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Abstract
Let Gk be the gauge group of the principalSU(5)-bundle overS4 with second

Chern classk. We show that there is ap-local homotopy equivalenceGk ' Gk0 for
any prime p if and only if (120,k) D (120,k0).

1. Introduction

Let G be a simply-connected, simple compact Lie group. PrincipalG-bundles over
S4 are classified by the value of the second Chern class, which can take any integer
value. LetPk! S4 represent the equivalence class of principalG-bundle whose second
Chern class isk. Let Gk be thegauge groupof this principal G-bundle, which is the
group of G-equivariant automorphisms ofPk which fix S4.

While there are countably many inequivalent principalG-bundles, Crabb and
Sutherland [5] showed that the gauge groups{Gk}

1

kD1 have only finitely many distinct
homotopy types. There has been a great deal of interest recently in determining the
precise number of possible homotopy types. The following classifications are known.
For two integersa, b, let (a, b) be their greatest common divisor. IfG D SU(2) then
Gk ' Gk0 if and only if (12,k) D (12, k0) [11]; if G D SU(3) then Gk ' Gk0 if and
only if (24,k) D (24,k0) [7]; if G D Sp(2) thenGk ' Gk0 when localized at any prime
p or rationally if and only if (40,k) D (40, k0) [17]; and in a non-simply-connected
case, if G D SO(3) thenGk ' Gk0 if and only if (24,k) D (24, k0) [10].

In this paper we will classify thep-local homotopy types of gauge groups of prin-
cipal SU(5)-bundles. It should be emphasized that in all the previous cases, the classi-
fication proofs relied heavily on the fact that as aCW-complex G has very few cells
(at most 3). This is not the case forSU(5), which has 15 cells. To deal with this
previously inaccessible case, we make use of some new results in [9]. We prove the
following.

Theorem 1.1. For G D SU(5), there is a homotopy equivalenceGk ' Gk0 when
localized at any prime p or rationally if and only if(120,k) D (120,k0).
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One motivating reason for studyingSU(5)-gauge groups is that they are of interest
to physics. The standard model, which accurately describesthe behavior of elementary
particles subject to the strong and weak nuclear forces and electromagnetism, is based
on SU(3)� SU(2)� U (1)-gauge groups. Since the early 1970s, physicists have sought
for a grand unified model which merges the gauge theory from the three Lie groups
in the standard model into that from a single Lie group. One candidate for such a Lie
group isSU(5), others includeSO(10) andE6. The corresponding models in each case
have been heavily studied.

2. Determining homotopy types of gauge groups

We begin by collecting some preliminary information. First, we establish a con-
text in which homotopy theory can be applied to study gauge groups. This works for
any simply-connected, simple compact Lie groupG. Let BG and BGk be the classi-
fying spaces ofG and Gk respectively. Let Map(S4, BG) and Map�(S4, BG) respect-
ively be the spaces of freely continuous and pointed continuous maps betweenS4 and
BG. The components of each space are in one-to-one correspondence with the inte-
gers, where the integer is determined by the degree of a mapS4

! BG. By [6] or
[1], there is a homotopy equivalenceBGk ' Map(S4, BG) betweenBGk and the com-
ponent of Map(S4, BG) consisting of maps of degreek. Evaluating a map at the base-
point of S4, we obtain a mapevW BGk ! BG whose fibre is homotopy equivalent to
Map�k (S4, BG). It is well known that each component of Map�(S4, BG) is homotopy
equivalent to�3

0G, the component of�3G containing the basepoint. Putting all this
together, for eachk 2 Z, there is a homotopy fibration sequence

(1) G
�k
�! �

3
0G! BGk

ev
�! BG

where�k is the fibration connecting map.
SinceGk is the homotopy fibre of�k, its topology is governed to a great extent by

properties of�k. We mention two for now. First, by [12], the triple adjointS3
^ G!

