For F € A,
the following conditions are equivalent
(@) F is a generally rational polynomial in A
(b) F is a pseudo field generator in A anddhark = p > 0 then F¢ AP.

DEFINITION 1.6. Letk be an algebraically closed field and lat= k2. Con-
sider F € A\ k such that, for almost all e k, F — A is irreducible inA. Let f: A? =
SpecA — Al = Speck[F] be the morphism determined by the inclusikfF] < A.
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Choose a commutative diagram

X — 5 pt

g o

A? —— Al
where X is a nonsingular projective surface, the vertical arrones @pen immersions,
and f is a morphism. Note thaf ~1(P) is an integral curve for almost all closed points
P e PL
(1) We say that £, A) has no moving singularitie§ f~1(P) is a nonsingular curve
for almost all closed point® < P
(2) We say that E, A) has no moving singularities at finite distande f ~1(P) is a
nonsingular curve for almost all closed poirfise Al
These properties depend only oFR,(A), i.e., are independent of the choice of dia-
gram (1). We give a concrete example of moving singularitieExample 1.15, below.

REMARKS 1.7. Let the assumptions dag A, F be as in Definition 1.6, and con-
sider the question whetheF( A) has moving singularities.
(1) If chark =0 then §, A) has no moving singularities, by a theorem of Bertini.
(2) Assume that chde = p > 0. If (F, A) has no moving singularities then it has
no moving singularities at finite distance. However the evsg is not true (see Ex-
ample 1.15, for instance).

Theorem 1.8. Letk be an algebraically closed field and let-Ak?. For F € A,
the following conditions are equivalent
(&) F is a generally rational polynomial in A an¢F, A) has no moving singularities
(b) F is a field generator in A.

Given a field extensior/E, a valuation ring “of F over E” is a valuation ring
O satisfyingE € O € F and Frac®) = F.

DEFINITION 1.9. (1) GivenE C B, whereE is a field andB is a domain, we
write P(B/E) for the set of all valuation ring® of FracB over E satisfying O #
FracB; we also set

P.(B/E)={0 € P(B/E) | BZ O}
and
Pin(B/E) = (O € P(B/E) | B C O}.

The elements ofP..(B/E) are called the “places at infinity” oB/E. Note that
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() Pin(B/E) is the integral closure oB in FracB.!

(2) Letk be a field, F an irreducible element oA = k@ and R = A/(F). Then it

is customary to refer to the elements Bf,(R/k) as the places at infinity oR, or of

SpecR, or of F. The cardinal numbe|P..(R/K)| is a positive integer; if it is 1, we
say thatR (or SpecR, or F) has one place at infinity.

(3) Letk be a field andF € A=k, F ¢ k. Let A = S*A whereS=k[F]\ {0}.

Then the elements dP..(A/k(F)) are called thelicriticals of F (or more correctly,
of the pair F, A)). Given a dicritical O € P (A/K(F)), the residue fieldc of O is

a finite extension ok(F); the number £ : kK(F)] is called thedegreeof the dicritical;

one says that the dicritic& is purely inseparabléf « is purely inseparable ovéd(F).

Note that a dicritical ofF is the same thing as a place at infinity dfk(F). By “the

number of dicriticals ofF” we mean the cardinal numbéP.,(A/k(F))|, which is a
positive integer.

In [14, Remark after 1.3], Russell observes that a field gaoeF € A is good if
and only if it has at least one dicritical of degree 1. The rresult gives an analogous
criterion for pseudo field generators.

Theorem 1.10. Letk be an algebraically closed field and let & A = ki be a
pseudo field generator in A. The following conditions areieajant
(@) F is a good pseudo field generator in; A
(b) F has at least one purely inseparable dicritical.

The case&k = C of the next result can be found in [18, Theorem 2] and [10, Coro
lary 2]; the more general case clkae= 0 is proved in [13, 1.6]. The case char- 0
appears to be new.

Theorem 1.11. Letk be an algebraically closed field and let & A = ki be a
generally rational polynomial of A. Then

t—1=> (n.—1)

rek

where t is the number of dicriticals of F and, s the number of irreducible compo-
nents of the closed subset(W— 1) of SpecA.

Remarks and examples

It is quite clear that Theorems 1.5 and 1.8 are of the sameaatach states the
equivalence of two conditions oR € A, the first being a property of the fiber &f

we abbreviate o .cp,,8/5) © 10 () Pin(B/E) and we decree thaf) Pin(B/E) = FracB when
Pin(B/E) = @.
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over a general closed point, and the second, an algebrapeyoof the pair E, A)
which is a weakening of the condition “there exigissatisfying A = k[F, G]"

To gain some perspective, we shall now recall two more rexfltthe same type
(Theorems 1.12 and 1.13). One could formulate these facésdharacteristic-free lan-
guage, as we did in Definitionl.1-Theorem 1.11, but for thiee saf simplicity we
mainly consider the case char> 0 in this discussion.

Polynomial curves. Let k be an algebraically closed field. An affine curve over
k is called apolynomial curveif it is rational and has one place at infinity. Abusing
language, one says that an irreducilfles A = ki@ is a “polynomial curve inA” if
SpecA/(F) is a polynomial curvé. The first result that we want to recall is:

Theorem 1.12([3]). Let A= k@, wherek is algebraically closed and of char-
acteristic p> 0. For F € A, the following are equivalent
(1) for almost allx € k, F — A is a polynomial curve in A
(2) F ¢ AP and there exist G= A and ne N such that &' € k[F, G].

