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Abstract

Let p be an odd prime, anbl,, the cyclotomicZ y-extension of an abelian field
k. For a finite setS of rational primes which does not include we will con-
sider the maximalS-ramified abelian prg extensionMs(k,,) over k... We shall
give a formula of theZ ,-rank of GalMs(kx)/Kx). In the proof of this formula, we
also show thatMq;(k)/L(Kx) is a finite extension for every real abelian fiekd
and every rational prime distinct from p, whereL (k) is the maximal unramified
abelian prop extension oveky,.

1. Introduction

Let k be an algebraic number field, amqga prime number. We denote bk, /k
the cyclotomicZ y-extension (i.e. the uniquE ,-extension contained in the field gen-
erated by allp-power roots of unity ovek). Let S be a finite set ofrational primes,
and Mg(k») the maximal prop extension ofk,, unramified outsideS (i.e., the primes
of ks lying above the primes ir§ are only allowed to ramify inMs(Ks)/Keo)-

When p € S, the structure ofXs(ks) = Gal(Ms(keo)/ks) is already studied (see,
e.g., lwasawa [8], Neukirch—Schmidt—Wingberg [11]). Irrtimaular, Xs(ks) is a free
pro-p group under certain conditions.

Recently, the structure oKs(ks) for the case thap ¢ S is also studied by sev-
eral authors (Salle [12], Mizusawa—Ozaki [10],...). In thise, it seems thas(ks)
does not have a simple structure. Then, to stotik.), it is important to study
the structure of its abelian quotient. L&s(ky)/ks be the maximal abelian prp-
extension unramified outsid8. In the present paper, we shall considég(ky) =
Gal(Ms(ks)/Ks) for the case thaip ¢ S. Since Galk,,/k) acts onXs(ky), we can
use Iwasawa theoretic argumentXgs(ky) is called the S-ramified lwasawa module.
(See, e.g., [12], [6]. This is also called a “tamely ramifisdasawa module” when
pPgS)

If a Zp-module M satisfies ding, M ®z, Qp =r < oo, we say that theZ,-rank
of M isr, and we write rank, M = r. Our purpose of the present paper is giving a
formula of rank  Xs(ksx) Whenk is an abelian extension @ (abelian field) andp is
an odd prime. (In this case, we can show thaf(k.) is finitely generated oveZ.)
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We shall give a remark about “giving a formula of rapks(k-)". Let L(k) be the
maximal unramified abelian prp-extension ofk,,. We put X(Ks) = Gal(L (Kx)/Kx)-
ThenX(ky) is the (usual) Iwasawa module, ahd= rankz, X(ks) is called the Iwasawa
A-invariant. In general, it is hard to write explicitly. Since X(ky) is a quotient of
Xs(k~), we consider it is sufficient to obtain a formula includihgat the present time.
(That is, we will only give a formula of rank Gal(Ms(k«)/L (K)), actually.) However,
for abelian fields, the “plus part” of is conjectured to be 0 (Greenberg’s conjecture), and
the “minus part” ofs can be computed (at least theoretically) from the Kubotapbédt
p-adic L-functions (Stickelberger elements).

We also mention that formulas of rankXs(k-) are already obtained for several
cases. In particular, it can be said that #hg-rank of the “minus part” ofXs(k) for
CM-fields is already known (see Section 2). Salle [12] studiegk,,) for the case that
k is an imaginary quadratic field (@) with p = 2. Moreover, wherk = Q, a formula
of ranks; Xs(Q«) (including the case thap = 2) is shown by Mizusawa, Ozaki, and
the author [6] (as a corollary, a general formula for imaginquadratic fields is also
given). In the present paper, we shall extend the methochdivg6] for abelian fields.
The following theorem is crucial to prove the formula of rapks(Qx)-

Theorem A (see [6, Theorem 3.1]) Let q be a rational prime distinct from p.
Then Mq(Qux)/Qx is a finite extension.

At first, we will generalize Theorem A to real abelian fieldsider the condition
that p is an odd prime).

Theorem 1.1. Assume that p is odd. Let k be a real abelian figldd g a ra-
tional prime distinct from p. Then M (k«)/L(kx) is a finite extension.

We remark thatMq(K)/L(K~) can be infinite wherk is an imaginary abelian
filed. (For example, see [12], [9], [6], or Section 6 of the geet paper.) Similar to
[6], Theorem 1.1 plays an important role to prove our formafarank; Xs(ky) for
abelian fields.

In Section 2, we shall state some basic facts, and give mgpas for proving
Theorem 1.1. We will prove Theorem 1.1 in Sections 3 and 4. dntin 5, we shall
give a simple remark about a generalization of Theorem InlSdction 6, we shall
give a formula of rank, Xs(K«) for abelian fields (Theorem 6.4). The formula is
given as the %-quotient” version. We also give examples with applyingstformula
for some simple cases.

2. Preliminaries

Firstly, we shall recall some basic facts from class fieldotiie Let p be an odd
prime number, and& an algebraic number field. (In the following of the presenpera
we assume thap is odd.) We denote bk, /k the cyclotomicZ,-extension. For a
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non-negative integen, let k, be thenth layer of k., /k (that is, the unique subfield of
k. such thatk,/k is a cyclic extension of degrep"). Let S be a finite set of rational
primes which does not includp. For an algebraic extension (not necessary finite)
of Q, let Mg(K) be the maximal abelian (prgz)extension of/C unramified outside
S, and L(K) the maximal unramified abelian (pr@-extension of/lC. For an abelian
group G, let G be the p-adic completion ofG (that is, G = lim G/GP).
As noted in Section 1, we shall mainly consider lygrank of GalMs(kx)/L (Ko)).

We will write several facts which is also stated in [6]. Ingtparagraph, assume that
is not empty. By class field theory, we have the following é)sexjuence:

Ex, = @D (Ox, /)" — GalMs(kn)/L (k) — 0,
qesS

where Ey, is the group of units ok, Ok, is the ring of integers ok,, and n, is
the natural homomorphism induced from the diagonal emingddiWe will give a re-
mark on the structure Oﬁw- Assume that the prime decomposition @®y, is
qt---q%. Then

(O/a)* = @ (O /a)"

i=1

because(f)m ~ (O /q,)%.) We putEy = lim Ex,, and R = I(@(C)k/—ﬁ)X where
the projective limits are taken with respect to the naturappings induced from the
norm mapping. Then we obtain the following exact sequence:

Ex —> P Ry — Gal(Ms(kx)/L (k) — O.

qeS

In the cyclotomicZ p-extension, all (finite) primes ok are finitely decomposed. Then
Ry is a finitely generated ,-module. From this, we also see Qdl(k.)/L(Kx)) is
finitely generated oveZ,. On the other hand, the theorem of Ferrero—Washington [2]
implies that Gall(kw)/K) is a finitely generated ,-module, ifk is an abelian field.
Hence, we see that for every abelian fiddd Xs(k) is finitely generated ovefZp,.
(We can see that thE ,-rank of Xg(k) is always finite in general.) It seems hard to
determine the cokernel of., directly.