G of �k is homotopic to the Samelson producthk � i , 1i, where i is the inclusion of
S3 into G and 1 is the identity map onG. The linearity of the Samelson product
therefore implies that�k ' k Æ �1, where k is the kth-power map on�3

0G. Second,
the order of�k is finite. For, rationally,G is homotopy equivalent to a product of
Eilenberg–MacLane spaces, and the homotopy equivalence canbe chosen to be one of
H -maps. Since Eilenberg–MacLane spaces are homotopy commutative, any Samelson
product into such a space is null homotopic. Thus, rationally, the adjoint of�k is null
homotopic, implying that�k is rationally null homotopic. Therefore, the order of�k

is finite.
In determining the homotopy types ofGk, the order of�1 plays a prominent role.

We have just seen that the order of�1 is finite, and since�k ' k Æ �1, once the order
of �1 is known so is that of�k. When G D SU(n), Hamanaka and Kono [7] gave a
lower bound on the order of�1 and the number of homotopy types ofGk.
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Lemma 2.1. Let GD SU(n). Then the following hold:
(a) the order of�1 is divided by n(n2

� 1);
(b) if Gk ' Gk0 then (n(n2

� 1), k) D (n(n2
� 1), k0).

In particular, if G D SU(5) then 120 divides the order of�1 and a homotopy
equivalenceGk ' Gk0 implies that (120,k) D (120,k0). In Section 6 we will prove an
upper bound on the order of�1 that matches the lower bound.

Theorem 2.2. The map SU(5)
�1
�! �

3
0SU(5) has order120.

Granting Theorem 2.2 for now, we can prove Theorem 1.1 by using the following
general result, proved in [17]. LetY be an H -space with a homotopy inverse, and let
k W Y! Y be thekth-power map.

Lemma 2.3. Let X be a space and Y be an H-space with a homotopy inverse.

Suppose there is a map X
f
�! Y of order m, where m is finite. Let Fk be the homo-

topy fibre of kÆ f . If (m, k) D (m, k0) then Fk and Fk0 are homotopy equivalent when
localized rationally or at any prime.

Proof of Theorem 1.1. By Theorem 2.2, the mapSU(5)
�1
�! �

3
0SU(5) has order

120. So Lemma 2.3 implies that if (120,k) D (120,k0), thenGk ' Gk0 when localized
at any prime p or rationally. On the other hand, by Lemma 2.1, ifGk ' Gk0 then
(120,k) D (120,k0). Thus there is a homotopy equivalenceGk ' Gk0 at each primep
and rationally if and only if (120,k) D (120,k0).

It remains to prove Theorem 2.2. In general, it is difficult todetermine the order of
�1 precisely. The following Lemma proved in [9] helps gives some crude information
on the order whenG D SU(n).

Lemma 2.4. For G D SU(n), there is a homotopy commutative square

SU(n) �

3
0SU(n)

SU(n)=SU(n� 2) �

3
0SU(n)

 

!

�1

 

!

� (

(

 

!

f

for some map f, where� is the standard quotient map.

Another useful fact from [9] is the following. LetSU(n) ! SU(n C 1) be the
standard group inclusion, and letSU(n)=SU(n� 2)! SU(n)=SU(n� 1)D S2n�1 be the
usual quotient map.
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Lemma 2.5. There is a homotopy commutative square

SU(n)=SU(n� 2) �

3
0SU(n)

S2n�1
�

3
0SU(nC 1).

 

!

f

 

!

 

!

 

!

f 0

3. An initial upper bound on the order of �1

By Lemma 2.4, there is a homotopy commutative square

SU(5) �

3
0SU(5)

SU(5)=SU(3) �

3
0SU(5)

 

!

�1

 

!

� (

(

 

!

f

for some mapf . We begin by discussing some properties off . Let

f W 6SU(5)=SU(3)! �

2SU(5)

be the adjoint off . By [8], there is a homotopy equivalence6SU(5)=SU(3)' 66
CP2
_

S17. So we regardf as a map66
CP2

_ S17
! �

2SU(5). Let f 1 and f 2 be the restric-
tions of f to 66

CP2 and S17 respectively. By [7], there is an isomorphism [6

8
CP2,

SU(5)] � Z=360Z� Z=120Z. So we immediately have the following.

Lemma 3.1. The maps f 1 and f 2 represent homotopy classes in[68
CP2,

SU(5)] � Z=360Z� Z=120Z and �19(SU(5)) respectively.

