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Abstract

(Co)associative submanifolds in G,-manifold with a freeSt or T2 action are
characterized by submanifolds in the quotient space. Usimgnethod, we construct
various examples of (co)associative submanifolds and tiims on G,-manifolds

with the T2-symmetry such as the cone of the lwasawa manifold.

1. Introduction

In 1996, Strominger, Yau and Zaslow [23] presented a comjecéxplaining mir-
ror symmetry of compact Calabi-Yau 3-folds in terms of dudkdiions by special
Lagrangian 3-tori, including singular fibers. In M-theorybréitions of coassociative
4-folds in compact manifolds witlG, holonomy are expected to play the same role
as special Lagrangian fibrations in Calabi-Yau manifolds [2] and [15].

In this paper, we focus on (co)associative submanifolds ®,amanifold Y with
a free St or T?-action. Since many known examples Gh-manifolds such as those
constructed by Bryant and Salamon [10] admf-actions which are free on the open
dense subsets, it is natural to consider the case v@ieor T2 acts onY. Then we
consider (co)associative submanifolds which are invanemler theSt or T2-action or
perpendicular toS' or T2-orbits and characterize them by submanifolds in the quo-
tient spaceY /St andY/T?2. These are described in Theorems 3.7 and 4.13, which are
our main theorems. Then using our characterization, wetaarisseveral examples of
(co)associative submanifolds and fibrations in many cases.

This paper is organized as follows. In Section 2, we reviea ftmdamental facts
of calibrated geometry an@, geometry.

In Section 3, we study the case wherGa-manifold Y admits a freeSt-action. It
is known that for any Calabi-Yau 3-fol13, M3x St admits a torsion-fre€, structure
and its (co)associative submanifolds can be constructaah fnolomorphic or special
Lagrangian submanifolds iivi® (Example 2.10). On the other hand, it is known ([4])
that for a torsion-freeG,-manifold Y with a free St-action the quotient spac¥/St
admits an SU(3)-structure (a generalized notion of a Ca¥hi structure). Note that
the torsion-free property of is not needed to define an SU(3)-structurefst. The
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G,-structure onY is recovered in terms of tensors ofyS' (Remark 3.6) and similar
to that in Example 2.10. As a generalization of Example 2\, can characterize
(co)associative submanifolds ¥ by submanifolds inY/S' (Theorem 3.7). We apply
the proof to the case whe¥ is a (sine) cone and obtain similar results. Bryant [7]
characterized associative conds. ¢-invariant associative 3-folds) iR’ using pseudo-
holomorphic curves irS® and studied them in detail via the theory of integrable sys-
tems. Theorem 3.7 is an analogue of this by consideringShaction instead of the
R.p-action.

Section 4 is the main section in this paper. We study the cdsenvan almost
G,-manifold Y admits a freeT2-action. As in Section 3, it is known that a torsion-
free G,-manifold and (co)associative submanifolds can be coc®dufrom a Calabi—
Yau 2-fold M? and its submanifolds (Example 2.11). Using the notion oftmmbment
maps [20], we see the following: there exists a smooth map/T? — R whose
fibers are almost hyperkahler 2-folds. In other wordgT? admits three almost CR-
structures satisfying the quaternionic relation.GA-structure is recovered in terms of
tensors onY /T2 (Remark 4.12) and similar to that in Example 2.11. As a gdizera
tion of Example 2.11, we can characterize (co)associatidenanifolds inY by sub-
manifolds inY /T2

In Section 5, we give examples of (co)associative submhtsifand fibrations in
G,-manifolds by using our method.

2. Preliminaries

2.1. Calibrated geometry. The notion of the calibration was introduced by
Harvey and Lawson [16]. This is a generalization of the Wgér inequality to the ef-
fect that any compact complex submanifold in a Kéhler maahifoinimizes its volume
in its homology class.

DEFINITION 2.1. Let (M, g) be anm-dimensional Riemannian manifold and
be a closedk-form on M (1 < k <m). Theng is called acalibration on M if for
every orienteck-dimensional subspacé C T,M, p € M, we havegp|y < voly.

Let N ¢ M be ak-dimensional oriented submanifold &fl. Then N is called a
calibrated submanifoldy-submanifold of M if we have ¢|y = voly.

By definition, a calibrated submanifold has the homolodjcatinimizing volume.
Calibrations are meaningful when they have many calibratgemanifolds. Assuming
that ¢ is invariant under the holonomy group HgJ( we can produce various cali-
brations that have many calibrated submanifolds. For iitgtawe have the following
calibrations and corresponding calibrated submanifolds.
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Hol(g) (<) U(m) SU(m) Gz
(M, g) Kahler Calabi-Yau Gy
@ w®/K! ReeV ¥ Q) @ e QB
(w: Kahler form) | (22: hol. volume form) (x¢ € Q%)

(p: Gp-structure)
p-submanifolds|| k-dim. complex special Lagrangian (co)associative
submanifolds submanifolds submanifolds

2.2. The holonomy groupGo,.
DEFINITION 2.2. Define a 3-formpg on R’ by

®0 = €123 + €1(€45 + €57) + &(€46 — E57) — €3(€47 + E56),

where €, ..., &) is the standard dual basis ® and wedge signs are omitted. The
stabilizer ofgg is the exceptional Lie groufs;:

G2 ={g € GL(7,R) | g"¢o = ¢o}.

This is a 14-dimensional compact simply-connected serpigirhie group.

The Lie groupG, also fixes the standard metrip = Zle el2 the orientation on
R’, and the 4-form

*p = €4567 + €23(€57 + €45) + €13(E57 — €46) — €12(E56 + €47).

Note thatpy and x¢g are related by the Hodge-operator. These tensors are uniquely
determined byyg via the relation

(2.1) 6do(v1, v2) VOlg, = i(v1)go A i(v2)go A @o,

where vo}, is a volume form ofgo, i(-) is an interior product, and; € T(R").

DEFINITION 2.3. LetY be a 7-dimensional oriented manifold apca 3-form on
Y. We call a 3-formyp € Q3(Y) a G-structureon Y if for each pointy € Y, there exists
an oriented isomorphism betwedpY andR’ identifying ¢y with ¢o. From (2.1), aG,-
structurey induces the Riemannian metrgcon Y, volume form onY and g € Q4(Y).

A triple (Y, ¢, g) is called aG,-manifold if Y is a 7-dimensional oriented mani-
fold, ¢ € Q3(Y) is a G,-structure onY and g is an associated metric. S,-manifold
(Y,¢,0) is called analmost G-manifoldif ¢ is closed:dg = 0. A G,-manifold (Y,¢,Q)
is called atorsion-free G-manifold if ¢ is closed and coclosedlp = 0, d x ¢ = 0.
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Lemma 2.4 ([14]). Let(Y,¢,0) be a G-manifold. TherHol(g) C G, if and only
if dp=d=x¢ =0.

Lemma 2.5 ([16]). Let (Y, ¢, g) be a G-manifold. Then for each point p Y
and every oriented k-dimensional subspadiad/‘l'pY (k = 3,4), we havep|y: < Vvolys,
x@|ya < volya. If (Y, @, g) is torsion-freg the G,-structure ¢ and its Hodge duakg
define calibrations on Y.