Theorem 1.12 is a corollary of the main result of [3]. In thappr, one says that
F € A is a p-generator in Aif there existG € A andn > 0 such thatAP" C k[F, G]
(so condition (2) of Theorem 1.12 states tlatis a p-generator inA which does not
belong to AP). Clearly, everyp-generator inA is a good PFG inA (the converse is
not true, by Example 1.17). Also note thBtis a p-generator inA iff FP is.

Lines. Letk be a field andF € A=k, If there exitsG such thatA = k[F, G],
one says thafF is avariable in A If A/(F) =k}, one says thaF is aline in A
Obviously, every variable is a line; a line which is not a ahfe is called arexotic
line. The Abhyankar—Moh—Suzuki theorem ([1], or [18]kf= C) implies that exotic
lines do not exist if chak = 0. If k is any field of characteristip > 0, thenF =
XP* 4+ YP(PHD) 4 Y s an example of an exotic line ik[X, Y].

The second (and last) result that we want to recall is:

Theorem 1.13([4]). Let A= k@, wherek is algebraically closed and of char-
acteristic p> 0. For F € A, the following are equivalent
(1) F—xis alinein A for all » € k;
(2) F—xis aline in A for almost all A € k;
(8) F ¢ AP and there exist e N and Ge A such that &'[F] = k[F, G].

(This is a consequence of either one of [5, 3.1 and 4.12] or3[43 and 3.14];
more equivalent conditions are given in [5], [4].)

2Apparently, the term “polynomial curve” was coined by Abhkar. Note thatF is a polynomial

curve in A = ki@ if and only if A/(F) is a subalgebra of &%, That is, a polynomial curve is an
affine curve that can be parametrized by a pair of univariatgnomials.
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It is obvious that ifF € A satisfies the equivalent conditions of Theorem 1.13 then
F is a line in A. The converse, however, is an open question. It is clearithit is
a variable inA then F satisfies those conditions, and all currently known example
exotic lines in A also satisfy them, but it is not known whether all exotic $ineave
that property. See [5] for a discussion of this question.

1.14. To summarize, consider the following four subsetsfof= k@ (wherek is
an algebraically closed field of characterispic> 0):
e E; = the set of generally rational polynomials iA, which is equal (by The-
orem 1.5) to the set of PFGs iA not belonging toAP;
e E, = the set of generally rational polynomials in A such that E, A) has no
moving singularities, which is equal (by Theorem 1.8) to Het of field generators
in A;
e E3 = the set of F € A such thatF — A is a polynomial curve inA for almost all
A € k, which is equal (by Theorem 1.12) to the setmfjenerators inA not belonging
to AP;
e E, = the set ofF € A such thatF — 1 is a line in A for almost allA € k, which
is equal (by Theorem 1.13) to the set Bfe A satisfyingF ¢ AP and3g,, AP'[F] =
K[F, G].
Then the following hold:
(i) Ez C E1 D Ez D E4, where all inclusions are strict;
(i) Ex N Ez = E; N E4 = the set of variables ofA.
Indeed, inclusions€E, € E; DO E3 are obvious, andE; 2 E4 holds because every line
is a rational curve with one place at infinity; all inclusioase strict by Examples 1.16
and 1.17. Assertion (ii) follows from the fact (cf. [14, 45hat any field generator
which has one place at infinity is in fact a variable.

In the following examples, we leA = k[X, Y] = k@ wherek is algebraically
closed and of characteristig > O.

ExampLE 1.15. LetF € A=K[X,Y] be any exotic line satisfying the equivalent
conditions of Theorem 1.13 (for instanc,= XP* + YP(P+) 4 Y) and let f: A2 —
Al be the morphism determined by the inclusikfF] < A. By Theorem 1.13 (1),
f~1(P) = A?! for every closed poinP € Al; in particular,

(i) F is a generally rational polynomial i\ and (F, A) has no moving singularities
at finite distance.

As was mentioned in Section 1.14, any field generator whichdre place at infinity
is a variable. As lines have one place at infinity, it folloksitt no exotic line is a field
generator. So:

(i) F is not a field generator irA.

By (i), (i) and Theorem 1.8,K, A) has moving singularities (but not at finite distance).

For a concrete example, l& = XP* + YP(P+D) 1y and choose a diagram (1);
then for almost all closed pointB € P! the fiber f ~1(P) is a complete curve& with
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one singular pointQ, where Q has multiplicity p on C and C \ {Q} =~ A'. These
claims can be justified by direct computation. Inde€dhas one place at infinity and
by repeatedly blowing-up the singular point at infinity onedf that the sequence of
multiplicities of that point is p,..., p, p—1,1,1,..), where “p” occurs p?+ 3p times.
One also finds that the firstp(+ 1)? of these blowings-up are exactly the minimal
resolution of the base points of the pengi(F) defined in the proof of Lemma 2.10;
so those p + 1)? blowings-up construct a diagram (1) and, singe{1)* < p? + 3p,
the diagram has the desired property (i.e., for almost aked pointsP € P! the fiber
f~1(P) is as claimed). So we see directly (without using Theore®) that (, A) has
moving singularities.