It is not clear what the group�19(SU(5)) is, although in Section 5 we will see that
its 3-component is 0. For the moment, however, we are concerned with the
p-component for every primep.

Lemma 3.2. The order of f 2 divides2.

Proof. By taking adjoints in Lemma 2.5, there is a homotopy square

6(SU(5)=SU(3)) �

2SU(5)

6S9
�

2SU(6)

 

!

f

 

!

 

!

 

!

f 0

where f 0 is the adjoint of f 0. Thus if we restrict f to S17
! 6(SU(5)=SU(3)) and

compose into�2SU(6), the result is null homotopic. Therefore, since the homotopy
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fibre of the inclusionSU(5)! SU(6) is �S11, we obtain a lift

�

3S11

S17
6(SU(5)=SU(3)) �

2SU(5)

 

!

 

!

 

!

�

 

!

f 0

for some map�. In particular,� represents a homotopy class in�20(S11), which by
[18], is isomorphic to the direct sum of three copies ofZ=2Z. Thus the order of�
divides 2, implying that the order off2 also divides 2.

The information on f gives an upper bound on the order of the mapSU(5)
�1
�!

�

3
0SU(5).

Lemma 3.3. The order of the map SU(5)
�1
�! �

3
0SU(5) divides360.

Proof. By Lemma 2.4,�1 factors as the compositeSU(5)
�

�! SU(5)=SU(3)
f
�!

�

3
0SU(5). By Lemmas 3.1 and 3.2, the order off divides 360. Hence the order of

�1 also divides 360.

By Lemma 2.1, the order ofSU(5)
�1
�! �

3
0SU(5) is a multiple of 120, while by

Lemma 3.3 the order divides 360. We wish to show that the orderof �1 is exactly
120, so we need to improve the upper bound by a factor of 3. To doso it suffices to
localize at 3 and show the 3-local order of�1 is 3 rather than 9.

It will help to first investigate a 3-local property off . Localized at 3, by [8] there

is a homotopy equivalenceSU(5)=SU(3)' S7
� S9. Let h be the compositeh W S9 i2

�!

S7
� S9 f

�! �

3
0SU(5), where i2 is the inclusion of the second factor. In the following

lemma we show thath has order 9, implying that the 3-component of the order off
is at least 9. In particular, in trying to improve the upper bound on the 3-component

of the order of�1 from 9 to 3, we need to study the mapSU(5)
�

�! SU(5)=SU(3) as

well as the mapSU(5)=SU(3)
f
�! �

3
0SU(5).

Lemma 3.4. Localized at3, the map S9
h
�! �

3
0SU(5) has order9.

Proof. Let cW S9
! SU(5) be the characteristic map. It is well known that this

has the property that the compositeS9 c
�! SU(5)

q
�! S9 has degree 4!. In particular,

localized at 3, we may regardq Æ c as having degree 3, up to multiplication by a unit

in the 3-local integers. Also, by [12], the triple adjoint ofthe mapSU(5)
�1
�! �

3
0SU(5)
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is homotopic to the Samelson productS3
^ SU(5)

hi ,1i
��! SU(5) wherei is the inclusion

of the bottom cell and 1 is the identity map. By [4], the composite S3
^ S9 1^c

��! S3
^

SU(5)
hi ,1i
��! SU(5) has order dividing 6!=(1! � 4!) D 30. In particular, adjointing back

and localizing at 3, the order of�1 Æ c divides 3.
Now consider the diagram

S9 SU(5) �

3
0SU(5)

S9 S7
� S9

�

3
0SU(5).

 

!

c

 

! 3

 

!

�1

 

!

�

(

(

 

!

i2  

!

f

The left square homotopy commutes since�9(S7) D 0 at 3 and sinceq Æ c has degree 3.
The right square homotopy commutes by Lemma 2.4. From the first paragraph, the up-
per row has order dividing 3. Hence the lower direction around the diagram is nontrivial.
That is, ash D f Æ i2, we have 3� h nontrivial, implying that the order ofh divides 9.
On the other hand, by [2] and [3], the three-component of�9(�3

0SU(5)) isZ=9Z. Hence
h has order at most 9. Therefore,h represents a generator of�9(�3

0SU(5)) and has or-
der 9.