REMARK. When the base fiel& is a CM-field, the minus part oE, is easy to
compute (we are also able to compute the minus pafRgQf Hence we can obtain a
formula of theZ ,-rank of the minus part of Gals(kw)/L(K~)). This idea is already
known (see, e.g., [12], [9], [6])-
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Secondly, we shall give some preparations to prove TheordmlLEt be a prime
number satisfyingy # p. For simplicity, we will write Mp(+), Mq(-) instead ofM;p, (),
M(q (+), respectively.

Lemma 2.1. Let K/k be a finite extension of algebraic number fields. If
Gal(Mq(kl,)/L(KL,)) is finite, then Gal(Mq(K~)/L(K)) is also finite.

Proof. We may assume th&tnk,, = k. Let
Nn: (Ok,/a)* — (O, /a)*

be the homomorphism induced from the norm mapping. We cathsé¢¢he order of the
cokernel Cokef{,) is bounded a$ — oco. (Proof: Since there are only finitely many
primes ink., lying aboveq, the p-rank of(()kn/_/q\)X is bounded. Moreover, the exponent
of Coker(Np), is also bounded.) Since GB{(k;,)/L(k;)) (resp. GalMy(kn)/L(Kn))) is
isomorphic to a quotient ofOy, /a)* (resp.(Ok,/q)*), Ny induces the homomorphism
Gal(Mq(k;,)/L(k;,)) — Gal(Mq(kn)/L(kn)). From the above fact, the order of the cokernel
is bounded a® — oco.

Assume that GaNlq(k/,)/L(k.)) is finite. Then we can show that the order of
Gal(Mq(k,)/L(k;,)) is bounded as 1 — oco. From the above fact, we see that the order
of Gal(Mq(k,)/L(ky)) is also bounded. Hence GM((kx)/L(Kx)) is finite. ]

From Lemma 2.1 and the theorem of Kronecker—Weber, we malaaepm real
abelian fieldk to the maximal real subfield of a cyclotomic filed containingo show
Theorem 1.1. For a positive integdr let uq be the set of aldth roots of unity, and
Q(uq) the dth cyclotomic field.

Lemma 2.2. Let f be a positive integer which is prime tg @nd m a positive
integer. We put K= Q(utpm) and k= K* (the maximal real subfield of X If q does
not split in K/k, then My(Ks) = L(Kx).

Proof. Letq be an arbitrary prime ok lying aboveq. It is well known that ifgq
does not split inK, then the order of Qx/q)* is not divisible byp. (Proof: We denote
by k,; the completion ok at q. Under the assumptiork, does not contaimp. By the
structure of the group of units ik;, we obtain the assertion.) Since Qdl{(k)/L(k))
is isomorphic to a quotient ofC/q)*, we seeMq(k) = L(K).

We note that thenth layerk, of k/k is the maximal real subfield o® (s fpmn).
Hence by using the same argument, we also Mgék,) = L(k,) for all n > 1. This
implies thatMg(Ks) = L(K). ]

From the above arguments, it is sufficient to prove Theoreth dnder the
following conditions:
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(A) k is the maximal real subfield oK = Q(utpn), where f and m are positive in-
tegers andf is prime to p. Every prime lying abovey splits in K/k, and is not de-
composed irk,/k (the latter can be satisfied by takimg sufficiently large).

3. Properties of certain Kummer extensions

In this section, we shall give some key results to prove Témmot.1. Assume that
K, k, andq satisfy (A) in Section 2. We will construct certain infiniteukimer exten-
sions overK,,. We shall use some fundamental results given in Khare—\Wieeyer [9].

We define the terms Case NS and Case S as follows:

CAsSE NS: every prime lying abovey does not split inK /k.

CAseE S: every prime lying above splits in K /k.

Moreover, we use the following notation (in Sections 3 and 4):

J: complex conjugation,
d1, - - -» q,- prime ideals ofk lying aboveq,
P41, - .-, pio prime ideals ofk lying above p,

9, D.iJ (i=1,...,r): prime ideals ofK lying aboveg;,
B; (j =1,...,1) (unique) prime ideal oK lying abovep; (Case NS),
B 513]-3 (j=1,...,t): prime ideals ofK lying abovep; (Case S).
Following Greenberg [3], we denote Isythe number of primes df which is lying
above p and splits inK. Hence we see tha= 0 for Case NS, and =t for Case S.
Note that every prime lying above are totally ramified ink.,/k by the assumption
on k. Hences is also the number of primes &, which is lying abovep and splits
in Keo.

By the assumptionK,, contains allp"th roots of unity. For an element of K*,
we define

Koo("VX) = [ Koo ¥/X).

n>1

More precisely,K..(?3/X) is the union of all finite Kummer extensiori&,(%/x) for

n > 1 (note thatK, containsup). Similarly, for a finitely generated subgroup of

K>, we define the extensiol..("v/T)/Ks by adjoining all p"th roots of the elements

contained inT. As noted in [9], Koo(P/X) = K. if and only if x is a root of unity.
The following result is helpful to prove the results statedtlis section.

Theorem B (see Khare-Wintenberger [9, Lemma 2.5]Let T be a finitely gen-
erated subgroup of K, and S a finite set offinite) primes of K. LetZ be the sub-
group of Gal(K.(°v/T)/K«) generated by the inertia subgroups for the primes in S.
For a primet € S, let K, be the completion of K at. We denote byl the closure
of the diagonal image of T ifi], s Ktx. (Recall thatli: is the p-adic completion of
KJ.) Thenrank; 7 = rank; 7.
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We shall construct several Kummer extensions unramifiediadeif p, q} over K,
by following the method given in [6]. (See also Greenberg)[4let kP be the de-
composition field ofK /Q for q. By the assumptionk® is an imaginary abelian field
and kP : Q] =2r. Let Qq,..., Qr, Qj, ..., Q) be the primes okP lying below
Qi1,..., 9,97, ..., 9] respectively. We can take a positive integesuch that
e QU is a principal ideal generated hy, and
e «a1—1¢€ P for every prime idealP of kP lying above p.

We note thatQ (o € GalkP/Q)) is the complete set of primes kP lying aboveq,

and (Q‘lf)h = («f). We write all conjugates of; for Galk®/Q) as the following:
ozl,ozz,...,ar,af,ag,...,(xrj

(these are distinct elements becagssplits completely inkP). Moreover, we putg; =

aifol fori=1,...,r.