DEFINITION 2.6 ([16]). Let (Y,¢,9) be aG,-manifold. An oriented 3-dimensional
submanifoldL? is called anassociative submanifoldf Y if ¢| s = vol_s. An oriented 4-
dimensional submanifoltl* is called acoassociative submanifolof Y if x|+ = vola.

REMARK 2.7. If dp # 0 (resp.d x ¢ # 0), associative (resp. coassociative) sub-
manifolds need not have the homologically minimizing voum

Lemma 2.8 ([16]). Let (Y, ¢, g) be a G-manifold. A4-dimensional submanifold
L* is coassociative if and only if|t .« = 0.

2.3. Relations to Calabi-Yau manifolds. The only connected Lie subgroups of
G, which can be the holonomy group of a Riemannian metric on améasional
manifold are{1}, SU(2), SU(3) andG,. The inclusions SU(2), SU(3) G, imply that
we can make &,-manifold from a Calabi—Yau 2- or 3-fold with holonomy SU(@)
SU(3). Showing how to do this, we learn how to construct (ssaiative submanifolds
in each case.

DEFINITION 2.9. A quintuple M, h, J, w, Q) is called aCalabi-Yau m-foldif
e A quadruple M,h, J,w) is anm-dimensional Kéhler manifold with a Kéhler metric
h, a complex structurel, and an associated Kahler form
e Q is a nowhere vanishing holomorphim(0)-form on M.
o o"/m! = (—1)M™-D2(/_1/2)"Q A Q.
Then for anyé € R, Re(e—ﬁgsz) defines a calibration oM. A real orientedm-
dimensional submanifold oM is called aspecial Lagrangian submanifoldf M with
phaseeV=Y if it is a Rele¥~¥Q)-submanifold.

By definition, the following examples appear immediately.

EXAMPLE 2.10. Let (M, h, J, w, Q) be a Calabi-Yau 3-fold7 be a circleS* or
R and x be a coordinate off. Then {¥, ¢, g) := (Z x M, dXx A w + ReQ, dx? 4+ h) is
a torsion-freeG,-manifold with ¢ = w?/2 — dx A Im Q. Suppose that
e X is a holomorphic curve iV (i.e. ¥ is a w-submanifold),
e L.~ is a special Lagrangian submanifold bf with phaseeﬁ9,
e Sis a holomorphic surface iM (i.e. Sis a w?/2-submanifold).
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Then with an appropriate orientation,

7 x ¥ is an associative 3-fold irY,

I x L, 5 is a coassociative 4-fold i,

{x} x Ly is an associative 3-fold itY (x € 7),

{x} x Sis a coassociative 4-fold iV (x € 7).

Slgns of the phases of special Lagrangian submanifoldsndiepe the orientation.

e

EXAMPLE 2.11. Let M, h, J, w, Q) be a Calabi-Yau 2-fold andx{, X, x3) be
a coordinate orZ®. ThenY = Z3 x M is a torsion-freeG,-manifold with a 3-formg
and a metricg defined by

p=dxgAdxo AdXs +dxg Aw+dxo AReQ —dxz A Im Q,

g=dxX +dxs+dx3 +h,
2
>|<<p=%—|—dx2/\dx3/\a)—dx1/\dx3/\ReQ—dxl/\dxz/\ImQ.

Since SU(2)= Sp(1), a Calabi-Yau 2-foldM is hyperkéhler. So we have complex
structuresJy, Ji, J» on M satisfying JpJ1J, = —idr associated witth and Im,
o, ReQ, respectively. Forxy, xz, X3) € Z°3, me M, if

e O CZis an open interval andJy C M is an open set (i.,eUy is a w?/2-
submanifold),

e 3 is a Ji-holomorphic curve (i.e.Xp is an ImQ-submanifold, ¥; is a
w-submanifold andX, is a ReQ2-submanifold),

then with an appropriate orientation,

72 x (O x {m}) is an associative 3-fold Y.

T2 x ({Xa} x o) is a coassociative 4-fold il.

T x {X2} x ({x3} x ;) is an associative 3-fold itY.

T x {Xz} x (O x £,) is a coassociative 4-fold iiY.

{(X1, X2)} x (O x Xp) is an associative 3-fold iry.

{(X1, X2)} x ({X3} x Upn) is a coassociative 4-fold ilY.

oukrwhpE

In next sections we generalize Examples 2.10, 2.1Giemanifolds on whichSt
or T2 acts freely.

3. S reduction of G,-manifolds

3.1. Calibrated submanifolds in theS' quotient spaces. Let (Y,@,§) be aG,-
manifold and suppose tha&8' acts freely onY preserving theG,-structure. In this
section, we discuss calibrated submanifoldsvifnvariant under theS'-action in terms
of submanifolds inY /St

From [4], we know that the quotient spa¥e'S' admits an SU(3)-structure, a re-
duction of the total coframe bundle to an SU(3)-bundle. Iaigeneralization of the
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Calabi-Yau structure (that is, the torsion-free SU(3)atire). We define an SU(3)-
structure in terms of tensors here.

DEFINITION 3.1 ([11], [12]). A quintuple ¢, J, o, ¥*) on a real 6-dimensional
manifold N is called an SU(3¥tructureif
e A guadruple {, g, J,0) is an almost Hermitian manifold with a Hermitian metric
g, an almost complex structurg and an associated Kahler foren
e Yt e Q3%(N) are 3-forms onN with norms ||y*| = 2 satisfying v~ =
Yrd-,Jd-,3-)and ¥ =yt + /=1y~ is a (3, 0)-form w.r.t.J.

REMARK 3.2. The formsy* andy~ are (3,0)- and (0, 3)-forms with respect to
J so thaty*(J-, J-, -) = —y*. These forms are subject to the following compati-
bility relations:

oAyt =0, 1/f+/\1/f—:§a3.

The former is equivalent to saying thatis a (1, 1)-form with respect td. The latter
is equivalent too3/3! = (—1)3C-D/2(\/=1/2)*W A W. Therefore ifo is closed,J is
integrable, andV is a holomorphic (3, 0)-form, then the SU(3)-structure is aaBi—
Yau structure.

REMARK 3.3. For anyd € R, p e N and oriented 3-dimensional subspa¢eC
ToN, we have RefV=¥w)|, < voly. As in the Calabi-Yau case, an oriented
3-dimensional submanifold ¢ N is called aspecial Lagrangian submanifoldf N
with phaseeY=Y if Re(e™Y-Yw)|, = vol, .

Proposition 3.4 ([4]Y). Let (Y, , §) be a G-manifold and suppose that! Sicts
freely on Y preserving the fstructure. Then YS' admits an SU(3)structure

(g! le 71, Wi)

REMARK 3.5. The torsion-free property of assumed in [4] is not needed to
define an SU(3)-structure ovi/S'. If Y is torsion-free,Y /St admits symplectic struc-
ture. For a Kahler manifoldN of real dimension 6, the conditions are given in [4] to
be N = Y/S! for some torsion-fre€s,-manifold Y with a free St-action.