4. Some decompositions

For the remainder of the paper, assume that all spaces and maps have been local-
ized at 3, and homology is taken with mod-3 coefficients. By [13], there are homotopy
equivalencesSU(4)' B(3, 7)� S5 and SU(5)' B(3, 7)� B(5, 9), whereH�(B(3, 7))�
3(x3, P1(x3)), H�(B(5, 9))� 3(x5, P1(x5)), and there are homotopy fibrationsS3

!

B(3, 7)
r
�! S7 and S5

! B(5, 9)
s
�! S9.

In what follows, it is helpful to define some maps. Let� W SU(5)! SU(5)=SU(3)
andqW SU(5)! S9 be the standard quotient maps. LeteW B(3, 7)� B(5, 9)! SU(5) be
the homotopy equivalence from [13], and lete1, e2 be the restrictions ofe to B(3, 7)
and B(5, 9) respectively. Observe thate1 can be chosen to be the compositeB(3, 7)!
SU(4)! SU(5), implying that q Æ e1 is null homotopic. Also observe thats can be

chosen to be the compositeB(5, 9)
e2
�! SU(5)

q
�! S9.

As mentioned in Section 3, there is a homotopy equivalenceSU(5)=SU(3)' S7
�

S9. However, the decompositions ofSU(5) and SU(5)=SU(3) may not be compatible,
in the sense that theremay notbe a homotopy commutative diagram

B(3, 7)� B(5, 9) SU(5)

S7
� S9 S7

� S9.

 

!

e

 

! r�s  

!

�

(

(
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However, we will show that an appropriate diagram does existif we weaken to con-

sider only the mapSU(5)
q
�! S9.

Lemma 4.1. There is a homotopy commutative diagram

B(3, 7)� B(5, 9) SU(5)

S9 S9

 

!

e

 

! sÆ�2  

! q

(

(

where�2 is the projection onto the second factor.

Proof. In general, for a homotopy fibrationF ! E ! B the connecting map
Æ W �B! F induces a homotopy action� W F ��B! F with the property that there
is a homotopy commutative square

�B ��B �B

F ��B F

 

!

�

 

!

Æ�1  

!

Æ

 

!

�

where� is the loop multiplication.

In our case, there is a homotopy fibration sequenceSU(5)
q
�! S9

! BSU(4) !
BSU(5). Now consider the diagram

B(3, 7)� B(5, 9) SU(5)� SU(5) SU(5)

B(5, 9) S9
� SU(5) S9.

 

!

e1�e2

 

!

�2

 

!

�

 

! q�1  

! q

 

!

��e2  

!

�

The right square homotopy commutes sinceq Æ e1 is null homotopic. The left square
homotopy commutes by the homotopy action induced by the fibration connecting map
q. The top row is homotopic toe. As the restriction of� to SU(5) is q, the bottom
row is homotopic toq Æe2 ' s. Thus the diagram as a whole shows thatq Æe' sÆ�2,
which proves the lemma.

Define the spaceC and the mapÆ by the homotopy cofibration

SU(5)
q
�! S9 Æ

�! C.

In the next two propositions we examine properties of this cofibration. First we de-
compose the spaceC and then factor the mapÆ.
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Proposition 4.2. There is a homotopy equivalence

C ' S6
_ S15

_ (6B(3, 7))_ (6B(3, 7)^ B(5, 9)).

Proof. The homotopy commutative diagram in the statement ofLemma 4.1 im-
plies that there is a homotopy cofibration diagram

B(3, 7)� B(5, 9) S9 D

SU(5) S9 C

 

!

sÆ�2

 

! e

 

!

(

(

 

!



 

!

q
 

!

where D is the homotopy cofibre ofs Æ �2 and  is some induced map of cofibres.
The cofibrations in the top and bottom rows induce long exact sequences of homology
groups, and the cofibration diagram induces a map of these long exact sequences. Since
e is a homotopy equivalence and the map betweenS9’s is the identity, the five-lemma
implies that

�

is an isomorphism in every degree. Hence is a homotopy equivalence.
So to prove the lemma it is equivalent to decomposeD.