For Case S (i.ep splits in K/k), we definepy, ..., o € K* as follows. We can
take an integeh’ such thatp! = (7)) for all j =1,...,t. We putw; = |(Ok /%;)|
and pj = (j/m])"i for j =1,...,t.

DEFINITION. We put
Tq=Bili=1,...,r1),

which is a subgroup ofkP)* (and hence also a subgroup Kf<). For Case NS, we
put T = Ty. For Case S, we put

T=B.pli=1...,rj=1...,1).

Moreover, we putNg = Ko (*y/Tq) and N = K (*V/T). (Of course,N = Ng for
Case NS.)

Lemma 3.1. (1) N and N, are abelian extensions overk
(2) N/K and N;/K, are unramified outsidégp, q}.
(3) GalN/Ky) = ZT'** and Gal(Ng/K) = Z". (Recall that s= 0 for Case NS,
and s=t for Case §

Proof. (1) SinceJ acts onT as —1, thenJ acts on Gall/K,.,) and the ac-
tion is trivial. This implies thatN/k,, is an abelian extension. The assertion My
follows similarly.

(2) Note that all elements containedTn(resp.Ty) are{p,q}-units. HenceN /K
(resp.Ng/K) is unramified outsidg p, q}. (See, e.g., [9, Proposition 2.4].)

(3) It is easy to see thal is a free Z-module of rankr + s. Let T be the
closure of T in K*. Then theZ,-rank of T is r +s. As noted in [9] (see Remarks
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after the proof of [9, Lemma 2.2]), this fact implies that kapGal(N/K) =1 +s.
Since GalN/Ky) is generated by + s elements, we see that GHI(K,,) =~ Z?;“fs.
The assertion for GalNy/Ky) can be proven quite similarly. ]

Lemma 3.2 (cf. Greenberg [4]) (1) For every i=1,...,r, the unique prime
lying aboveg; is ramified in Ko ("V/Bi)/Koo-
(2) Ng N Mp(Ky) is a finite extension over K.

Proof. The assertions can be shown easily by using TheoreMoB that (2) is
already mentioned in [4, p.149]. ]

Proposition 3.3. LetZ, be the subgroup oGal(N/K.) generated by all inertia
groups for the prime lying above p. Thép has finite index inGal(N/K).

Proof. First, we consider Case NS. We assume fhatoes not split inK /k.
Hences =0, T = Tq, N = Ng, and there are just primes inK lying above p. By
Lemma 3.1, it is sufficient to show that rankZ, =r. Let 7y be the closure of the
diagonal image offy in ]_[tj:l K%j. By Theorem B, we see that rankZ, = rankg_ 7q,
hence we shall show rapk7, =r.

Recall thatk® is the decomposition field ok /Q for g, and Ty is also a subgroup
of (kP)*. We denote byP;, ..., P, the primes ofk® lying abovep (whereu <t). Let
7, be the closure of the diagonal image Bf in [],_, (k/g}.

We claim that rank, 74 = rankz, 7q. By the definition ofTq, every elemenk of
Ty satisfiesx —1 e P, forall h=1,...,u. Let uéh be the group of principal units of
kp. We see thaff; is contained in[],_, 4 . Let  be the homomorphism

u t
[Tu —~T1us,
h=1 =1

induced from the diagonal embeddityﬁ,h — Hmlph L{%. We can see thatis injective,
and (7y) = Tq. Then the claim follows.

We shall recall the argument given in Brumer's proof of Leldfe conjecture for
abelian fields (see [1], [15]). Assume that rapky < r. Then there are elements
ai, ..., a of Z, which satisfies

BB =1 in UL

forallh=1,...,u, anda # 0 with somei. Sincef = «; /aiJ andq; is a conjugate
of a1, we also see that

[] @ Y“=1in up
oeGalkP/Q)
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for all T € GalkP/Q), wherex(c) € Z, satisfyingx(c) # 0 with someo. Fix an
embeddingk,'31 — Cp. By taking the p-adic logarithm of the above equation, we see

> x(0)log,af” =0.

oeGalkP/Q)

This implies that the determinant of the matrix Q,oﬁ”l)a,r is 0.

On the other handys, ..., ar, @], ..., o are multiplicative independent ik®)*.
Then we can see that I9gs, . . ., log, o, log,, al, ., log, o are linearly independent
overQ. By Baker—Brumer’s theorem (see Brumer [1], Washington [Ieorem 5.29]),
they are also linearly independent ov@r in Cp. Hence the determinant of the ma-

trix (log,, a{’fl)m is not 0. (This follows from the argument given in the proof of [6,
Lemma 3.4] which uses [15, Lemma 5.26 (a)].) It is a contriémlic Then we con-
clude that

rankg, 7&’ =rankg, Tq =ranky, Zp =r.

Next, we shall consider Case S. Assume thasplits in K/k. That is,s =t and
the number of primes oK lying abovep is 2t. The outline of the proof is the same as
Case NS. Lefl be the closure of the diagonal image Bfin [T|_, KEXB,- < [Ty Ko

]

In this case, we shall show ragk7 =r +t.
Assume that rank 7 <r +t. Then there are elemends, ..., &t of Z, which
satisfies

BBs - B oY o ot =1 i Ky,
and

a1 pa a a a H 7
ﬂllﬂzz'” ?p1+1p2+2"'pt+t=1 in K;gf

forall 1 <j <t, anda # O with somei. However, vy (0j) # 0 (for 1< j <t)
by the definition ofpj. (Here, vy, is the normalized additive valuation df with
respect to)3;.) This fact implies that ,; must be 0 for 1< j <t. Hence we obtain
the equalities

PUBY B =1 in Uy,
and
,Bflﬂgz"'ﬂra{ =1 in ]/{ri;JJ
for all 1 < j <t. Recall thatk® is the decomposition field oK /Q for g. We denote

by Py, ..., P, the primes ofkP lying above p. As noted before (in the proof for
Case NS), we can shobfy — [y, Us; is injective. Hence we see

BEBy - BE =1 in Up
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forall 1 <h <u, anda # 0 with somei. The rest of the proof is quite same as that
of for Case NS. O

Since N is an abelian extension d,,, we can take a unique intermediate field
N* of N/ky which satisfies GaN*/ky) = Z$'*°. Similarly, we are also able to
take a unique intermediate fiel;” of Nq/k satisfying GalN; /k«) = Z$". (Note
that Ny € N*, and Ny~ = N for Case NS.) Then we obtain the following:

Proposition 3.4. N*/k, is unramified outside{p, q}, and a subgroup of
Gal(N* /k.,) generated by the inertia groups for the primes lying aboveap finite
index. Nj N Mp(ks)/Kso is a finite extension.