The tensors defining an SU(3)-structure ¥pSt can be described as follows: Let
X; € X(Y) be a vector field generated by ti®-action, and letr;: Y — Y/S! be the

1An SU(3)-structure orY/S* introduced in [4] seems to be different from ours. In fact, &my
SU(3)-structure d, J, o, ¥*) and any positive smooth functiart Y/St — R.o, (¢, 3/, 0/, ¥ 1) :=
(r?g, J,r%0,r3y ) also defines an SU(3)-structure ¥S*. So we can define the SU(3)-structure on
Y/St as above.
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projection. Define a functiofy, = (X3, X})Y/2 € C>(Y), a I-formij, = §(-,1?X}) €
QYY), a 2-forméy = i(X$)¢ € Q3(Y) and a 3-form¥— = —i (X})(x¢) € Q3(Y).

The 1-form#; is a connection 1-form ofr1: Y — Y/S! since #j; is St-invariant
and satisfies);(X;) = 1. The tensord;, 41, U~ induce a functiont; € C*(Y/Sh), a
2-form o1 € Q3(Y/SY) and a 3-form¥~ € Q3(Y/SY). Then
e g = (m).0, the pushforward ofj,

[] 71 = '[10'1,

e J;: an almost complex structure satisfyiggJ; -, -) = 11,
e YT =1V,

o Yr=—y (-, h )=y (-, -, ).

REMARK 3.6. We can recover the metricand theG,-structurep on'Y as follows:
g =79+ %0 ® i,
o =tlnAnin+aiyT,
.1 o1~ -
*Q = Enfrlz — Ay,

These descriptions generalize Example 2.10. In fact, ala@irstatement holds for
(co)associative submanifolds ¥ invariant under theSt-action.

Theorem 3.7. Let(Y,$,d) be a G-manifold with a free Saction preserving the
G,-structure. Letry: Y — Y/St be the natural projection. Byroposition 3.4Y/St
admits anSU(3)structure (g, Ji, 1, ).

If L C Y is an oriented k-dimensional submanifold invariant untter S-action
then with respect to an appropriate orientation the follogiproperties hold
1. L cY is an associative-fold if and only ifr1(L%,) c Y/S' is a J-holomorphic
curve (i.e. T(r1(LY)) is Ji-invariant).

2. L% C Y is a coassociativel-fold if and only if 71(LE) € Y/S' is a special
Lagrangian submanifold with phase+/—1.

If LI?) C Y is an oriented k-dimensional submanifold perpendicutathie S-orbits
(k = 3,4), then with respect to an appropriate orientation the followiproperties hold
3. L% C Y is an associativ8&-fold if and only ifnl(L%) c Y/St is a special Lagrang-
ian submanifold with phasé.

4. L} CY is a coassociativé-fold if and only ifz1(L}) C Y/S' is a J-holomorphic
surface.

Corollary 3.8. There is a one to one correspondence betwekinriant asso-
ciative 3-folds (resp. S-invariant coassociativé-folds) in Y and J-holomorphic curves
(resp. special Lagrangian submanifolds with phass¢/—1) in Y/S.
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REMARK 3.9. It is known that there is one to one correspondence leehagso-
ciative cones R.g-invariant associative 3-folds) iR’ and pseudoholomorphic curves
in S® (cf. [7]). The standardR.o-action onR’ preserves theG,-structure onR’ up
to constant. Considering th&'-action instead of th&®_-action, we can regard Corol-
lary 3.8 as an analogue of this fact.

It is known that 4-dimensional almost complex manifolds fibeated locally by
pseudoholomorphic discs (cf. [3]). From 1 of Theorem 3.7,sge the following.

Corollary 3.10. A G,-manifold with a free Saction which preserves the /S
structure is locally fibrated by ‘Sinvariant associative3-folds.

REMARK 3.11 (Relations to evolution equations). Consider the caseof
Theorem 3.7. Let: ¥ — Y/S' be a smooth immersion of a surfage Let (U, (s,t))
be a local conformal coordinate af. Then from the local triviality ofz;: Y — Y/S!,
there exists a local liffy: U — Y of y on a small open sd C ¥ which is transverse
to S'-orbits.

The differential equation of);-holomorphic curve isdy/ds + J; dy/dt = 0. By
the definition of J;, this equation can be described as

9s el 1xzy) ot '
So the differential equation of;-holomorphic curve is considered as the special

case of the evolution equations in [17], [18]. Lotay [17]8]Xonstructed examples of
(co)associative submanifolds R’ by evolution equations.

Proof of Theorem 3.7. The proof is implied from Example 2.FX one of the
orientations of submanifolds. The same proof is valid footaer orientation.

Proof of 1. Take any € L~°s’1 and choose an arbitrary oriented orthonormal basis
{t(X})x, 01, D2} Of TXLgl. Then {v1, v2} = {7101, m1.02} iS an oriented orthonormal
basis 0f T, (r1(LY,)). ThusL, is associative if and only ip(f1(X})x, ¥1,72) = 1. By
Remark 3.6, this condition is equivalent ¢§¢J;v1,v2) = 1, and hence, = J,v; follows
from the Cauchy—Schwarz inequality. S’dnl(Lgl)) is Jy-invariant andnl(Lgl) is a
J:-holomorphic curve.

Proof of 2. Take any € L¢, and choose an arbitrary oriented orthonormal basis
{E1(X)x, D1, U2, U3} Of TyLE and vy = w10 € Try(m(L)). ThenL?, is coassociative
if and only if x@(f.(X})x, U1, U2, U3) = 1. This is equivalent to-y ~(vy, v, v3) = 1.
Namely, nl(L‘g) Cc Y/Stis a special Lagrangian submanifold with phas¢’—1. Note
that for another orientation df,, we see thatry(Lg,) C Y/S' is a special Lagrangian
submanifold with phase/—1.
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Proof of 3. Take any € L% and choose an arbitrary oriented orthonormal basis
{01,02,03} of TyL3 and v = 1.3 € Tryx(ra(L3)). By definition, we haveijs (i) = 0.
Then L% is associative if and only if@(v;, U2, 93) = 1. This is equivalent to
Yt (vy, v2, v3) = 1.

Proof of 4. We follow the proof of the Wirtinger inequality ifb]. Similarly
to the former proof, we seé is coassociative if and only ifr12/2|T71(x)(,,1(Lé)) =
V0|r,1(x)(n1(Lg)) for any x € L?)' By the spectral decomposition of the skew-symmetric
2-form wifr, w4y, We know that there exists an oriented orthonormal basis
{wi, wo, wz, wa} C Tm(x)(ﬂ]_(L?J)) and its dual baSiS{Ol]_, o, a3, 0tg} C T7:1(X)(ﬂ1(l‘é))
satisfying

1T, o (ma(Ls) = A1 A o2 + Aoorg A ag

for somel; € R. Then ‘L’12/2|-|-”1(x)(ﬂ1(|_%)) = AAoog A2 A3 A dg = Ao VO|-[71(X)(711(L;1)))
follows. On the other hand) = t1(wqi_1, wy) = g(Jiwsi_1, wy) < 1 holds by the
Cauchy—-Schwarz inequality, where the equality holds if anly if wy = Jywy_1.
Since T12/2|T_71(x)(m(L‘,§)) = VOlr,  (r(Ls)), We havery = A, = 1. This implies that
T(nl(L‘F‘))) is Ji-invariant and hencarl(L‘,‘J) is a J;-holomorphic surface. ]

3.2. Application to cones and sine cones.The similar statement holds when a
G,-manifold is a (sine) cone. First, we introduce the notiomeérly Kéhler manifolds.