EXAMPLE 1.16. LetF = XP+YP*l e A=K[X,Y]. Then AP CK[F,Y], soF
is a p-generator (hence a good PFG) A For everyx € k, A/(F — 1) is a singular
k-rational curve with one place at infinity. By Theorem 1B,is not a field generator
in A

EXAMPLE 1.17. LetF = (XP+YPTY)Y € A=K[X,Y]. Thenk(X,Y) is purely
inseparable ovek(F, Y) = k(XP,Y), so F is a good PFG inA. For almost allx €
k, the k-curve A/(F — 1) is a singular rational curve with two places at infinity. By
Theorem 1.12F is not a p-generator inA; by Theorem 1.8, it is not a field generator
in A

2. Preliminaries to the proofs

Lemma 2.1. Letk be an algebraically closed field and & A = k". Then the set
{r e k| F — A is not irreducible in A

is either finite or equal tdk, and it is equal tok if and only if F = P(G) for some
G € A and some univariate polynomial(P) € K[T] such thatdeg, P(T) > 1.

Proof. This can be derived from a general Theorem on linestesys proved by
Bertini (and reproved by Zariski) in characteristic zerben generalized to all char-
acteristics by Matsusaka [12]. For the result as stated lsee,[16], Chapter 3, Sec-
tion 3, Corollary 1. ]

Recall that afunction field in one variablés a finitely generated field extension of
transcendence degree 1. Refer to [17] for general backdroanthat topic.

NOTATIONS 2.2. Let F/E be a function field in one variable and recall from
Definition 1.9 thatP(F/E) is the set of valuation ring® of F over E satisfyingO #
F. The divisor group DivE/E) is the free abelian group on the sB(F/E); given
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& € F*, we write divg), divp(§), div, (&) € Div(F/E) for the principal divisor, divisor
of zeroes and divisor of poles &f, respectively.

Lemma 2.3. Let k be a field and consider an irreducible (K, Y) € A =
k[X,Y] = k@, Then A(F) is k-rational if and only if there exist$x(T), y(T), z(T)) €
k[T]® satisfying
(1) z(T) # 0, {x(T)/(T), y(T)/z(T)} £ k and F(x(T)/z(T), y(T)/z(T)) = 0;

(2) max(deg x(T), deg- y(T), deg- z(T)) < deg, F + deg, F.

Proof. It is clear that if X(T), y(T), z(T)) exists thenA/(F) is k-rational. Con-
versely, suppose thad/(F) is k-rational. Then there exisp, ¥ € k(T) = k® satisfy-
ing F(p, ¥) = 0 andk(e, ) = K(T). If ¢ € k ther? F = (X —a) (somea € k) and
(X,¥,2 = (a, T, 1) satisfies the desired conditions. Similarly,yife k then §, vy, 2)
exists. From now-on, assume thaty ¢ k. Considering divisors in DiW(T)/k) with
notation as in Notation 2.2,

deg divw(p) = [K(T) : k(¢)] =deg, F and

2
@ deg divy(¥) = [K(T) : k()] = deg, F.
Write ¢ = u/wq, ¥ = v/w, whereu, v, wi, wp € K[T], w1, wy # 0 and gcdq, w;) =
1=gcd@, wy). Letu = o[, p, w1 =[], qifi be the prime factorizations of
u and w; respectively, where, f; > 0 and where they, g € k[T] are m+ n distinct
monic irreducible polynomials. Defin® = K[T]p) (L1 <1 =m), Qi =K[T]g) (1 =
i <n) and Py = K[T™Yr-1); then B, Qi, P € P(k(T)/k) and divg) = >\, e P —
Y, fiQi + (degw; — degu) Py, so:
e if degw; > degu then diw(p) = > |1, & P, + (degw; — degu) P, has degree equal
to degws;
e if degw; < degu then diw(p) = Y", & P has degree equal to dag
so deg diy(¢) = max(degu, degws) in both cases. Then max(degdegw;) = deg, F
by (2) and, for similar reasons, max(degdegw,) = degy F.

So &, Y, 2) = (Uwz, vwy, wiwy) satisfies the desired conditions. L]

Lemma 2.4. Letk be an algebraically closed field and & A = k2. The follow-
ing conditions are equivalent
(1) A/(F —2) is k-rational for infinitely manya € k;
(2) A/(F —2) is k-rational for almost allx € k.

Proof. Assume that (1) holds. In particular, there exists k such thatF — A
is irreducible in A; then, by Lemma 2.1F — A is irreducible in A for almost allA €
k. ChooseX, Y such thatA = K[X, Y], let d = degF andn = deg F + deg, F,

3We use Abhyankar's symbole” to denote an arbitrary nonzero element of the base feld
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and consider the homogenizatidti'(X, Y, Z) € K[X, Y, Z] of F, i.e.,, F*(X,Y, Z) =
Z9F(X/Z,Y/Z). Let R=K[Xo, ..., Xn, Yo, ..., Yn, Zo, ..., Zn, L] = k®** and define
Jo,---,0nd € R by

F<§ XiT', iX:;YiTi,Z:O:ziTi> - L<IX:(; ziTi)d = ingda‘gm.

Define idealsl and J of R by stipulating thatl is generated by, ..., gng and that
J is generated by all & 2 determinant# )Z<-i >Z(!‘ and ‘ \Z(I \Z(j- ‘ with 0<i < j <n.
1 ] 1 ]

Consider the zero-sef(l), Z(J) € k®** of | and J respectively, the locally closed
subsetU = Z(1) \ Z(J) of k®** and the maph: U — k which is the restriction of
the projectionk®"** — k on the last factor.