4. Proof of Theorem 1.1

We will use the same notation and symbols defined in Sectio®B. strategy of
the proof of Theorem 1.1 is similar to that of Theorem A. Hoer\wur situation has a
difficulty which comes from the fact that Gali(;(k)/K-) can be non-trivial. Assume
that K, k, andq satisfy (A) stated in Section 2.

We shall recall and define the following symbols:

Mpq(Kso): the maximal abelian prg- extension ofk, unramified outsidg p, g},
Mp(ks): the maximal abelian prg- extension ofk, unramified outsidep,
Mg(Kso): the maximal abelian prg- extension ofk,, unramified outsidey,
L(ky): the maximal unramified pre- abelian extension ok,

Xp,g(Ks) = Gal(Mp,q(Kso)/Kso),

X (ko) = Gal(Mp(keo) /Ko),

Xq(kee) = Gal(Mq(Keo)/Koo),

X (k) = Gal(L (Ko)/Kso)-

We also define the following notation:

' = Gal(K/K) (we often identifyI" with Gal(k./K)),

y: fixed topological generator df,

k: (p-adic) cyclotomic character df,

A=Zy[[TI 2Zp[[T]:1+T <y,

T=x()A+T)1-1€eA.

We note thatXp q(Ks), Xp(Kso), Xq(Kso), X(Kso), and GalMy(kso)/L(Ks)) are fi-
nitely generated torsiom-modules.

For a finitely generated torsion-module A, we denote by charA the character-
istic ideal of A. For finitely generated torsion-modules A and B, we write A ~ B
when they are pseudo-isomorphic. We denoteXi§ik )~ := X(K )’ the minus part
of X(Ky).

We recall the fact thaf (k) relates toX(K. )~ by Kummer duality (see, e.g.,
[15]). Let f(T) € A be a generator of charX(Ky)~. We note thatf(T) is not di-
visible by p becauseK is an abelian field (Ferrero—Washington’s theorem [2]).slt i
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known that f (T) € A generates char¥ (k). By a result of Greenberg [3], we know
that the power ofT dividing f(T) is T®, wheres = 0 for Case NS, and =t for
Case S. Hence the power af dividing f(T) is just TS. For Case NS, we see that
f(T) is prime toT.

Fori =1,...,t, letk,; be the completion ok, at the unique prime lying abovg,
andU*(kn;) the group of principal units irk,;. Let ¢(Ey ) be the diagonal image of
Ex, in [T, k3;, and&, the closure ofp(Ex,) N T U (kn,). We putd = lim [T, U (Kn i),
and & = I(@ &n, Where the projective limits are taken with respect to thenmonap-
pings. Recall the exact sequence:

0 — Gal(Mp(Kso)/L(kxo)) = Xp(Keo) = X(Kso) = O,

and the fact that Galp(k«)/L (k) = U/E (see [15, Corollary 13.6]). We note that
I(imul(kn,i) containsﬂnupn ~ A/T for Case S (see [13], etc.). Henté contains a
submodule which is isomorphic toA(T)®S. We also note that, has no non-trivial
Zy-torsion element (see, e.g., [14, Lemma 3.3]). From the abfacts, we obtain
the following:

Lemma 4.1. There is a pseudo-isomorphism of finitely generated torsion
A-modules

Gal(Mp(ks)/L (k) ~ (A/T)** & E,

where E is an elementary torsiok-module(see[7], [11, (5.3.9) Definition], [15, Chap-
ter 15]) whose characteristic ideal is prime {@). Moreovey the characteristic ideal of
X(Ks) is prime to(T). (See alsd14].)

Let N* and Nq+ be extensions ovek,, defined in Section 3 (see the paragraph
before Proposition 3.4).

Lemma 4.2 (see also Greenberg [4]) Mp q(Kx) = Mp(Kso) Ny

Proof. Although this fact is already shown in [4, pp.148148e will give a
detailed proof for a convenient to the reader (and our preddlightly different). Let
I\7Ip,q(koo) be the maximal prg extension ofk,, unramified outsidg p, q}. By The-
orem 3 of Iwasawa [8] and Ferrero—Washington's theorem [Rf see that
Gal(M na(Kso)/Kso) is a free prop group whose minimal number of generatorsiis+
r, whereA™ = rankz X(K)~. (Note that every prime lying abowe actually ramifies
in Mpq(Kso)/Ks by Lemma 3.2.) By taking the abelian quotient of G&lq(Kx)/Kso),
we see thattpq(ky) = ZE* " as aZj-module.
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On the other hand, we see thisl, (k) N Nq+/k0O is a finite extension by Propos-
ition 3.4. Hence

rankg, Gal(Mp(Keo)Ny /Koo) = rankg, Xp(keo) +1 =2~ +1.

Since N /K is unramified outsidé p, g}, we seeMpq(Kx) 2 Mp(Ks)Ng . Then
we have a surjection of finitely generatgg-modulesX p q(Kx) — Gal(Mp(Kao) Ny /Kxo)
whose kernel is finite. HoweveX q(k.) has no non-trivialZ ,-torsion element, and
hence we conclude thl, q(Kx) = Mp(Ks) Ny - ]

For a finitely generated torsion-module A, we can define the “multiplication by
T endomorphism” ofA, and we denote by\[T] (resp. A/T) its kernel (resp. cokernel):

0— A[T]—)AL A— A/T —0.

Note thatI" acts on Gallpq(k~)/L(Kx)) and then it is also a finitely generated
torsion A-module. LetM’ be the intermediate field dil, 4(ksx)/L(ks) corresponding

to T Gal(M n.q(Kx)/L(Kx)). Hence Gall’/L(Ks)) is isomorphic to

Gal(Mp,q(ke) /L (Kec))/T-

Lemma 4.3. Mg(K) is contained in M.

Proof. By class field theory, Ga{y(ks)/L (ko)) is isomorphic to a quotient of
Lim(m. As aA-module,(Ii_m(ﬁkn—/q\)X is isomorphic to A/T)®". HenceT anni-

hilates GalMq(kx)/L(k~)), and then Gar(/lq(koo)/L(koo))/T = Gal(Mg(Kx)/L (K)).
From the restriction map

Gal(Mp,q(ks)/L(Kx)) = Gal(Mg(ks)/L (Ks)) — O,
we obtain a surjection
Gal(Mp g(Ko)/ L (Ks))/T — Gal(Mg(Ka)/L (Ks)) — O.
By the definition ofM’, we seeMq(ks) € M’ O
Lemma 4.4. L(ko)N* is contained in M.