DEFINITION 3.12 ([11], [12], [24]). Let §,J,0,¥*) be an SU(3)-structure on a
6-dimensional manifoldN. An SU(3)-structure satisfyingo = 3y+ anddy~ = —202
is callednearly Kahler

REMARK 3.13 ([24}). Let (N, g, J) be a 6-dimensional almost Hermitian mani-
fold. Then the following are equivalent:
e N admits a nearly Kahler structure,
o (VxJ)X =0 for every vector fieldX on N and VxJ # 0 for every 0# X € TN,
whereV is the Levi-Civita connection of.

Lemma 3.14 ([12], [24]). Let(N,g,J,0,¥*) be a nearly Kahler manifold. Then
C(N) = N xR, admits a torsion-free @structure defined by

g=dr2+r%g, g=r?draoc+ri3y*t = %d(rs‘a),

1 1
*@ =13y~ Adr + Er“a2 =7 dréy ).

10ur definition of nearly Kahler manifolds corresponds tot thé “strictly” nearly K&hler ones
in [24].
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The metric is just the cone metric c@(N). Thus nearly Kahler manifolds are
analogue of Sasakian manifolds whose cones are Kéahler ofdsif

Lemma 3.15([6]). Let (N, g, J, o, ¥*) be a nearly Kahler manifold. Then
Cs(N) = Nx(0,7) (a sine cone of Nadmits a nearly parallel G-structure(g,§) with

g = dt? + sirf tg,
¢ =sirftdt Ao + cost sin*tyt —sintty~,

1 . .
*p = > sinto? + sin*t costy ™ Adt —sinftdt A ¥ .
Here a G,-manifold (Y, ¢, §) is said to benearly parallelif dp =4 @, dx @ = 0.

REMARK 3.16. SinceC(N) is a torsion-freeG,-manifold, C(Cs(N)) = RxC(N)
admits a torsion-free Spin(7)-structure. The nearly palrab,-structure onCs(N) is
induced from the torsion-free Spin(7)-structure G(Cs(N)).

REMARK 3.17 ([19]). There are no coassociative submanifolds of alyear-
allel G,-manifold.

Proof. If L is a coassociative submanifold of a nearly paral&-manifold
(Y, ¢, ), then | = 0, which implies that 4 ¢ = d@|_ = 0. This contradicts the
assumption that. is coassociative. L]

We can prove the results similar to Theorem 3.7 as follows.

Proposition 3.18. Let (N, g, J, o, ¥*) be a nearly Kahler manifold. From
Lemma 3.14the cone GN) = N xR., admits a torsion-free @structure. If LK ¢ N
is an oriented k-dimensional submanifdld = 2, 3, 4) and r € R, then with respect
to an appropriate orientation the following properties Hol
1. C(L?) = L% x R.p C C(N) is an associative3-fold if and only if L? is a
J-holomorphic curve.

2. C(L® =L3xR.gC C(N) is a coassociativel-fold if and only if L® is a special
Lagrangian submanifold with phase/—1.

3. L3x{r} CY is an associative-fold if and only if L3 is a special Lagrangian
submanifold with phasé,

4. L*x({r} CY is a coassociativé-fold if and only if L* is a J-holomorphic surface.

Proposition 3.19. Let (N, g, J, o, ¥*) be a nearly Kahler manifold. From
Lemma 3.15,the sine cone gN) = N x (0, ) admits a nearly parallel G struc-
ture. If LY ¢ N be an oriented k-dimensional submanif@id= 2, 3) and t € (0, 7),
then with respect to an appropriate orientation the follogriiproperties hold
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1. Cs(L?) = L? x (0, ) C Cs(N) is an associative3-fold if and only if ? is a
J-holomorphic curve

2. L3x{n/2} C C4(N) is an associative-fold if and only if L® is a special Lagrang-
ian submanifold with phase:v/—1.

REMARK 3.20. If L3 x {t} c Cs(N) is associative for somee (0, ), we have
t=m/2.

Proof. Suppose that® x {t} ¢ Cs(N) is associative for some € (0, 7). Then
we easily see that|.: = 0, ImEeEY X(y* + V=1 ))|.: = 0, and RegtY Lt(y+ +
V=1¥))|s = vol s, which imply thaty | s = (1/3)do|s = 0, cost - | s = 0.
Hence ift # /2, we have ¢ * + v/—1y)|.s = 0, which is a contradiction.  []

4. T2 reduction of almost G,-manifolds

Let (Y, @, §) be an almostG,-manifold on which a 2-torusT? acts preserving
the G,-structure. As in the former section, we discuss the gegmefrthe quotient
space ¥ /T?".

4.1. Multi-moment maps and reduced spaces.We use a notion of the multi-
moment map introduced by Madsen and Swann [20], which is argkzegion of the
moment map in symplectic geometry.

DEFINITION 4.1. Let (Y, @, §) be an almosG,-manifold on which a 2-torug?
acts preserving th&,-structure. Fix vector fieldX?, X3 € X(Y) generated by a basis
{X1, X5} of the Lie algebrat® of T2. A TZinvariant functioni: Y — R is called a
multi-moment magor the T2-action if we have

POXE, X3, ) = db.

The multi-moment map is defined for any Lie gro@®in [20]. We focus here on
the caseG = T2. There are results on the existence for the multi-moment, mdach
correspond to those of the moment map in symplectic geometry

Proposition 4.2 ([20]). The multi-moment map for a®Taction exists if either of
the following conditions holds
e by(Y) =0, where RB(Y) is the first Betti number of Y.
e ¢ =dik with a 2-form i € Q3(Y) preserved by the Faction.

Proposition 4.3. For y € Y, the following conditions are equivalent
e (db)y=0.
e (X?)y and (X3)y are linearly dependent.
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e dim(T2-orbit through y) < 2.

Madsen and Swann [20] considered E“reduction” of a torsion-frees,-manifold
and show that the reduced space admits a “coherently trpgatic” structure, which
consists of three symplectic structures satisfying soma&litions, but not necessarily
satisfy the hyperkahler relation as follows: We can show tiealuced space admits
three 2-forms which are not necessarily closed, but satisfyhyperkahler relation.

Proposition 4.4. Let (Y, @, §) be an almost G-manifold on which a-torus T2
acts preserving the gstructure. Suppose that there exists a multi-moment map —
R, and that T2 acts freely onb—*(«) for a regular valuex of i. Then M := 7~ («)/T?2
(a T?-reductionof Y at levelx) is a smoottd-manifold.