For A € k, the following are equivalent:
i) rAeimh;
(i) there exist @, ..., an), (bo, ..., bn), (Co, ..., cn) € k" such that, if we define
x=>Y",aT,y=>" 0T andz=>7 ,cT, thenF*(X,y,2)—129=0,2z#0
and{x/z,y/z} £ k;
(iii) there exist &, y, z) € k[T]® such that max(degx, deg y, deg 2) < n, z # 0,
{x/z,y/z} £ k and F(X/z, y/z) = A.

Moreover, under the assumption thHat— X is irreducible in A, Lemma 2.3 shows
that (iii) is equivalent toA/(F — 1) being k-rational.

Since we assumed that (1) holds, hinis an infinite set. As inh is a constructible
subset ofk, we obtain thak \imh is a finite set. Sincd- — A is irreducible for almost
all A ek, (2) holds. The converse is trivial. O

Lemma 2.5. Let K C L be algebraically closed fieldsX, Y indeterminates over
L and Fe K[X, Y] C L[X, Y], F ¢K. Then
(@) F is irreducible in K[X,Y] <= F is irreducible in L[X, Y].
(b) K[X,Y]/(F) is K-rational <= L[X, Y]/(F) is L-rational.
(c) F is a generally rational polynomial in KX, Y] <= F is a generally rational
polynomial in UX, Y].

Proof. Assertions (a) and (b) are well known and easy to provesertion (c)
follows from (a), (b) and Lemma 2.4. ]

2.6. (Refer to [11] for this paragraph.) A fiel is said to beC, if, for every

choice of integers 6< d < n and every homogeneous polynomig(Xy, ..., X,) €
K[X4, ..., Xp] of degreed, there existsd, ..., a,) € K"\ {(0, ..., 0)} satisfying
F(a,...,a,) = 0. Tsen's Theorem states thatkf is a function field in one variable

over an algebraically closed field, théf is C;. Lang showed that if a fielK is C;
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then so is every algebraic extension Kf It follows in particular:

If k is an algebraically closed field and an indeterminate over
k then k(r) is a C field. Moreover if chark = p > 0 then
k(r)P™ is C;.

Refer to [17, 1.4.15, p.21] for the definition of the genus ofuaction field in
one variableL /K. One may also define the genus as ¢ri(C, Oc) whereC is the
complete regular curve ovedf whose function field isL..

2.7. Let L/K be a function field in one variablevhere K is a G field and is
algebraically closed in L. Then AK is rational if and only if it has genu$.

Indeed, it is known that ifL/K has genus zero then it is the function field of a
curve inPZ given by an equatiorF(X, Y, Z) = 0, where F(X, Y, Z) € K[X, Y, Z]
is an irreducible homogeneous polynomial of degree 2.KAs$s C,, the curve has a
K-rational point, soL/K has a place of degree 1 and hence is rational. The converse
is clear.

2.8. Let k be an algebraically closed field arfd X — Y a dominant morphism
of integral schemes of finite type ovkr Assume that dinX = dimY. Thenk(X)/k(Y)
is a finite extension of fields, whelg X) andk(Y) denote the function fields ok and
Y respectively. One defines

degf = [K(X): k(Y)], deg, f = [K(X):k(Y)ls
and
deg f = [K(X) : k(Y)]i.

It is well known (cf. [7, Proposition 9.7.8, p.82] and [6, Dwfion 4.5.2, p.61]) that
the positive integed = deg, f has the following property:

There exists a nonempty open subse€W such thatfor each
closed point ye V, the set f(y) consists of exactly d closed
points of X.

The following notation is used in Lemma 2.9. Given morphisshschemesx i>
Y 5 T and a pointP € T, we write Xp = X x1 Speac(P) and Yp = Y xt Speac(P)
for the fibers ofr o f andxz over P (wherek(P) is the residue field off at P). Note
the commutative diagram

Xp —"5 Yp —™ Speac(P)

L |

X Y T
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in which every square is a pullback square.

f b4 .
Lemma 2.9. Let k be an algebraically closed field and % Y — T dominant
morphisms of integral schemes of finite type oker Suppose thatdim X = dimY
and that

there exists a nonempty open subsettUr such that for each
closed point Pe U, Xp and Y are integral schemes.

Then there exists a nonempty open sétdlJ such that for every closed point & U’,
fp: Xp — Yp is dominanf dimXp =dimYp and deg(fp) = deg(f).

Proof. In lack of a suitable reference, we provide a prooft &ach closed point
P € U, Xp and Yp are closed subschemes ¥f and Y respectively. Viewing them
as subsets oX andY, we haveYp = 77 1(P), Xp = (7 o f)}(P) = f~(Yp) and
the continuous magdp : Xp — Yp is simply the restriction off. Note that f;1(y) =
f~(y) for all y € Yp.

Let d = deg,(f) and choose a nonempty open 3et£ z=1(U) such that, for each
closed pointy € V, the setf~(y) consists of exactlyd closed points ofX (cf. Sec-
tion 2.8). Thenr (V) is dense inT and hence contains a nonempty open subBeof
T. Note thatU’ C U.

Let P be a closed point ob)’. ThenYp NV # @ (becausel’ € = (V)) and, for
every closed pointy € Yp NV, the setfs1(y) consists of exactlyd closed points of
Xp. Since fp : Xp — Yp is a morphism of integral schemes of finite type oker
it follows that fp is dominant, that dinXp = dimYp and (by Section 2.8 again) that
deg(fp) = d, as desired. ]

The following result is proved in paragraphs 2.8—3.3 of [14]

Lemma 2.10. Let k be an algebraically closed fieldA = ki? and Fe A\ k.
Assume thak(F) is algebraically closed irFracA and let g denote the genus of the
function fieldFracA/k(F). Then for any diagram(1) as in Definition1.6, the follow-
ing holds

For almost all closed points B P?, the arithmetic genus of the
curve f~X(P) is equal to g.