In general, there is a homotopy decomposition6(A� B) ' 6A_6B_ (6A^ B).

So the homotopy cofibre of the projectionA�B
�2
�! B is homotopy equivalent to6A_

(6A ^ B). If we compose the projection with a maph W B ! X, then we obtain a
homotopy cofibration diagram

A� B B 6A_ (6A^ B) 6(A� B)

A� B X Y 6(A� B)

Z Z

 

!

�2

(

(

 

!

 

! h

 

!

 

! j (

(

 

!

hÆ�2  

!

 

!

 

!

k

 

!

(

(

which defines the spacesY and Z and the mapsj andk. The homotopy commutativity

of the upper right square implies that the compositeY
k
�! 6(A� B)! 6A_ (6A^ B)

is a left homotopy inverse ofj . Since k induces a homotopy coaction W Y ! Y _

6(A� B), the compositeY
 

�! Y _6(A� B! Z _ (6A_ (6A^ B)) is a homotopy

equivalence. Therefore, in our case of the homotopy cofibration B(3, 7)� B(5, 9)
sÆ�2
��!

S9
! D, we haveD ' Z _6B(3, 7)_ (6B(3, 7)^ B(5, 9)), whereZ is the homotopy

cofibre of s.
To complete the proof of the decomposition ofC, it remains to show thatZ '

S6
_ S15. By definition, Z is the homotopy cofibre of the mapB(5, 9)

s
�! S9. Since

H
�

(B(5, 9))� 3(x5, x9) and s
�

is a projection, there is a vector space isomorphism
H
�

(Z) � {x6, x15}. Thus Z is a two-cell complex, so there is a homotopy cofibration
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S14 l
�! S6

! Z wherel attaches the top cell toZ. By [18], the 3-component of�14(S6)
is 0. Thusl is null homotopic, implying thatZ ' S6

_ S15.

Let C0

D S15
_ (6B(3, 7))_ (6B(3, 7)^ B(5, 9)), soC ' S6

_ C0. As is usual,
for n � 3, let �1 W SnC3

! Sn be a map representing the generator of the stable 3-stem
(localized at 3).

Proposition 4.3. The map S9
Æ

�! C factors as the composite S9 �1
�! S6 i1

�! S6
_

C0

'

�! C, where i1 is the inclusion of the first wedge summand.

Proof. By connectivity, the mapS9 Æ

�! C factors through the 9-skeleton ofC.
From the decomposition ofC in Proposition 4.2, we see that its 9-skeleton is homo-
topy equivalent toS6

_ 6A _ S9, where A is the 7-skeleton ofB(3, 7) andS9 is the
bottom cell of6B(3, 7)^ B(5, 9). SoÆ factors through a mapÆ0 W S9

! S6
_6A_ S9.

Consider the homotopy fibrationF ! S6
_ 6A_ S9

! S6
� 6A� S9, where the

right map is the inclusion of the wedge into the product and the fibration defines the
spaceF . The Hilton-Milnor Theorem implies thatF is 8-connected and has a single
cell in dimension 9. Further, the mapS9

,! F ! S6
_ 6A _ S9 is homotopic to the

composite! W S9 w

�! S6
_ S4

,! S6
_6A ,! S6

_6A_ S9, wherew is the Whitehead
product of the identity maps onS6 and S4. Thus Æ0 is homotopic top1 Æ Æ

0

C p2 Æ

Æ

0

C p3 Æ Æ
0

C t � w, where pi is the pinch map fromS6
_ 6A _ S9 to the respective

wedge summandsS6, 6A and S9 and t is some element ofZ(3). We aim to show that
p1 Æ Æ

0

' �1, p2 Æ Æ
0

' �, p3 Æ Æ
0

' � and t D 0. If so, thenÆ0 factors through�1,
implying that the same is true ofÆ, completing the proof.

Now consider the homotopy cofibration sequenceSU(5)
q
�! S9 Æ

�! C ! 6SU(5).