On the reduced space Mthere exists a metric ,ginduced fromg. Define three
nondegenerat®@-forms 7o 4, T14, 20 € Q?(M,) as those induced fror@-forms 7y =
—i (X3 (X¥)*x@, 71 =i (X))@, T2 =1(X3)p € Q(Y), respectively. Heré X5, X3’} are
orthonormal vector fields on Y obtained frofiX;, X5} via the Gram—-Schmidt process.
If Ji, is an almost complex structure associated Wﬂ'\ and i, (0<i < 2), then
we have o
e A quintuple (Mg, Joo, e Do, g_a) is an almost hyperkéhler manifgld
(i.e. byhode =—idr Ma_an@ is Hermitian w.r.t. each i)
¢ Tw=0«(Ja-, ) foro<i=<2 o

The proof is given by a local argument, which follows from thext lemma.

Lemma 4.5. Choose any ¥ Y, where(X}), and (X3), are linearly independent.
Let {E;}1<i<7 be the standard basis &’ and {g }1<i<7 be its dual.

Since G acts transitively on the Grassmannian of orien@glanes inR’ [8] and
by the definition of G-structurg there exists an oriented isomorphism betwegY T
and R7 identifying @y, (X})y, (X3)y and ¢o, E1, Ep, respectively. Via this identifica-
tion, we see the following
e dv = (1/h)es,
o TM, = spar{E4, Es, Eg, E7},
¢ O = Zi7=4(a )%,
® To =656t €47, T1 = €3+ €45+ €67, T2 = —€13 + €45 — Es57,
® Toq = €56+ €47, Toa = €45+ €7, T2 = €46 — 657,
where 1/h = [ X3 A X3[| = VIIXFI2IX5012 — 9(X;, X3)2. With respect to{ E4, Es,
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Ee, E7}, we can express

JO,ot = y ‘Jl,ot = ,

Proof. We can denot&X; = aXf, X3 = bX; + cX3, where Ya = | X;||, b=
—ahg(X], X3), c = h/a. Then we may consideX] = (1/a)E1, X5 = (a/h)E; —
(b/h)E;. Hencedv = @(X7, X3, -) = (1/h)@o(E1, E2, -) = (1/h)es. Other formulas
follow similarly. O

4.2. Coassociative submanifolds in the reduced spaceln this subsection, we
consider coassociative submanifolds in alm@stmanifolds using the multi-moment
map and the reduced space.

Lemma 4.6. Let (Y, @, §) be an almost G-manifold with a -action on Y pre-
serving the G-structure. Suppose that there exists a multi-moment may — R
for the T?-action. Then for every connected-ihvariant coassociativel-fold L, there
existsae € R satisfying

L c 7 Ha).

Proof. SinceL is TZ2-invariant, for anyp € L, (X3)ps (X3)p € TpL. Moreover, L
is a coassociative 4-fold if and only @#|_. = 0. Then

dvlr,L = o((X1)p, (X3)p, )l1,L = 0.
Sodv|t. = 0 and this implies the lemma becaukeis connected. O

Theorem 4.7. Let (Y, ¢) be an almost G-manifold with a T-action preserving
the Gy-structure. Suppose that there exists a multi-moment inap — R for the T2-
action and that for a regular value of 9, T2 acts freely onv (). Letmpq: V() —

7 Ya)/T? = M, be the projection. ByProposition 4.4,M, admits an almost hyper-
kahler structure(Jo o, J14s J20, g_a).

Then for an oriented2-dimensional submanifolds c M., the following are
equivalent
1. m;X(T) is a T2invariant coassociativel-fold of Y,

2. Tals =T2alz =0,
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3. X is a be-holomorphic curve.

Proof. First, we prove the equivalence of 1 and 2. Take any nz—;(z) and
choose an arbitrary basif(X})x, (X3 )x, U1, U2} of Ty(m,2(2)). Then {vy, vp} =
{72401, T2, U2} is @ basis ofT,,, ) E. Sow;L() is coassociative if and only if

di(@) = ¢(X{, X3, %) =0 (i =1,2), @(X], v, 32)=0 (j=1,2).

The first condition is always satisfied sinngoll(z) C (). The second condition is
equivalent tor; ,(v1, v2) = 0. This implies the equivalence of 1 and 2.

Next, we prove the equivalence of 2 and 3.

Take anyp € ¥ and choose any orthonormal basig, v2} of TpX. We can take
{v1, Joov1, o1, 2201} @S an orthonormal basis 3hbM,. Then the statement 3 holds
if and only if 7o (v1, v2) = Gu(Ikav1, v2) = 0 (k = 1, 2), which is equivalent ta, =
+Jo V1, nameITE is a Joya-hoﬁnorphic curve. O

Corollary 4.8. As in Corollary 3.10,we see thab—(x) (C Y) is locally fibrated
by T2-invariant coassociativel-folds from Theorem 4.7

4.3. Calibrated submanifolds in the T? quotient spaces. Let (Y, @, §) be an
almost G,-manifold on whichT? acts freely preserving th&,-structure. Consider the
quotient spacer/T2. As in the S' case (Theorem 3.7), we see the relation between
submanifolds ofY and Y/T?2. First, we introduce the generalized notion of “pseudo-
holomorphic curves” from [9].

DEFINITION 4.9. An almost CR-structureon a smooth manifoldV is a sub-
bundle E ¢ TM of even rank equipped with a bundle mdp E — E of J? = —id.
A (real) submanifoldS C M is said to beE-holomorphicor CR J-holomorphicif
TSC E|s and T Sis J-invariant. An almost CR structureE( J) is said to be aCR
structureif the Nijenhuis tensor of] vanishes.

Proposition 4.10. Let (Y, ¢, §) be an almost G-manifold with a free F-action
preserving the G-structure. Letry: Y — Y/T? be the natural projection. Suppose that
there exists a multi-moment map Y — R for the T2-action. Letv: Y/T?2 — R be a
map induced frond and put Q= ker(dv) c T(Y/T?).

Then there exist bundle maps: D — Q (i =0, 1, 2) satisfying dJ1J, = —idg
and each(Q, Jj) is an involutive almost CR-structure on/Y2,

Proof. Since theT ?-action is free,d? # 0 holds everywhere and sQ = kerdy
is a rank 4 involutive subbundle. For an arbitrary paine Y/T?, we see

Qq = Ta(@*(1(a))) = Ta(My@)-
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From Proposition 4.4, we can define an almost complex streiciu on Q by
(J)g = Jin@- Thus we see thatQ, J) is an almost CR-structure ov/T2. ]

DecomposeT? = S} x S}, and suppose th&'-action generates the vector field
X¢. Letm:Y = Y/Sh m21: Y/SE— Y/T? andm2: Y — Y/T? be the projections

]
satisfying, = mp 10 mp. |If tensors on Y induces tensors oN/S} and Y/T?, we

denote these by on Y/S! and¢ on Y/T?, respectively.