Proof. Since this fact is not explicit in [14], we fill the gapShoose a diagram
(1). The assumption th&(F) is algebraically closed in Fra& implies that, for almost
all closed pointsP € P!, f~1(P) is an integral curve ovek. Note that the number
“arithmetic genus off ~1(P) for a general closed poir® € P1” is independent of the
choice of a diagram (1) (any two diagrams can be reconcilest &hitely many extra
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blowings-up, and these blowings-up affect only finitely mdibers f~%(P)). So it's
enough to show that at least one diagram (1) has the desiogxénby.

Choosex, y such thatA = K[x, ], let d = deg(F) (with respect tox, y), let F* €
K[x, y, Z] be the homogenization of, and consider the pencih(F) = {divo(aF* +
bz9) | (a: b) € P} onP? (where we write diy(H) for the divisor of zeroes of a homo-
geneous polynomiaH € k[X, Y, Z] \ {0}). The assumption that(F) is algebraically
closed in FradA implies that the general member of(F) is irreducible and reduced.
Let B be the set of base points a@f(F), including infinitely near ones. TheB is
a finite set. Letr: X — P2 be the blowing-up ofP? along B (i.e., resolve the base
points of A(F)); then X is a nonsingular projective surface,is a birational morphism
centered at points aP? \ A? and the strict transform ofA(F) on X is free of base
points. This base point free pencil determines a morphfsnX — P1; by restricting
7 we get an isomorphismr ~1(A%) — A2, whose inverse defines an open immersion
A% < X; so we have constructed a diagram (1). By paragraphs 2.8sf3B4], the
genusg of the function field Fra&A/k(F) is equal to

d-1)d-2) ) mQ)u(Q) —1)

©) > >

QeB

where 1(Q) is the multiplicity of the base poinfQ, i.e., the multiplicity of Q on
the general member of a suitable strict transformAgf) (refer to [14] for details).
Clearly, the number (3) is equal to the arithmetic genud of(P) for a general closed
point P € P*. 0

3. Proofs

Throughout this sectiork is an algebraically closed field anfdl € A = k. We
also consider theék(F)-algebraA = S'A where S = k[F] \ {0}. Defineq = 1 if
chark = 0, andq = p if chark = p > 0.

Given k-domainsB € C and x € C, the phrase X is purely inseparable oveB”
means that there existse N such thatx?" € B (if chark = 0, this means that € B).
We also define C is purely inseparable oveB” to mean that each element & is
purely inseparable oveB. When B and C are fields, these definitions coincide with
the usual ones.

Let us also remark that iF/E is a purely inseparable extension of field3, a
valuation ring ofF and O’ = O N E, thenQ is purely inseparable ovep’ and conse-
quently the residue field aP is a purely inseparable extension of that(®f moreover,
every valuation ring ofE has aunique extension to a valuation ring df.

Proof that 1.5 (b) implies 1.5 (a). Suppose that 1.5 (b) holsooseG € FracA
such that Fra@ is purely inseparable ovée(F, G).

Consider anyW € A such thatk[F] € k[W] ¢ A. ThenW is integral overk[F]
and W' ¢ k(F, G) for somen. SinceW®" e k(F, G) and W' is integral overk[F],
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we haveW?" e k[F] and hencek[W9'] € k[F] € k[W]; by assumption,F ¢ AP if
chark = p > 0; sok[F] = k[W]. Consequently, Lemma 2.1 implies:

F — A isirreducible in A for almost all A € k.

ChooseH € A\ {0} such thatk[F, G] € Au.

For almost allx € k, F —4 is irreducible inA and F —A } H in A; for each such
A, F — A is irreducible in Ay. Consequently, the morphisms of schemes Shec—>
SpeK[F, G] — Spe&[F] (determined by the inclusiondy 2 k[F, G] D Kk[F]) satisfy
the hypothesis of Lemma 2.9. This implies that there exisssilzsetU of k such that
k\ U is a finite set and, for alk € U,

K[F, G]/(F —)K[F, G] = An/(F — A)An
is injective and
4) [L, : K,]s = [FracAy : k(F, G)]s = [FracA: k(F, G)]s = 1

where we sel; = Frac(Any/(F —1)An) and K, = Frack[F, G]/(F —A)k[F, G]). For
eachi € U we havek c K; C L, where each ofK;,, L; is a function field in one
variable over the algebraically closed fidtdand, by (4),L,/K; is purely inseparable;
thus [8, Chapter IV, 2.5] implies thdt, /k and K, /k have the same genus, which is
0 sinceK; = k®. Hence,

L, = k@ for almost all A ek.

Now L; = FracAn/(F —1)An) = Frac(A/(F —1)A), so A/(F —X1)A is k-rational for
almost allx € k, i.e., we have shown that 1.5 (b) implies 1.5 (a). ]

Proof that 1.5 (a) implies 1.5 (b). Lét be a generally rational polynomial iA.
The assumption implies, in particular, that there existsk such thatF — A is irredu-
cible in A; so if chak = p > 0 thenF ¢ AP (which is part of the desired conclusion).
Let ¢ be an indeterminate oves, let K be an algebraic closure &f(z) and let

K = {x € K | x is purely inseparable ove«(r)}

_ (k(z), if chark =0,
~\k(r)P”, if chark =p>0.