First, sinceH�(SU(5)IZ) is torsion free, the compositeS9 Æ

0

�! S6
_6A_S9 p3

�! S9 must
be of degree zero, for otherwiseÆ0 and henceÆ is degreed ¤ 0 in H9, implying that
there isd-torsion in H�(SU(5)IZ), a contradiction. Thusp3 Æ Æ

0

' �. Second, observe
that the degree 5, 9 generators inH�(SU(5)) are connected by the Steenrod operation
P1, an operation which detects�1. Sinceq� is an inclusion of the degree 9 generator,
we must haveÆ detecting�1. That is, p1 Æ Æ

0

' �1. Third, consider the homotopy
cofibration S4

! 6A! S8 which includes the bottom cell into6A and pinches out
to the top cell. The Serre exact sequence implies that this homotopy cofibration is also
a homotopy fibration in dimensions< 10. In particular, there is an exact sequence
�9(S4)! �9(6A)! �9(S8). By [18], the three-components of�9(S4) and �9(S8) are
both 0, so the three-component of�9(6A) is 0. Hencep2 Æ Æ

0

' �. Finally, suppose
that t � w ¤ �. Then asw factors through the Whitehead product! and ! detects a
nontrivial cup-product, the mapÆ ' �1 C t � w would detect a nontrivial cup-product
in the integral cohomology its cofibre6SU(5). But all cup-products inH�(6SU(5)IZ)
vanish. Hencet � w must be trivial, implying thatt D 0.
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5. Some properties ofB(3, 7) and B(5, 9)

We will need to know some information about certain homotopygroups ofSU(5).
This makes use of the homotopy equivalenceSU(5) ' B(3, 7)� B(5, 9) and calcula-
tions of the low dimensional homotopy groups ofB(3, 7) by Toda [19] andB(5, 9) by
Oka [15].

(2)

B(3, 7) B(5, 9) SU(5)
�10 Z=3Z 0 Z=3Z
�12 0 Z=9Z Z=9Z
�19 0 0 0

As well, let Z(3) be the 3-local integers. Then�7(B(3, 7))� Z(3) and if cW S7
!

B(3, 7) represents the generator, then the compositeS7 c
�! B(3, 7)

r
�! S7 is of degree 3.

We now prove a lemma which gives two ways of describing the generator of�10(B(3,7)).
For n � 3, let �2 W SnC7

! S7 represent the generator of the stable 7-stem (again, at 3).

Lemma 5.1. There is a homotopy commutative square

S10 S7

S3 B(3, 7).

 

!

�1

 

!

�2  

! c

 

!

Proof. By (2),�10(B(3, 7))� Z=3Z and, as stated in [19], a generator is repre-

sented by the compositeS10 �2
�! S3

! B(3, 7). On the other hand, consider the homotopy

fibration F ! S7 c
�! B(3, 7). In [19], it is shown thatF is 10-connected. Thereforec in-

duces an isomorphism on�10. But �10(S7) � Z=3Z is generated by�1, so the composite

S10 �1
�! S7 c

�! B(3, 7) also represents the generator of�10(B(3, 7))� Z=3Z. These two
ways of describing the generator of�10(B(3, 7)) gives the asserted homotopy commuta-
tive diagram.

Next, by [15], �9(B(5, 9))� Z(3) and if d W S9
! B(5, 9) represents the gener-

ator, then the compositeS9 d
�! B(5, 9)

s
�! S9 is of degree 3. We give an analogue of

Lemma 5.1 forB(5, 9), after a preliminary lemma.
In general, letE2

W S2n�1
!�

2S2nC1 be the double suspension, which is the double
adjoint of the identity map onS2n�1. Oka [15] showed that there is a map�W B(3,7)!
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�

2B(5, 9) and a homotopy fibration diagram

(3)

S3 B(3, 7) S7

�

2S5
�

2B(5, 9) �

2S9.

 

!

 

! E2

 

!

r

 

!

�

 

! E2

 

!

 

!

�

2s

We will show that� is also compatible with the mapsc and�2d.

Lemma 5.2. There is a homotopy commutative square

S7 B(3, 7)

�

2S9
�

2B(5, 9).