Proof. Note that Gal((kx)NT/L(ks)) = GalN*t/N* n L(ky)), and
Gal(N*T/N* N L(ky)) is a subgroup of GaN™* /k,,). By the construction oN™*, we
see thafl annihilates Gall* /k,), and hence it also annihilates Gafks.)N* /L (Kx)).
The rest of the proof is similar to that of Lemma 4.3. ]
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Lemma 4.5. M’/L(k,)N™ is a finite extension.

Proof. We shall show that rapkGal(M’/L (K,)) = rankz, Gal(L (Keo)N* /L (K)).-
By Proposition 3.3, we see thail™ N L(ky)/ks is a finite extension. Hence
rankz, Gal(L (ko)N*/L(K)) is equal to rang, Gal(N* /ky) =1 +s.

On the other handWp q(Kx) = Mp(kx)Ng by Lemma 4.2, andVlp(Kxo) N Ny /Ks
is a finite extension by Proposition 3.4. By using Lemma 4.&,0an obtain the follow-
ing pseudo-isomorphisms:

Xpa(kes) ~ Xp(keo) B Gal(N /keo) ~ (A/T)¥ @ E/,

where E’ is an elementary torsion-module whose characteristic ideal is prime 10).(
Hence, rank, Xpq(k)/T =71 +s.
The following exact sequence:

0 — Gal(Mp g(Kso)/L(Kx)) = Xpg(kec) = X(Kso) = O
induces the exact sequence:
X(keo)[T] = Gal(Mpq(kse)/L(k))/T = Xpq(kec)/T = X(kso)/T — 0.

Since chag X(ks) is prime to ) by Lemma 4.1, both ofX(kx)[T] and X(ks)/T
are finite. Hence rank Gal(L(k.)N"/L(ky)) is equal to rank, %p,q(koo)/'l" =
rankz, Gal(M’/L (K)). O

For a Galois groupG appeared below, we denof&G) by the subgroup ofG
generated by the inertia groups for all primes lying abqve

Lemma 4.6. rank;, Z(Gal(N*L(ky)/Kx)) =T + .

Proof. We shall take a prim® of ky, lying abovep. Let |» be the inertia subgroup
of Gal(N* /ky) for P. Similarly, let |}, be the inertia subgroup of GaI(* L (kx)/Kso)
for P. Then the restriction map induces a surjectign— I». Hence there is a surjection
Z(Gal(N* L (kx)/Ks)) = Z(Gal(N* /ky)). By Proposition 3.4, rank Z(Gal(N* /kx)) =
r+s. We see that rank Z(Gal(N " L (K« ) /Kx)) = 1 +8. Sincel (Kx,)/Ko is an unramified
extensionZ(Gal(N*L(ky)/Ks)) is contained in GaN *L(ky,)/L(K«)). By these results,
we see that rank Z(Gal(N"L(Kw)/Kx)) = +s. ]

We shall finish to prove Theorem 1.1. By Lemma 4.6,
rank;, Z(Gal(N*L(kw)/Kx)) =T +S.

Moreover, rank, Z(Gal(M’/kx,)) is alsor + s becauseM’/N*L (k) is a finite exten-
sion (Lemma 4.5). Note that rapkGal(M'/L(Kx)) isr +s. ThenZ(Gal(M'/Kky)) is
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a finite index subgroup of Ga{{’/L(k)). By Lemma 4.3,Mq(K) is an intermediate
field of M’/L(Kx). Since Mg(kx)/Ks is unramified at all primes lying abovp, we
can see thaMg(k) is contained in the fixed field df(Gal(M’/ks)). This implies that
Mg(Ks)/L(Kx) is a finite extension.

We have shown Theorem 1.1 fhrandq satisfying (A). Then, as noted in Section 2,
we obtain Theorem 1.1 for generalandg. O

5. Slight generalization of Theorem 1.1

In this section, we shall give a simple remark that the cswesf Lemma 2.1
holds under a (strict) condition. (In general, the convafskemma 2.1 does not hold.)

Lemma 5.1. Let K/k be a finite extension of algebraic number fields satisfying
k' Nkyw = k. Let

In: Ok /@)* — (O /Q)*

be the homomorphism induced from the natural embeddinGalfMq(k)/L(Kx)) is
finite and |k is an isomorphism for all nthen Gal(Mq(k.,)/L(K.,)) is also finite.

Proof. By the assumption, we obtain the following isomosphi

l: L@W%L@W

Hence the homomorphism

Gal(Mg(Ks)/ L (kso)) = Gal(Mq(k:.)/L(K..))

induced froml is surjective. The assertion follows. ]

We shall give an example satisfying the assumption thas an isomorphism for
all n. Let k be an algebraic number field, alkd a quadratic extension &. Assume
that every prime ofk lying aboveq is inert in ki, (that is, every prime lying above
g is inert ink” and ky). Letqy, ..., q, be the primes ok lying aboveq. We also
assume thap divides N(q;)—1 for all i, whereN(g;) is the absolute norm aof;. Then

(m is not trivial for all i, n. Under these assumptions, we obtain that
N(g; O,) — 1 = N(g; O,)* — 1 = (N(q; Ok,) — )(N(g; O,) + 1).

We assumed thap is odd, and hencéN(g; Ok,) + 1 is prime top. This implies that

|(W| = |(Ox,/q;)*| for all i, n. From this, we obtain that

(O /)*| = [ TI(Ok,/a)* = [ TI(Ow /a1 = I(Ox, /).
i=1 i=1
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Since I, is injective, we see that, is an isomorphism for alh. Under the above
assumptions, if GaNlq(k~)/L(Ks)) is finite, then Galilq(k.)/L(k}.)) is also finite
by Lemma 5.1. (For the case thik is an imaginary quadratic extension @f see
also [12], [6].)

The above lemma implies that Theorem 1.1 can be generalipedséme
non-abelian fields.

6. Zy-rank of Sramified lwasawa modules

We shall lead a formula of th& ,-rank of S-ramified lwasawa modules (for gen-
eral §) from Theorem 1.1. As same as Theorem 1.1, the strategy opmaf is quite
similar to that of given in [6].

In this section, we will use the following notation (similé® Greither's [5] or
Tsuji's [13] but slightly different):

p: fixed odd rational prime,

S: finite set ofrational primes which does not includp,
F: finite abelian extension o unramified atp,

K = F(up),

Kn = K(p),

Koo = Uns0 Kn: the cyclotomicZ p-extension ofK,

G= GaI(Koo/Qoo) = GaI(K/Q),

' = Gal(Ky/K),

G,: Sylow p-subgroup ofG,

Go: non-p-part of G (the maximal subgroup of consists of the elements having
prime to p order),

e y: fixed topological generator df,

e «: (p-adic) cyclotomic character,

e w: (p-adic) Teichmiiller character,

e J e G: complex conjugation.