Thenk(r) €K c K and
FeA=Kk[X, Y] Cck()[X, Y] € K[X, Y] CK[X,Y].

Applying Lemma 2.5 toF € k[X, Y] € K[X, Y] shows thatF is a generally ra-
tional polynomial inK[X, Y]. Then almost allx € K are such thaK[X, Y]/(F — 1)
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is K-rational. Since{z + A | » € k} is an infinite subset oK, there exists. € k such
that K[ X, Y]/(F —t — 1) is K-rational. There exists &-automorphismy of K which
sendst + A on r. Extendé to ak-automorphism® of K[X, Y] such that®(X) = X
and ©(Y) = Y. Then®: K[X, Y] — K[X, Y] is an isomorphism of rings satisfying
O(K) =K and ®(F —t — 1) = F — r; it induces an isomorphism of rings

K[X, Y]/(F =t = 1) = K[X, Y]/(F = 1)
which mapsK onto itself. AsK[X, Y]/(F —t — ) is K-rational,
(5) K[X, Y]/(F — 1) is K-rational.

This implies, in particular, thaF — 7 is irreducible inK[X, Y]; then it is also irredu-
cible in K[X, Y] and in k(z)[ X, Y]. Moreover,

(F = 7)K[X, YINK[X, Y] = (F — 1)K[X, Y],
(F = )K[X, Y] N k(@)X Y] = (F — 0)k(2)[ X, Y]

because, sak(r)[X, Y] = K[X, Y] — K[X, Y] are faithfully flat homomorphisms (if
R — S is a faithfully flat homomorphism andl is an ideal of R thenISN R = 1).
So there is a commutative diagram of integral domains aretiimg homomorphisms

R=KI[X, Y]/(F—-1), M = FracR,

—

(6)

K ——
K

— 0 —> 1

T
T

M
L R= K[X, Y]/(F — 1), L = FracR,
k(t) — Ry —— Lo

Ry = k(7)[ X, Y]/(F — 1), Lo = FracRy.

Applying the exact functoik ®x () to 0 — (F — ) — K[X, Y] = R — 0 yields
0— (F—-1) = K[X,Y] = R— 0, and this shows thaR = K ®¢ R. Note that
L = 2 'R wherex = R\ {0}. SinceK is integral overKk andR =K ®x R, R is
integral overR and consequenthE 'R is integral overz~!R (= L); so 'R is a
field, i.e., 'R = M. So we have shown thi® = K ®« RandM = R®r L. The
same argument shows thBt= K ®) Ry andL = R®g, Lo. This can be summarized
by saying that the four little squares, in diagram (6), arehowt squares; so

(7 all nine squares, in (6), are pushout squares.
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The following fact is well known:suppose that BF, X, Y are rings

l

x —> <

o —> T

—

is a pushout squaré.e, X®g F =Y) in which all arrows are injective homomorphisms
of rings F is a free B-module and there exists a baSi®f F over B such thal € B;
then Y is a free X-modulghere exists a basi’ of Y over X such thal € 5’ and

F N X = B, when we view BF, X as subsets of YApplying this to (6) and (7) gives,
in particular:

KNL=K, KNLy=k(z), KNLo=k(r), RNL=R and

(8)

RN Ly= Ry
In view of the fact thatK is algebraically closed iM, the equalitesK NL = K and
K N Lo = k(z) imply:

9) K is algebraically closed ih. andk(r) is algebraically closed irg.

Note thatK is purely inseparable ovee(r); sinceL = K ®() Lo, L is the com-
positumK Ly and it follows thatL is purely inseparable ovdry; since RN Ly = Ry,
we obtain thatR is purely inseparable oveR,. We record this:

(10) L (resp.R) is purely inseparable ovdrg (resp. Ry).

Observe in particular that the following assertions are:tru
() M/K is a function field in one variable and is algebraically closed ifM;
(i) L/K is a function field in one variable and is algebraically closed in;
(iii) the compositum of fieldK L is equal toM;
(iv) M is an algebraic extension df;
(v) K is perfect.
By [17, Theorem 111.6.3], conditions (i)—(v) imply that/K has the same genus as
L/K; asM = KW by (5), that genus is 0. NowK is a C; field by Section 2.6; so
Section 2.7 yields:

(11) L=K®O,

Choosev € L such thatL = K(v). If chark = 0, defineg = v; if chark = p > 0,
defineg = v®" wheren e N is large enough to have” € L. Then in both cases we
haveg € Lo, and we claim:

(12) Lo is a purely inseparable extension kfr, g).
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Indeed, if chak = 0 thenLy = L = K(v) = K(z, v) = k(z, g), so (12) holds.
Assume that chd = p > 0. We use the following notation. Givesie N and a poly-
nomial P(T) = Y, aT' € K[T] = K (wherea € K), let PF)(T) = Y, aP T ¢
K[T]. Note thatP(P)(T) € k(z)[T] if s is large enough.