 

!

c

 

! E2
 

!

�

 

!

�

2d

Proof. Consider the diagram

(4)

S7 B(3, 7) S7

�

2S9
�

2B(5, 9) �

2S9.

 

!

c

 

! E2

 

!

r

 

!

�

 

! E2

 

!

�

2d  

!

�

2s

The right square homotopy commutes by (3). An odd dimensional sphere is anH -space
when localized at 3, and the degreep map is thepth-power map. So asr Æ c ' 3 and
�

2s Æ �3d ' �

23 ' 3, the outer rectangle of the diagram above homotopy commutes.
Consider the differencel D �2d Æ E2

� � Æ c. The homotopy commutativity of the right
square and outer rectangle implies that�

2sÆ l is null homotopic. Thusl lifts through the
homotopy fibre of�2s to a mapl W S7

! �

2S5. By [18], the 3-component of�9(S5) is
0. Thusl is null homotopic, implying thatl is null homotopic. Hence�2d Æ E2

' � Æ c.
That is, the left square in (4) homotopy commutes, proving the lemma.

Lemma 5.3. There is a homotopy commutative square

S12 S9

S5 B(5, 9).

 

!

�1

 

!

�2  

! d

 

!
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Proof. Consider the diagram

S10 S7
�

2S9

S3 B(3, 7) �

2B(5, 9)

�

2S5
�

2B(5, 9).

 

!

�1

 

!

�2

 

!

E2

 

! c  

!

�

2d

 

!

 

! E2

 

!

�

(

(

 

!

The upper left square homotopy commutes by Lemma 5.1, the upper right square homo-
topy commutes by Lemma 5.2, and the lower rectangle homotopycommutes by (3).
Thus the entire diagram homotopy commutes. In particular, the outer perimeter of the
diagram homotopy commutes. But this outer perimeter is the double adjoint of the dia-
gram asserted by the lemma.

6. The order of �1

In this section we show thatSU(5)
�1
�! �

3
0SU(5) has order 120. At issue is the

order of �1 when localized at 3, which in Proposition 6.3 we will show is 3.

Recall from Lemma 2.4 that, localized at 3,�1 factors as the compositeSU(5)
�

�!

S7
� S9 f

�! �

3
0SU(5). As well, recall thath is the compositeS9 i2

�! S7
� S9 f

�! �

3
0SU(5).

Lemma 6.1. There is a homotopy commutative diagram

S7
� S9

�

3
0SU(5)

S9
�

3
0SU(5).

 

!

f

 

!

�2
 

! 3

 

!

3�h

Proof. Recall that, in general,6(A� B)' 6A_6B_ (6A^ B). So it is equiva-
lent to adjoint and show that there is a homotopy commutativediagram

(5)

S8
_ S10

_ S17
�

2SU(5)

S10
�

2SU(5)

 

!

f 0

 

! q
 

! 3

 

!

3�h0

where f 0, h0 are the adjoints off , h respectively, andq is the pinch map.
To show that (5) homotopy commutes, it suffices to show that itdoes so when

restricted to each of the wedge summandsS8, S10 and S17. By (2), the 3-component
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of �8(�2SU(5))� �10(SU(5)) is Z=3Z. Therefore 3Æ f 0 restricted toS8 is null homo-
topic, and clearly the lower direction around (5) is null homotopic when restricted to
S8. Therefore (5) homotopy commutes when restricted toS8. By (2), the 3-component
of �10(�2SU(5)) � �12(SU(5)) is Z=9Z. By definition, h0 is the restriction of f 0 to
S10. So the restriction of 3Æ f 0 to S10 is 3 � h0, implying that (5) homotopy commutes
when restricted toS10. Finally, by (2) the 3-component of�17(�2SU(5))� �19(SU(5))
is 0. Thus both directions around (5) are null homotopic whenrestricted toS19. Hence
(5) homotopy commutes.

Lemma 6.2. There is a homotopy commutative diagram

S9
�

3
0SU(5)

C �

3
0SU(5)

 

!

3�h

 

!

Æ (

(

 

!

j

for some map j.