Let x be a p-adic character ofG. We denote byQ,(x) the extension ofQ,
by adjoining the values of¢, and O, the valuation ring ofQ,(x). We putd, =
[Qp(x) : Qp]. Let O, be a free rank on&,-module such that € G acts asy (o).
For aZp[G]—moduIe_M, we putM, = M ®z,c) Oy, Which is called the -quotient”
in [13] (or the “x-part” in [5, p.451]). The functor taking thg-quotient is right exact.
We also put

1
e, = G Z trg, /0, (0))o ™ € Qp[G].
oeG

If p does not divide|G|, then M, = e, M. In general, we see

M, ®z, Qp = (M Rz, Qp)x =e, (M Rz, Qp)-
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For more informations about the-quotient, see [5], [13] for example.

We also give some simple remarks. FoZg[G]-module M, we putM* = M1£J,
Since p is odd, we have a decompositidl =~ Mt & M~. For a charactey of G,
we see that

M, =~ (Mt & M),
= (M" & M7) ®z,(6) Oy
=~ (M" ®z,61 0)) ® (M~ ®z,(6] Oy)
=M ®eM .

We claim that if x is odd, thenM;r is trivial. Let
(@®b) e M* ®z,16) O, = M.
Note thatJ acts trivially onM* and acts as-1 on O,. Hence the equality
@®b=Ua®b) =(@a®Jb)=(a® —-b)

implies that & ® 2b) = 2(a ® b) = 0. Sincep is odd, we obtain the claim. Similarly,
we can see that if is even, thenM, is trivial.
For a rational primeg distinct from p, we put

Rq = lim (Ok,/Q)".

Letr be the number of primes df, lying aboveq. Then rank Ry =r. Sinceq is
a rational primeG acts onR;. We shall determine thé& ,-rank of (Ry),.

First, we assume tha is unramified inK (i.e., the conductor of is prime to
q). Let D be the decomposition subgroup of G&l(/Q) for g. Then we can write
D = D, x Do, where Dy, = Zj, and Dq is a finite cyclic group whose order is prime
to p. We may regardDy as a subgroup 0Gy. Note that GalK,,/Q) is isomorphic
to I' x G, x Go. Then we can take a generator bf, of the from yP"o,, with some
m >0 andop € Gp. We also take a generatep € Go of Do. HenceD is a procyclic
group generated by pmopoo.

In the above choice of the generator Bf,, we can see than ando, is uniquely
determined. (Sincép, = Z,, every generator oD, is written by the from £ "op)*
with « € Z7.)

Lemma 6.1. Ry is a cyclic Zp[G][[I']]-module.

Proof. Fix a sufficiently large integer, such that every prime i, lying above
g remains prime inK, for all m > ng. Let n be an integer which satisfigs > ny.
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We put G = Gal(K,/Q). Let q be a prime inK, lying aboveq. We remark that
st C Ky and upe2 ¢ Ky, Under the assumption on, we can see that the Sylow
p-subgroup of Qk,/q)* is generated by (mod q) with a generatog g+ Of ppns1.

Let {gq, g0, ..., q;} be the set of primes oK, lying aboveq. We assumed thad
is unramified iNK,,/Q, thenqOxk, = q4q,---q,. We note that the action d&™ on
{91, 92, - - ., q;} is transitive. Take an element, of Ok, which satisfies

an=¢p (Mmodqy), an=1 (modgqy),...,an=1 (modg,).

Thenan (Mod q) is a generator of the Sylow-subgroup of Qk,/q)* as aZp[G(”)]-
module. Hence the Syloww-subgroup of Ok, /q)* (which is isomorphic tc(O/Kn_/q\)X)
is a cyclic Z ,[G™]-module.

We can choose a suitable set of generatarg such thatNk, /k, (em) = on (ModQq)
for al m > n > ng. Hence we obtain the following commutative diagram with ex-
act raws:

Z,[G™] —— (Ok,/q)* — 0

l l

Z,[G"] —— (O, /q)* — O,

where the left vertical mapping is induced from the restiittmapping, and the right
vertical mapping is induced from the norm mapping. Sir(EeZMG(“)] = Zp[G]I[T]]
we obtain the assertion. O

Hence there is a surjectiop: Zp[G][[T]] — R;. We note thaty F’mopao acts on
Ry as«(y Pmapoo). (Recall thatk is the cyclotomic character.) Then the kernel¢of
contains an ideal generated " op00 — «(y P 0p00).

By taking the x-quotient, we obtain a surjectiop, : O,[[T']] — (Ry),, and the
kernel of g, containsy (opoo)y ™" — k(y P opo0). We may regard Ry), as aO,[[T]-
module via the isomorphisn®, [[T]] = O,[[T]] with y — 1+ T. We putA, =
O,[[T]], and ko = «(y) € 1+ pZp. Then we see thatRy), is annihilated by

for (T) = @+ T)P" — x Hopoo)c(opoo)el € A,.
Let B be the maximal ideal o©,. Sincexg € 14 pZy, if
X Hopoo)k(opoo) # 1 (mod ),
then fy, (T) is a unit polynomial, and henceRf), is trivial. We see

X Hopoo)k(opo0) = x "tk (00)x (o) = x " w(00) x Tk (ap)-
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Note thaty X« (op) is a p-power root of unity, and then it is congruent to 1 modo
Moreover, x ~*w (o) is a root of unity whose order is prime . Then x tw(og) = 1
(mod ) if and only if x~*w(op) = 1. Consequently, we showed thatyiftw(og) # 1,
then Ry), is trivial.

We can see that the number of charactersatisfying x —*w(oo) = 1 is just|G/Do.
(It is equal to the number of charactgrSof G satisfyingx'(Do) = 1.) Though if Ry),
is non-trivial, it is annihilated byfg , (T), and then rank (Ry), < d, p™. By considering
these facts, we obtain the inequality:

r = rankg, Ry = Z rankg, (Ry)y < de p™ = |G/Do| x p™,
X X

where x runs all representatives of the conjugacy classes satisfyi *w(og) = 1 in
the above sums. (We give some remarks. The second equatiowsfdrom the fact
that Ry ®z,Qp = D, (Rg)x ®z,Qp. Moreover,3_, d, = [G/Dol, andm is independent
of x.)