Let& € Lo. Thené € L = K(v), so& = P(v)/Q(v) for someP(T), Q(T) € K[T],
Q(T) # 0. Chooses > n large enough to hav®(P)(T), Q(P)(T) € k(z)[T]. Then

£ = PPIWP)/QPI(wP) = PGP ")/ QPGP ") e k(r, ),

showing that¢ is purely inseparable ovée(z, g). This proves (12).
Finally, we note that there is a commutative diagram:

k(F) —— A «—— k(X,Y) == FracA
(13) = 4 =
k(r) Ro < Lo

where the vertical arrows afe-isomorphisms that send to F and whered = S 1A,
S=K[F]\{0}. Letg € L be as before and l&b = ¢(g) € k(X,Y). Then (12) implies
that k(X, Y) is purely inseparable ové((F, G).
This shows that 1.5 (a) implies 1.5 (b) and completes the fppbdheorem 1.5.
O

All facts established in the proof of 1.5 (ap 1.5 (b) are valid wheneveF is a
generally rational polynomial irA. This is used in several of the proofs below.

Proof of Theorem 1.8. If (a) or (b) holds thef is a generally rational poly-
nomial in A (this is obvious if (a) holds and is a consequence of Theorémifl(b)
holds, since a field generator i cannot belong toAP if chark = p > 0). So, to prove
the theorem, we may assume throughout thas a generally rational polynomial iA.

Let g denote the genus of the function field Fidd(F) and note thak(F) is
algebraically closed in Frag (for instance by (9) and (13), which are valid here since
F is a generally rational polynomial i®). Now F is a field generator if and only
if FracA = k(F)®, and this is equivalent tg = 0 by Sections 2.6 and 2.7. So it's
enough to show:

(14) g =0 if and only if (F, A) does not have moving singularities.

Choose a diagram (1) as in Definition 1.6. Then, for almostlaised pointsP €
P, f-}(P) is an integral curve ovek. By Lemma 2.10,

for almost all closed pointsP € P!, the arithmetic genus of
f~1(P) is equal tog.
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So, keeping in mind thaf ~1(P) is rational, we see thaj = 0 iff the arithmetic genus
of f~1(P) is equal to 0 for almost all closed poin® e P, iff f~1(P) is nonsingular
for almost all closed point e P!, iff (F, A) does not have moving singularities,
proving (14). O

Proof of Theorem 1.10. LeF be a pseudo field generator A If chark = p >
0 then F is good if and only ifFP is good, and it is easy to check that and FP
have exactly the same set of dicriticals and that a givenitidiak is a p.i. dicritical of
F iff it is a p.i. dicritical of FP; so, to prove Theorem 1.10 in characterigtic- 0, we
may (and shall) assume th&t¢ AP. Then, by Theorem 1.5; is a generally rational
polynomial in A. Consequently, all facts established in the proof of 1.5=a)1.5 (b)
remain valid here.

Suppose thaF is good. Then there exists € A such that Frad is purely insep-
arable ovek(F,G). Let (R,m) be the unique valuation ring &f(F,G)/k(F) such that
G ¢ R and note thatR/m = k(F). Since FradA is purely inseparable ovét(F, G),
it follows that (R, m) extends uniquely to a valuation ring (n) of FracA/k(F) and
that S/n is a purely inseparable extension &f/m = k(F). ThenS e P,.(A/k(F))
is a purely inseparable dicritical df (where A = S'A, S=Kk[F]\ {0}, as before),
proving that 1.10 (a) implies 1.10 (b).

For the converse, begin by observing that the isomorphisthy — FracA of (13)
satisfiesp~1(A) = Ry and ¢~(k(F)) = k(r). Suppose thaF has at least one purely
inseparable dicriticalS € P.,(A/k(F)). Then ¢~1(S) is an element ofP.,(Ro/K(t))
which we denote @q, mg); S being a purely inseparable dicritical, the residue field
of S is purely inseparable ovek(F) and consequentiyDy/mg is a purely insepara-
ble extension ok(z). As (by (10))L is purely inseparable ovdrg, (O, mg) extends
uniquely to a valuation ring@, m) of L over K and O/m is a purely inseparable
extension ofQg/myg:

K — O/m

p.iT Tp.i.

k(f) T) Oo/mo.

Then O/m is purely inseparable oveK. Since K is perfect,O/m = K. Sincel =
K@ by (11), it follows that the ring

R =(\®(L/K)\{O})

satisfiesR = K[ and L = FracR. Choosev such thatR = K[v]. Then L = K(v),

so if we defineg € Lo as in the proof of Theorem 1.5 (see just before (12)), and if
we takeG = ¢(g) € FracA, then the proof of 1.5 (a}» 1.5 (b) shows that Fraa is
purely inseparable ovek(F, G). Note thatg = v9" for somen e N, sog € R.



156 D. DAIGLE
SinceLo € L andk(zr) € K, we have a well defined map
(15) P(L/K) — P(Lo/k(z)), B+~ BnLg;

this map is surjective becausé/k(r) is an algebraic extension; it is injective because
L/Lo is purely inseparable; so (15) is bijective. It follows thle image ofP(L/K)\
{O} by that map is equal t&®(Lo/k(z)) \ {Oo}, and this implies that

(16) RN Lo = [ |®(Lo/k(x)) \ {Oo}).
As P(Lo/k(1)) \ {Oo} 2 Pin(Ro/k(z)), we get
(17) (N®(Lo/k() \ {Oo}) S [ Bin(Ro/k(1)) = Ro.

where Ry is the integral closure oRy in Lo. In view of diagram (13) and of the fact
that A is integrally closed in Frad, we see thalR, is a normal domain, s®, = Ry
and hence (by (16) and (178 N Lo € Ry. As g e R N Ly, we haveG = ¢(g) €
¢(Ro) = A = S'A. Multiplying G by a suitable element o8 = k[F] \ {0} gives
an elementG’ € A, and sincek(F, G’) = k(F, G), FracA is purely inseparable over
k(F, G’). So F is good, and this completes the proof of Theorem 1.10. ]

Before proving Theorem 1.11, we need a definition and a lenfe&. Notation 2.2
for the notation.