REMARK 4.11 (Relations betweeB' and T2 reductions). By Propositions 3.4
and 4.10, we see that there exists an SU(3)-structyrd (1, *) on Y/S! and almost

CR structures @ = kerdy, J;) on Y/T? (i =0, 1, 2). Define 1—forms§i’ = g(X;", ) e
Q%(Y) (i =1, 2) and 2-formsg; = g(Ji-, -) € Q¥(Y/T?) (i =0, 1, 2). Then we have
g=m5,9+6;,®6,,
71 = 7471 + h6; A 75 4dy,
(m2,1)x © J1 = Jy 0 (2,1)« + h - gradp) ® 65,
1ﬁ+ = T[ék,l(hdk A E)!
Y™ = my4(hdv A 7).
REMARK 4.12. As in theS! case, we can recover th@&,-structure onY. In the
pointwise coordinate of Lemma 4.8; = e;, 6; = &. Then
§=072+07+m30,

=0, A0, Amy(hdy) + 0; A sty + 05 Aty — mry(h dv A 1),

*

1 _ _ o
¢ = 5m3to+ 0 Am(hdv) Az = Ay (h dv) A iz, — 01 A Oy A i,

Proof of Remark 4.11. Choose an arbitrary pojne Y and a pointwise coordi-
nate as in Lemma 4.5. Then= 3 ,9+6;®0; = Y ,&, 11 =n} ;11 +hoyAn; dv =
&3+es5+6s7, ¥ =75 (hdvAoo) = es(ese+€47), ¥~ = 75, (hdv Aa2) = €3(es6—€s57)
follow. With respect to{E,, Es, E4, Es, Eg, E7}, we have

Comparing with Lemma 4.5, we obtain the equations desired. ]



108 K. KAWAI

Theorem 4.13. Let (Y,®,§) be an almost G-manifold with a free F-action pre-
serving the G-structure. Letm,: Y — Y/T? be the projection. Suppose that there
exists a multi-moment majp Y — R for the T?-action. Lety: Y/T? — R be the map
induced fromi By Proposition 4.10there exist almost CR-structurg¢® = ker(dv), J)

(i =0,1,2)on Y/T? satisfying dhJ, = —idg.

Decomposing ¥= S x S, let r1: Y — Y/S}, 721: Y/SI > Y/T?2 and 72: Y —

Y /T2 be the projections satisfying, = 75 107m;. Then fromPropositions 3.4ind 4.10,
we see that there exists &1J(3)structure (g, J, 71, ¥*) on Y/S and CR structures
(Q = kerdy, J) with induced2-formsz on Y/T2? (i =0, 1, 2)

If L#z CY is an oriented k-dimensional submanifold invariant unther T2-action
(k = 3,4), then with respect to an appropriate orientation the follogiproperties hold
1. L3, CY is an associative-fold if and only if 75(L3,) C Y/T? is contained in
the integral curve ofgrad@),

2. L%, C Y is a coassociativel-fold if and only if 7(L3,) C Y/T? is a CR -
holomorphic curve.

If Lk%l’p C Y is an oriented k-dimensional submanifold invariant undee S-
action with 02(T L'%1 )=0 (éé is defined in Remark.11) k = 3, 4), then with respect
to an appropriate orientation the following properties tol
3. L%,p C Y is an associative-fold if and only if 7o (L3 %o

holomorphic curve

4, L‘é} C Y is a coassociativel-fold if and only if for eacha € R, nz(L‘é} p) N

v @) C Y/T? is either an empty set or a CR 2-Biolomorphic curve and

grad)| (L glp) is tangent tOnz(LS} ).
If Lk p C Y is an oriented k-dimensional submanifold perpendicutaiTe-orbits
(k =3, 4) then with respect to an appropriate orientation the followiproperties hold
5. L%,p C Y is an associativ8-fold if and only if for eachx € R, nz(L%’ p)ﬂg_l(a) C
Y /T2 is either an empty set or a CRy-Bolomorphic curve witrgrad(g)|n2(,_%,p) tangent
to 7'[2(Lp p)
6. Lp, CY is a coassociativé-fold if and only if 7(LY ;) € Y/T? is a CR _§-
holomorphic surface.

) CY/T?is a CR J-

REMARK 4.14. This theorem is a generalization of Example 2T3-orbits and
the “v-direction” correspond t@? and xz-direction in Example 2.11, respectively.

Corollary 4.15. |If L%Vp C Y is an associative3-fold, then for anye € R sat-
isfying 72(L3 ) N v He) # ¢, w5t (ma(L3 ) N v He) = 75t (ma(L ) N0 Ha) =
T2.L3 , N Ya) is a T>invariant coassociativel-fold of Y.

Corollary 4.16. There is one to one correspondence betweérinVariant asso-
ciative 3-folds (resp. T-invariant coassociative4-folds) in Y and 1-dimensional
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submanifolds of the integral curve gfadf) (resp. CR ¢-holomorphic curvesin Y/T2.

REMARK 4.17 (Relations to evolution equations). Consider the ca®e of
Theorem 4.13. Ley: ¥ — Y /T2 be a smooth immersion of a surfageand U, (s,t))

be a local conformal coordinate af. Then from the local triviality ofry: Y — Y/T?,
there exists a local liff’: U — Y of y on a small open s C T which is transverse
to T2-orbits.

The differential equation ofl,-holomorphic curve i)y /ds + Jo dy /ot = 0. By
the definition of Jo, this equation can be described as B B

(83_);) (+@)abed X (X3 )b( ot )nge.

Thus the differential equation ak-holomorphic curve is considered as the special case
of the evolution equations in [17], [18]. Lotay [17], [18] mstructed examples of
(co)associative submanifolds IR’ by evolution equations.

Proof of Theorem 4.13. We fix one of the orientations of subifolds. The same
proof is valid for another orientation.

Proof of 1. Take anyp € L%z and choose an oriented orthonormal basis
{(X)p, (X3)p, 0} Of ToL3,. Thenv = m2.(D) is a basis ofTy,p)(r2(L3,)). Now, L3,
is associative if and only i((X})p, (X3)p, ¥) = 1. By Remark 4.12, this condition
is equivalent toh dv(v) = 1, which implies thatnz(Lﬁz) is contained in the integral
curve of grady).

The claim 2 follows from Theorem 4.7.

Proof of 3. By Theorem 3. 7L3 » C Y is associative if and only |f11( . p) is

a J;-holomorphic curve. By Remark 4 11, we see that this is edeit to saying that
m(L gllp) is a CR Ji-holomorphic curve. Actually, ifry(L3 %p ) is a J;-holomorphic

curve, then it follows that
A(m2)(TLY ) = ((r22). 91— h-gradf) ® 63} (m1): (TLY; ) = (m2)(TLY ).

Thus mp(L%, ) is a CR Ji-holomorphic curve. Conversely, ifrz(L3 o) is a CR J-

Sp
holomorphic curve, we obtairw 1), (J (1) (T L3S’ll )) = (72,0« ((7r1) (T L3 )) On
the other hand, sincez(L3Sll ) is a CR J-holomorphic curve, we see

dy((m2) (T L‘Qéip)) =0.
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This is equivalent tog((my)s (T L3Sll ), grad¢)) = 0. Sinceg is Hermitian, we have
g( ()« (T L3 ) Ji(gradg))) = 0.
Using a pomtwise coordinate of Lemma 4.5, we sge- , Ji(grad@))) =
(=1/h)6;. Hence we havé((rr1).(T L3Sll )) = 05(In(r) (T L%l )) = 0, which means
that (r1). (T L3 ) and Ji(r).(TLY ) are horizontal. ThenJy(my).(TL

shp
()« (TL % p) and so:rl(L3Sll p) is a J;-holomorphic curve.