We claim thatr = |G/Dg| x p™. Let KP be the decomposition field df..,/Q for
g. Then thep-part of [KP : Q] is equal to thep-part of [K,, : Q]. Hence this is equal
to |Gp| x p™. On the other hand, the ngmpart of [KP : Q] is equal to|Go/Dol.
We see

[KP: Q] = |Gp| x p™ x |Go/Do| = |G/Do| x p™.

Sincer = [KP : Q], the claim follows.

From this claim, we see that the above inequality is just amkty. Hence for all
charactery satisfying x ‘w(oo) = 1, the Z y-rank of (R;), is d, p™. We also note that
«(op) = 1 becauser, fixes all elements ofipn for all n. Hence, wheny tw(oo) = 1,
we can write

fax(T) =@+ T = x Yo"

Next, we consider the case thatis ramified inK. Let | be the inertia subgroup
of Gal(K/Q) for g, andK' the inertia field ofK /Q for q. We remark that all primes
lying aboveq are totally ramified inK,/K. Hence(Ox,/q)* = (Ox;/q)* for all n.
We put

R, = lim (O /a)*.

Sinceq is unramified iNQ(up~) (Where up~ = (J,>1 pn), We see thak !, contains
ip<. Then the proof of Lemma 6.1 also works fit. .

Let x be a character oB. If x(1) =1, theny is also a character of GH( /Q),
and hence Ry), = (R(;)X. From this, if x(I) # 1, we see thatRy), is finite because

rankg, Ry = rankg, R} = Z rankg, (Ry), = Z rankg, (Ry)y-

x(NH=1 x(1)=1
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We also determine the structure d®y), for a general case. Assume thgfl) = 1.
Then x (o) for o € Gal(K'/Q) = G/I is well defined. Repeating the argument given
in the unramified case foK', we can takesg and o, for g. (They are determined
modulo I, ande, (mod |) is uniquely determined. Hence(o,) is dependent only on
d.) We also assume thatw(oo) = 1. SinceZy[G/I], =~ O,, we can take

fo (T) = A4+ T)" — x o)

as an element o, = O,[[T]]. We see that R;), is annihilated byf,,, (T) because

(R)y = (Ry)y-

As a consequence, we obtained the following result (see [@lsbemma 2.1]).

Proposition 6.2. Let x be a character of G. TheR;), ®z, Qp is non-trivial
if and only if x satisfiesy(1) = 1 and x *w(oo) = 1. Moreover if (Ry), ®z, Qp is
non-trivial, then

(Rg)x ®z, Qp = Ay/ fqx(T) ®z, Qp,
and rankz (Rq), = d, p™.
By class field theory, we have the following exact sequence:
Ex = Ry = Gal(Mg(Kx)/L(K«)) = 0,

where E, = I(m EKH. Assume thaty is a non-trivial evencharacter ofG satisfying
x(1) =1 and x tw(og) = 1. By taking thex-quotient (it is right exact), we see

(Exc)y = (Rg)y = Gal(Mg(Kwo)/L(Koo)), — 0
is exact. Since Ry), is annihilated byf, ,(T), we obtain the exact sequence:
(Exc)x/ fa.x(T) = (Rg)y = Gal(Mg(Kx)/L(Kx)), — 0.
By tensoring withQ,, we also obtain the exact sequence:
(Eco)x/ fa.x(T) ®z, Qp = (Ra)x ®z, Qp = Gal(Mg(Koo)/L(Koo))x ®z, Qp — 0.
We shall show the following result (see also [6]).

Proposition 6.3. For every non-trivial even charactey of G satisfyingy (1) =1
and x w(oo) = 1, the mapping

(Eoo)x/fq,x(T) ®Zp Qp g (Rq)x ®Zp Qp

appeared above is an isomorphism.
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Proof. As we noted before, we have a decomposition
Gal(Mq(Kw)/L(Keo))y 2= Gal(Mg(Keo)/L(Kx))y & GalMg(Koo)/L(Keo)) -

Moreover, we already know that GMg(Kw)/L(Kx)), is trivial for every even char-
acter x. Let K* be the maximal real subfield dk. Since p is odd, we see that
Gal(Mq(Kx)/L(Kx))™ is isomorphic to Galflq(K1)/L(KS)). Hence we obtain

Gal(Mg(Kx)/L(Kxo)), = Gal(Ma(KE)/L(KL)),

for every x satisfying the assumption. (We note thatcan be viewed as a character
of Gal(K£/Qx).)

By Theorem 1.1, we see that GBI§(K1)/L(KY)) is finite, and hence we see
that GalMq(K«)/L(Kw)), ®z, Qp is trivial. From this, we have a surjection

(Eoo)x/fq,x(T) ®Zp Qp - (Rq)x ®Zp Qp-

By Proposition 6.2, diiy,(Rq), ®z, Qp = d, p™. We shall calculate the dimension of
(Ecc)x/ fa,x(T) ®z, Qp.

Let U be the projective limit of semi local units iK.,/K for the primes lying
above p, and £ the closure of the diagonal image of global units. (For thecise
definition, see Section 4.) Since Leopoldt’s conjectureaiidvfor all K, (see [1], [15]),
we see that' is isomorphic toE. It is known thatf, ®z, Q) is a free cyclicA, ®z,
Qp-module. (See [14, Lemma 3.5], [5].) Then we see

€/ fax(T)) ®z, Qp = (£, ®z, Qp)/(fq,(T) ® 1)
= (Ay ®z, Qp)/(fa,(T) ® 1)
= (Ay/ . (T)) ®z, Qp.

Hence we showed that digf(Ex), / fq,,(T) ®z,Qp = d, p™. This implies the assertion.
O

Here we shall state our main result. Lgtbe an arbitrary character db. Let

S be a finite set of rational primes which does not incluge We put Xg(Ky) =

Gal(Ms(Kw)/Kuo), Where Ms(Ky)/Ks is the maximal abelian prg- extension un-
ramified outsideS. In this case,G acts onXg(K.,) and hence itsy-quotient can be
considered. We shall give a formula of ranks(K),. For a primeq € S, let I4 be

the inertia subgroup oG for g. We also writeop,q, 004, My as oy, og, m for q (de-

fined before), respectively. (Recall thapq and opq are determined moduldy.) We

also recall thatco = «(y).
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Theorem 6.4. We put

S, =1{qeS|x(ly) =1, x wloog) = 1}
and
far(T) = L+ T)P™ = x Yopakl™ € O,[[T]].