DerFINITION 3.1. We say that a function field in one varialif¢ E has property
() if:

(%) For any choice of distinct elemen€?;,0, € P(F/E), there exists
& € F\ E such that supp(dig) = {Oy, O,}.

We leave it to the reader to check thatAf= E® then F/E has property #£).

Lemma 3.2. Let k be an algebraically closed field and let & A = ki@ be a
generally rational polynomial in A. Then the function fidfdac(A)/k(F) has prop-

erty (x).

Proof. LetF be a generally rational polynomial &&. Then the facts established
in the proof that 1.5 (a) implies 1.5 (b) are valid here. Theation being as in that
proof, consider the two function fields in one varialillg/k(r) and L/K. SincelL =
K® by (11), L/K has property £). We noted in (10) and (15) thdt/Lg is purely
inseparable and that the m@L/K) — P(Lo/k(7)), O — O N Ly, is bijective. It
easily follows thatLo/k(t) has property £). In view of the isomorphisms of (13), we
conclude that the function field Fra&)/k(F) has property ). ]
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Proof of Theorem 1.11. LeF be a generally rational polynomial oA. Once
more, all facts established in the proof of 1.5 &) 1.5 (b) remain valid here. Let
W = FracA and A = S A where S = k[F] \ {0}.

Consider the finite seh = {A € k | F — A is not irreducible inA}. For eachi €
A, choose a prime factorization &f — A in A, F — X = H?;l Gi; where theG;_;
are pairwise relatively prime irreducible elements &f and wheree, ; > 0 for all
A, J. Note thatn, has the same meaning here as in the statement of the theorem.
Let G, = {Gs1,..., Gan} and G = |, G- Then the elements of are pairwise
relatively prime.

Note thatG C A*; let (G) be the subgroup afd* generated by and (F —A: A €
A) the subgroup ofG) generated byf{F — A | A € A}. Then(G) and (F —1: 1 € A)
are free abelian groups of rank§| = 3 ,., N, and |A| respectively. Letp: (G) —
A*/K(F)* be the compositiofGg) — A* 5 A*/k(F)* wherer is the canonical epi-
morphism. It is easy to see that each elementdéfhas the formaG for somea €
k(F)* and someG € A whereG is a product of elements @. So ¢ is surjective and
consequently the abelian grow* /k(F)* is finitely generated. Since, by (9) and (13),
k(F) is algebraically closed W, it follows in particular thatA4*/k(F)* is torsion-
free; soA*/k(F)* is a free abelian group of finite rank. We leave it to the reader
check that the kernel of is (F —A: L € A). So

1— (F—i:reA)— (G) S A*/K(F) — 1
is an exact sequence and it follows that the rankA6fk(F)* is |G| — |A], i.e.,

(18) A*/k(F)* is a free abelian group of rankZ(nx —1).
rek

Let Ry, ..., R_1 be the distinct dicriticals of, i.e.,

For eachi = 0,...,t —1, let v;: W* — Z be the valuation ofR. Since W/k(F)
has property £) by Lemma 3.2, we may choose, for eacke {1,...,t — 1}, an
element& of W \ k(F) satisfying supp(di¥;) = {Ro, R}. Note that& and & be-
long to () Piin(A/k(F)) = A, so& € A*. Let (&, ..., &-1) be the subgroup ofd*
generated by, ..., &_1 and letyr: (&1, ..., &_1) — A*/k(F)* be the composition

(&1, ..., & 1) — A* 5 A*/k(F)*. To complete the proof, it's enough to prove:

(€1, ..., &_1) is free of rankt — 1, y is injective and

(19) (A*/k(F)*)/im v is torsion.

Indeed, if this is true then the rank od*/k(F)* is equal tot — 1, so the desired
equality follows from (18).
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For eachi =1,...,t—1, letm; = v(§) € Z and note thaim; # 0. Also note
that vj (&) = O for all choices of elements# j of {1,...,t—1}.

Suppose thatkg, . .., k_1) € Z'1 is such that[ T2 & € kery. Then[]'_1&" €
k(F)*, so for eachj € {1,...,t —1} we have 0= v;([]'Z3 &%) = kjm;, sok; = 0.
This proves that&y, ..., &-_1) is free of rankt — 1 and thaty is injective.

Let u € A*. ChooseN > 0 so thatm; | v;(uN) for all i € {1,...,t—1} and define
(Ke, ..., k1) € 271 by mki = vi(uN) for all i e {1,...,t—1}; let & = Hf;llsi'“ € A*.
Then the elementiNé—2 of A* satisfiesy;(UNE™Y) =0 for alli € {1,...,t—1}. We also
have supp(divfNé=1)) € {Ry, ..., R_1}, becausaiNe~1 € A*. So supp(divgNE=1)) €
{Ro} and hence diw(Né~1) = 0. ConsequentlyuNe=1 e k(F)*, so 7(U)N = v (£).
This shows that.4*/k(F)*)/im v is torsion, which completes the proof of (19). The
theorem is proved. ]
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