?éi,p) o

Proof of 4. Suppose thair.‘;i , C Y is coassociative amzlrz(L‘éll p) N v~ a) #

4 T o _
¢. By Theorem 3.7.L 1o 1S coassociative if and only ity |m(L‘;}|p) = volnl(l_%‘p)
which is equivalent toj:hdg/\@m(%p) Lgl p
Fix an arbitrary pointq € yrz(L‘éi p) N v~(@) and choose an oriented orthonor-

= vol ( ) by Remark 4.11.

mal basis{vi, va} C Tq(nz(L‘%l’p) N v(a)). There existsv; € TQ(WZ(L‘%,;J)) with
dv(v3) # 0. Via the Gram—Schmidt process, we have an orthonormas basiz,vs} C
Tq(?TQ(Léllyp)). Then we have

£hdy(vs) - 7(v1, v2) = 1.

Since|hdv(vs)| < 1 and|r(v1,v2)] <1 hold, we obtainhdv(vs)| = 1 and|z(v1,v2)| =
1, respectively. The first equation implies that= h-gradg), and grad_{4)|L41 is tan-
3 %

gent toL%, o In the same way as the proof of 1 in Theorem 3.7, the secondtiequ

implies thatyrz(L‘;Ll ) Nv}(a) is a CR J,-holomorphic curve.
Conversely, fixingg € zrl(L‘é11 ), take {v1, v = Jov1,v3 = h-gradg)} as an ortho-
normal basis Oﬂ—nzvl(q)(ﬂg( )) where vy, vp € Ty, g (m2(LE %0 ) N v Y (u(r2,1(a)))).
Define {vy, vp, v3} C Tq(Y/Sl) as horizontal lifts of{vy, va, vs} by 65.
Then{vq,v»,v3} is an orthonormal basis qu(nl(Lé} )) satisfyingy (v, v2,v3) =
+1. From Theorem 3.7, we see tHatglyp is coassociative.

Proof of 5. Suppose that? ; is associative andra(L3 ;) N v (@) # ¢. Since
6; |L%,p =0 ( =1, 2), we see from Remark 4.127;(h dg/\zo)h_%p = voILspyp.

Fix an arbitrary pointy € L?E),p and choose an oriented orthonormal bdsigv,} C
Ty(L3 , N0 Ha)). There existsi; € Ty (L3 ,) with di(v3) # 0. Via the Gram—Schmidt
process, we have an orthonormal bgsis v,,v3} C Ty(L?F;Y p). If we definev; = ma.(vi),
we have—h dv(v3) - 7o(v1, v2) = 1.

Similarly to_theTaroof of 4, we see that grg{jrz(Lspyp) is tangent tonz(Lf;’ p)- Thus

”Z(L?a, 0) Nv~a)is a CR Jo-holomorphic curve. The converse follows similarly to the
proof of 4.
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Proof of 6. Suppose thai‘,‘,vp is associative. Sincé; ILg,p =0 ( =1,2), we see
from Remark 4.12, (A2)10|7,2(L%‘p) = volﬂz(Lélp). We can prove 6 as in the proof of 4
in Theorem 3.7. L]

5. Examples

Basic examples of calibrated submanifolds are given in Bptem2.10, 2.11. We
provide more examples on (sine) cones &rfdbundles by using our method.

5.1. Examples of nearly Kahler manifolds.

ExampPLE 5.1 ([21]). Let (N, g, J) be a real 6-dimensional Kahler manifold and
(B,h) an even dimensional Riemannian manifold. Suppose that tidsts a Riemann-
ian submersion with totally geodesic fibers

@ : (N, g) — (B, h).

Let TN = V@ be the corresponding splitting dfN, whereV is a vertical subbundle
and #H is a horizontal subbundle such thatpreservesy and H.
If we define a Riemannian metriz and an almost complex structutk as

N 1 . - .
aly = §9|v, Olu =9ln, Jlv==3v, Ju=3xn,

then (N, g, j) is a nearly Kéahler manifold.

Each fiber ofa: (N,g) — (B,h) is J-holomorphic. Hence if difaB = 4, N xR.
(or N x (0,7)) > (x,r) » @w(X) € B is an associative fibration. (i.e. each fiber is an
associative 3-fold.) If dimB =2, N xR.g 2 (X, 1) > (=(X),r) € BXx R.g is a
coassociative fibration.

Next, we give examples of homogeneous nearly Kéhler matsfelhich are clas-
sified by Butruille [11].

Lemma 5.2 ([11]). Any6-dimensional compact homogeneous nearly Kéhler mani-
fold is isomorphic to a finite quotient of a homogeneous sgmatenging to the follow-
ing list:

SU@BYT? CP3 S$$xS, &

The spaces SU(BYT?, CP2 are the twistor spaces df P? and S*, respectively.
They satisfy the condition of Example 5.1 so those (sine)esoadmit associative fi-
brations. Moreover, in Theorem 1.3.1 of [24], by using a realicure onCP3 it
is shown thatRP2 c CP? is a special Lagrangian submanifold with phase 1. Hence
RP3x {r} c CP3xR.( is an associative 3-fold for any e R..
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The cone ofS® is R” — {0} so this case is well-studied. Pseudoholomorphic curves
in S° and C P? are investigated in [7] and [25], respectively.

In the case ofS® x S*, define mapspri: S > (z1,2) = [z1: 2] € CPYL, pra: S5
(21, 22) > [z1— V=12 : 71 — /=12 e CPr and pr3: ¥ > (21, 20) > [21 + 222 71 —
Z,] € CPY, where we consideB® c C2. The mappr; is a slight modification of the
Hopf fibration.

Proposition 5.3. For each i= 1,2, 3,the mapw; = pr; x pri: S$xS* — CP1x
CP! is a pseudoholomorphic fibratiprand so induce associative fibrations € S° x
R.o— xS and $xSx(0,7) > F xS

Proof. Note that each fiber qiry, pr, and prs is of the form{(e¥~Yz,,eV-Yz,) |
0 eR} C S, {(z1cos0 + 2, Sinf, —z; sinf + z, cosh) | # e R} C S® and {(z; cosh +
V=12, sinf, /=121 sin6 + z, cosh) | 6 € R} C S for some ¢, 25) € S°.

By using the notation in [11], each fiber af; is an integral submanifold of
the distribution spag{ X;", Y;*} = spag{X, JX*} since we can takeXi, Y, =
w2 Ygh o) e =) G §)xa =2 2 ViT) caud
and the almost complex structutk on S x S° preserves span X, Y;*}. Here X*
means the vector field 0o8° x S® generated byX € su(2) ® su(2). Hence each fiber
of @; is pseudoholomorphic. ]

REMARK 5.4. Define the inclusion: S x (0, 7) 3 (0, t) — (cost, o sint) € &,
where we consideB8® ¢ R” and S’ ¢ R xR’. It is known thatS’ admits a nearly par-
allel G,-structure induced from a Spin(7)-structure R The inclusion: preserves the
G,-structure from their constructions. Hence,Lif ¢ S° is an orientedk-dimensional
submanifold k = 2, 3) andt € (0, ), then
e (L2x(0,7)) c & is an associative 3-fold ift.2 is a J-holomorphic curve,

e (L3 x{n/2})) c § is an associative 3-fold iffiL® is a special Lagrangian sub-
manifold with phaset/—1.
This result is known by Lotay [19].