If S, is not emptythen

rankg, Xs(Koo)y = rankz, X(Koo), + Z d, p™ - P,,
qeS,
where

l (X = CU),
P, = {0 (x: odd x # w),
d, degF(T) (x: even.
and F(T) = lcmges, fqx(T). If S, is empty thenrankg, Xs(K), = rankg, X(Ky)y-

Proof. We may assume th&is not empty. Recall the following exact sequence:

Ex = P Ry — Gal(Ms(K)/L(Kx)) = 0
qesS

which is stated in Section 2. By Proposition 6.2, we see tiR),(®z, Qp is non-
trivial if and only if g € S,. Hence, ifS, is empty, then GaNis(K)/L(Kx)), ®z,
Qp is trivial, and rank, Xs(Ky), = rankz, X(K«),. In the following, we assume
that S, is not empty. By taking the-quotient and tensoring witlQ,, we have the
exact sequence:

(Ex)y ®z, Qp = ED(Ry)x ®z, Qp — GalMs(Kxo)/L(K))x ®z, @p — O.
qes,

It is sufficient to determine the cokernel gf.

Since p is odd, we have a decompositidh,, =~ E, @ EZ, and we can se&_ x~
I(imupn. We also note thatH.,), =~ (El), & (E.), for a charactery of G. It was
already shown that if is an odd character, therEf), is trivial, and hence E.), =
(I(m Hpn)y-

Assume thaty = w. Then Ey), = I(m e, and the natural mappinilimpn —
@qesu Ry is injective. We also note that, = 1. From these facts, we see that

ranks, Xs(Koo)o = rankg, X(Ko)o + Y _ rankg, (Rq), — 1

qes,

= rankz, X(Kw)o + Y p™ — 1.
qes,
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Assume thaty is odd andy # . Then Ew), ®z, Qp is trivial. Hence we see

rank, Xs(Koo), = rankg, X(Keo)y + Z d, p™.
qes,

Let ¢ be the trivial character. Then we can see that
Xs(K)e ®z, Qp = Xs(Qx) ®z, Qp,  X(Kx): ®z, Qp = X(Qu) Rz, Qp.
Hence rank, X(K«). = 0. We also note that
S ={g € S|w(og =1 ={qe S|g=1 (mod p)}.

By the results forQ,, (see [6]), we see thaKs(Qw) = X5 (Q), and

ranky, Xs(Ko)e = Y p™ —max(p™ | g € S}.
gqes

Sinced, = 1 and fq.(T) = (L + T)P™ —K(fmq, we see that
max{ p™ | g € S} = d, degF(T).
From these facts, the formula

rankg, Xs(Ko): = rankz, X(Ko): + Y _ d.p™ — d, degF(T)
qes

is certainly satisfied.

Finally, assume thag is non-trivial and even. By Proposition 6.3, we see that

(Eoo)x/fq,x(T) ®Zp Qp g (Rq)x ®Zp Qp

is an isomorphism. This isomorphism implies that

(Exo)y/F(T) ®z, Qp = EP(Ry), ®2z, Qp
qes,

is injective (see also [6]). By using the same argument dtatethe proof of Propos-
ition 6.3, we obtain that dig),((Ex),/F(T))®z,Qp = d, degF(T). Hence we see that

rankg, Xs(Koo)y = rankz, X(Keo), + »_ dyp™ —d, degF(T).
qes,

We have shown the formula for all cases.
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REMARK. Assume thaip does not dividgG|. Then fq ,(T) = (1+T)P™ =«
and hence de§(T) = max{p™ | g € S;}. Moreover, we can see tha™ is equal to
the number of primes o, lying aboveq.

EXAMPLE 6.5. We putK = Q(up), the pth cyclotomic field (recall thap is an
odd prime). In this case, every character@f= Gal(K /Q) is written by the forme'
with 0 <i < p—2. Note also that] € S is unramified inK. We may identifyG with
(z/pzZ)*, andopq with g (mod p). Then we can see

Sy ={geS|wt(00g) =1} ={qe S|i=1 (mod f)},

where f is the order ofg in (Z/pZ)*. Assume thatS, is not empty. We put

1 (=1,
pi) — {o (i: odd,i # 1),
maxp™ | qe S,} (i: even).

By Theorem 6.4, we see

rankzp XS(Koo)wi = Ay + Z pmq _ P(i)’
ges;i

where 1, = rankg, X(Ky). is the o'-part of the (unramified) Iwasawa-invariant
of Kyo/K.

EXAMPLE 6.6. Letk be a real quadratic field with conductdr(the case thap
dividesd is allowed). We putK = k(up). Let x be the quadratic character & =
Gal(K /Q) corresponding tk. We may regardy (resp.w) as a Dirichlet character
modulod (resp. modulop). In this case, we see

S ={aeS|x@#0, x(a) = »@)}.

HenceS, consists of the primes % which satisfy:

e (=1 (modp) andq splits ink, or

e (=-1(modp)andq is inert ink.

Assume thatS, # @. We putP = maxp™ | q € S}, then we obtain the formula

rankz, Xs(K«), = rankg, X(Ku), + Z p™ — P.
aes,

Note that rank, X(K), is equal to the (unramified) Iwasavkainvariant ofk../k. (If
Greenberg's conjecture is true ferand p, then rank, X(K), = 0.) Since

rankz, Xs(kso) = rankz, Xs(Keo)y + rankz, Xs (Qoo)
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(wheree is the trivial character), we can obtain a formula of #hg-rank of Xs(ks)
(including ranlg, X(Kw)y)-

EXAMPLE 6.7. Let F/Q be a cyclic extension of degrep. Assume thatp is
unramified inF. We putK = F(up), and fix a characteg of G = Gal(K/Q) satis-
fying KXW = F. Let o be a fixed generator of Gd#l{,/Q.,) = Gal(F/Q), and F()
the fixed field of F., by (yo') for 0 <i < p—1 (henceF© = F). For simplicity, we
assume that every prime & is not decomposed i®,,. Hence ifq € S is unramified
in F, then the splitting field ofF,,/Q for g must be one off @, ..., or F(P-1), By
the definition of x, we see thaty (o) is defined, and we pug (c) = ¢ (note that
¢ is a primitive pth root of unity). In this case, we obtain that

S, ={0eS|q=1(mod p), q is not ramified inF}.

Under the assumption fog, we seemy = O for all g € S,. Whenq € S, splits in
FO, we see thatY(opq) = xo') = ¢', and hencefy,(T) = 1+ T) — ¢'ko. We
note that ifi # j, then (14+T)—¢'ko and (1+ T) — ¢l kg are relatively prime. We put

S.i={qeS |q splitsin FV},

for 0<i < p—1. Assume thatS, # . From the above facts, we see that &g )
is equal to the number of non-emp§; ;’s. That is,

degF(T) = |¥|, where W ={i |0<i=<p-1, S #09}.

Sinced, = p—1, we see

ranks, Xs(Koo), = rankg, X(Ko), +(p—1) > _(IS.il - 1).

ievw
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