Proof. By Proposition 4.2, there is a homotopy equivalenceC ' S6
_C0 for some

spaceC0, and by Proposition 4.3 the mapÆ factors as the compositeS9 �1
�! S6 i1

�! S6
_

C0

'

�! C where i1 is the inclusion of the first wedge summand. We claim that there is
a homotopy commutative square

S9
�

3
0SU(5)

S6
�

3
0SU(5)

 

!

3�h

 

!

�1
(

(

 

!

j

for some mapj . If so then we can definej W C ' S6
_C0

! �

3
0SU(5) by taking j D j

on S6 and j D � on C0, and from the factorization ofÆ we obtain j ÆÆ ' j Æ (i1Æ�1)'
j Æ �1 ' 3 � h. That is, we obtain the homotopy asserted by the lemma.

It remains to prove the claim. By (2) the 3-component of�12(SU(5)) is Z=9Z, and
this comes from theB(5, 9) factor ofSU(5). Further, by [15], the generatora W S12

!

B(5,9) has the property that the compositeS12 a
�! B(5,9)

s
�! S9 is homotopic to�1. On

the other hand, leth0 W S12
! SU(5) be the adjoint ofh. By Lemma 3.4,h has order

9, implying thath0 has order 9, and thereforeh0 represents a generator of�12(SU(5)),
which is equivalent to saying thath0 represents a generator of�12(B(5, 9)). Thus, up
to multiplication by a unit inZ(3), h0 is homotopic toa and has the property that the

compositeS12 h0
�! B(5, 9)

s
�! S9 is homotopic to�1. Observe that 3� h0 is nontrivial
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since h0 has order 9, whiles Æ (3 � h0) is null homotopic since�1 has order 3. Thus
there is a lift

S12

S5 B(5, 9)

 

! 3�h0
 

!

�

 

!

for some map�. Since 3� h0 is nontrivial, � must be nontrivial. Thus� must represent
a generator of�12(S5) � Z=3Z; that is, up to multiplication by a unit inZ(3), � ' �2.

By Lemma 5.3, the compositeS12 �2
�! S5

! B(5, 9) is homotopic to the composite

S12 �1
�! S9 d

�! B(5, 9). Hence 3� h0 ' d Æ �1. Now let d W S6
! �

3B(5, 9) be the
triple adjoint of d. Then 3� h ' d Æ �1. Therefore, if we definej as the composite

j W S6 d
�! �

3B(5, 9) ,! �

3
0SU(5), then j Æ �1 ' 3 � h, giving the homotopy commutative

square in the claim.

Finally, we can improve on the 3-primary upper bound of the order of SU(5)
�1
�!

�

3
0SU(5) in Lemma 3.3, and so obtain the precise order of�1.

Proposition 6.3. Localized at3, the map SU(5)
�1
�! �

3
0SU(5) has order3.

Proof. Consider the diagram

SU(5) �

3
0SU(5)

S7
� S9

�

3
0SU(5)

S9
�

3
0SU(5)

C �

3
0SU(5).

 

!

�1

 

!

�

(

(

 

!

f

 

!

�2
 

! 3

 

!

3�h

 

!

Æ (

(

 

!

j

The top square homotopy commutes by Lemma 2.4, the middle square homotopy com-
mutes by Lemma 6.1, and the bottom square homotopy commutes by Lemma 6.2. The

compositeSU(5)
�

�! S7
� S9 �2

�! S9 is the same as the quotient mapSU(5)
q
�! S9. As

the cofibre ofq is given by the mapÆ, the composite along the left column of the
diagram above is null homotopic. Thus the homotopy commutativity of the diagram
implies that 3Æ �1 is null homotopic. Therefore 3 is an upper bound on the order of
�1. On the other hand, by Lemma 2.1 (a), 3 is also a lower bound on the order of�1.
Hence the order of�1 is precisely 3.
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Proof of Theorem 2.2. By Lemma 2.1, the order of�1 is a multiple of 120. Com-
bining Lemma 3.3 and Proposition 6.3 shows that the order of�1 divides 120. Hence
the order of�1 is exactly 120.
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