5.2. Cone of the Iwasawa manifold. For X, y, z € C, denote

Alx,y,2) = ( )

Define G = {A(X, ¥, 2) | X, ¥, z€ C}, T = {Ale, B, ¥) | @, B, ¥ € Z[/—1]}. Let
N6 =TI\ G be the space of right cosets, which is called the lwasawa foidnilt is
a principal T2-bundle overT# (the generic element is mapped to, §) + Z?). The
Iwasawa manifold is a compact complex manifold which is néthker. (It is known
that h*9(N, C) = 3, h®Y(N, C) = 2, b}(N) = 4).

o O+
O X
< N
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First, we show thatY = N x R.o admits a torsion-frees,-structure ¢, §) with
Hol(§) = G,. Define 1-formsg € Q'(N) (i =1, 2, 4,5, 6, 7) by

dx =& — v/—1&,
dy: % + Vv _1é:)1
—dz+xdy=6& — v-16.

Left hand sides ard -invariant forms onG so they induce 1-forms olN =T\ G.
HenceN is a nilmanifold with a global basis of 1-forms such that

&6—67 (i =1),
dé = {—€i5—6&7 (i =2),
0 i=4567).

We also define vector fieldsE;} € X(N) dual to {&}. If we write X = X; + +/—1Xy,
y = y1 4+ v/—1ys, z= 71 + ~/—12,, we can describéE;} explicitly as

= 0 = 0 = 0 = 0
T T T T T ok
E5=8_28+18 E6=8+13+28
Yo 021 02y’ oA 0Z1 0zy

Extendingé and E; onY, define 1-formsd € Q(Y) by

1

&, & s*ds, sé&, sés, Sés, sé;),

(8, 8, 8, &, &, &, &) = (

whereR.( is parametrized bys. We write E3 = 9/9s. Define a metric§ on Y, a
3-form ¢ € Q3(Y) and its Hodge duak® € Q4(Y) by

7

=Y (€)

i=1

= €23+ €(E5 + E7) + E(E)s — E7) — &(E)7 + &),
*‘7’ €567 + Ex3(E57 + E) + €5(E57 — €16) — E(E6 + €)

Then (Y, ¢, §) is a torsion-freeG,-manifold with Hol@) = G,. For more details,
see [22}.

T2-action on Y. ldentifying T2 = {A(0, O,w) | w € C/Z[~/—1]}, T? acts onY
freely by right multiplication. Vector fieldd X}, X3} C X(Y) generated by thel?-
action are given byX; = 9/8zy = —E;, X5 = 8/9z, = E,.

INote that the notation in [22] differs from ours. The basise,es,€4,65,65,€7) in [22] corresponds
to (&, &, &, —&;, &1, &, &) in our notation.
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Since p(X7, X3, -) = —ds, there exists a multi-moment map= —s: Y — R_g
for the T2-action.

Geometry of Y/T2. SinceN is a T?-bundle overT# and sinceT? acts fiberwise,
we haveY/T? = T* x R.,, where we denote the projection bs: Y — T* x R.o.
Define vector fields byE; = (m2)+(Ei) € X(Y/T?) (i =4,5,86,7), namely,

d d 0 d
y ’ ’ = (E41 _E71 EGI E5)
X1 90Xz dy1 Y2 — — — —

Then with respect tqa/dxy, 3/d%2, 3/3Y1, 3/9Y.} we have

|&
[l

&
[l

ﬁ:

(Jo, J1, J») is a standard hyperkahler structure of induced by the left multiplication
of_(i,_—k_,j) on the quaterniorH.

Calibrated submanifolds in Y.

T2-invariant case. Since Jo, J1, J) is a standard hyperkahler structure oA,
there are many holomorphic curves. @f C T4 is a Jo-holomorphic curve and €
R.o, thenn,}(C x {s}) is a T2-invariant coassociative 4-fold, which is compactaf
is compact. T# is fibrated by Jy-holomorphic curves s& is fibrated byT?-invariant
coassociative 4-folds. -

For the associative case, the integral curve of grad( Y isR.oC Y. If x e T*
and O C R is an open intervalz; *({x} x O) is a T2-invariant associative 3-folds.

St-invariant and perpendicular to Sh-orbits case. DecomposingT? = S} x S},
let X;* be the vector field generated by ti§-action. A submanifold. C Y is perpen-
dicular to Szl-orbits if and only if&|_ = 0. Then we have

ker@) = spar{E1, Es, Es, Es, Es, E7).

An S}-invariant submanifold containg; in its tangent space. If; and L, are integral
submanifolds of the involutive distributions spdiy, Es, E4, Es} and spap{Ei, Es,

Es, E;}, respectively, each; is a coassociative 4-fold perpendicular to Beorbits. If
L; is maximal,L; is an Sll—invariant coassociative 4-fold perpendicular to @eorbits
becauseSll- L; is an integral submanifold of the same distribution conteyrnL;. We
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see thaty is foliated by these coassociative 4-folds. They can beritext as follows.

L1 = {[(A(x + vV=1x3, y1 + vV=1y3, z1 + V—=108y1 + Z)] | X1, Y1, Z1 € Ro0}
X R>O|
Lo = {[(AC 4+ vV=1x2, ¥ + v/ —1ya, 21 + V=102 + )] | X2, Y2, 22 € R-0}

X R>O!
wherex?, y0, 2% € R. These areS'-bundle overT2. Moreover, we have
(m2)+{Ea, Ee} = {Ea, BEa}, (m2):{Es, E7} = {Es, —%Es),

and somp(L) N {v = const} C T* is a J-holomorphic curve with grad|,,.) =
—(1/5(8/09) (L) —(1/8)Es|nyy € T(m2(L)), which corresponds to 4 of
Theorem 4.13.

Perpendicular to T2-orbits case. A submanifoldL C Y is perpendicular tor2-
orbits if and only if&]|, = &]|. = 0. Then we obtain

ker(@) N ker(&) = span, {Es, E4, Es, Es, E7}.

If L is an integral submanifold of the involutive distributiopasy{Es, E4, E7},
L is an associative 3-fold perpendicular to tA€-orbits. L is described asd =
{[(A(x, ¥°, Z9)] | x € C} xR, wherey®, 2° € C. We see thaly is foliated by these
associative 3-folds. Moreover, we have).{Ea4, E7} = {Es, —JEa}, and somp(L) N
{v =const} c T*is a Jp-holomorphic curve with graaf|.,.) = —(1/5*)(3/09)|x,) =
—(1/8% E3|n2(|_) € T(m2(L)), which corresponds to 5 of Theorem 4.13.

5.3. Further examples. In [20], it it shown that for a hyperkahler 2-fold
whose Kahler forms have integral periods, there exist&#undle X, over M and an
open intervall C R such thatXy x | admits a torsion-fre&s,-structure.

Especially if M is a toric hyperkahler 2-fold, it is shown in [13] thM is fibrated
by complex Lagrangian submanifolds (pseudoholomorphigesiin dimension 4) whose
generic fibers are diffeomorphic ' xR. Using this fibration, we see thai@-manifold
X x | is fibrated byT ?-invariant coassociative 4-folds.
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