AFFINE AND DEGENERATE AFFINE BMW ALGEBRAS: THE CENTER

Zaju DaUGHERTY, Arun RAM and Rahbar VIRK

(Received October 2, 2011, revised August 7, 2012)

Abstract

The degenerate affine and affine BMW algebras arise naturally in the context of Schur-Weyl duality for orthogonal and symplectic Lie algebras and quantum groups, respectively. Cyclotomic BMW algebras, affine Hecke algebras, cyclotomic Hecke algebras, and their degenerate versions are quotients. In this paper the theory is unified by treating the orthogonal and symplectic cases simultaneously; we make an exact parallel between the degenerate affine and affine cases via a new algebra which takes the role of the affine braid group for the degenerate setting. A main result of this paper is an identification of the centers of the affine and degenerate affine BMW algebras in terms of rings of symmetric functions which satisfy a "cancellation property" or "wheel condition" (in the degenerate case, a reformulation of a result of Nazarov). Miraculously, these same rings also arise in Schubert calculus, as the cohomology and K-theory of isotropic Grassmannians and symplectic loop Grassmannians. We also establish new intertwiner-like identities which, when projected to the center, produce the recursions for central elements given previously by Nazarov for degenerate affine BMW algebras, and by Beliakova-Blanchet for affine BMW algebras.

1. Introduction

The degenerate affine BMW algebras \mathcal{W}_{k} and the affine BMW algebras W_{k} arise naturally in the context of Schur-Weyl duality and the application of Schur functors to modules in category \mathcal{O} for orthogonal and symplectic Lie algebras and quantum groups (using the Schur functors of [41], [1], and [28]). The degenerate algebras \mathcal{W}_{k} were introduced in [27] and the affine versions W_{k} appeared in [28], following foundational work of [17]-[19]. The representation theory of \mathcal{W}_{k} and W_{k} contains the representation theory of any quotient: in particular, the degenerate cyclotomic BMW algebras $\mathcal{W}_{r, k}$, the cyclotomic BMW algebras $W_{r, k}$, the degenerate affine Hecke algebras \mathcal{H}_{k}, the affine Hecke algebras H_{k}, the degenerate cyclotomic Hecke algebras $\mathcal{H}_{r, k}$, and the cyclotomic Hecke algebras $H_{r, k}$ as quotients. In [31, 34, 35, 2, 8] and other works, the representation theory of the affine BMW algebra is derived by cellular algebra techniques. As indicated in [28], the Schur-Weyl duality also provides a path to the representation theory of the affine BMW algebras as an image of the representation theory of category \mathcal{O} for orthogonal and symplectic Lie algebras and their quantum groups
in the same way that the affine Hecke algebras arise in Schur-Weyl duality with the enveloping algebra of $\mathfrak{g l}_{n}$ and its Drinfeld-Jimbo quantum group.

In the literature, the algebras \mathcal{W}_{k} and W_{k} have often been treated separately. One of the goals of this paper is to unify the theory. To do this we have begun by adjusting the definitions of the algebras carefully to make the presentations match, relation by relation. In the same way that the affine BMW algebra is a quotient of the group algebra of the affine braid group, we have defined a new algebra, the degenerate affine braid algebra which has the degenerate affine BMW algebra and the degenerate affine Hecke algebras as quotients. We have done this carefully, to ensure that the Schur-Weyl duality framework is completely analogous for both the degenerate affine and the affine cases. We have also added a parameter ϵ (which takes values ± 1) so that both the orthogonal and symplectic cases can be treated simultaneously. Our new presentations of the algebras \mathcal{W}_{k} and W_{k} are given in Section 2.

In Section 3 we consider some remarkable recursions for generating central elements in the algebras \mathcal{W}_{k} and W_{k}. These recursions were given by Nazarov [27] in the degenerate case, and then extended to the affine BMW algebra by Beliakova-Blanchet [4]. Another proof in the affine cyclotomic case appears in [35, Lemma 4.21] and, in the degenerate case, in [2, Lemma 4.15]. In all of these proofs, the recursion is obtained by a rather mysterious and tedious computation. We show that there is an "intertwiner" like identity in the full algebra which, when "projected to the center" produces the Nazarov recursions. Our approach provides new insight into where these recursions are coming from. Moreover, the proof is exactly analogous in both the degenerate and the affine cases, and includes the parameter ϵ, so that both the orthogonal and symplectic cases are treated simultaneously.

In Section 4 we identify the center of the degenerate and affine BMW algebras. In the degenerate case this has been done in [27]. Nazarov stated that the center of the degenerate affine BMW algebra is the subring of the ring of symmetric functions generated by the odd power sums. We identify the ring in a different way, as the subring of symmetric functions with the Q-cancellation property, in the language of Pragacz [29]. This is a fascinating ring. Pragacz identifies it as the cohomology ring of orthogonal and symplectic Grassmannians; the same ring appears again as the cohomology of the loop Grassmannian for the symplectic group in [24, 22]; and references for the relationship of this ring to the projective representation theory of the symmetric group, the BKP hierarchy of differential equations, representations of Lie superalgebras, and twisted Gelfand pairs are found in [25, Chapter II §8]. For the affine BMW algebra, the Q-cancellation property can be generalized well to provide a suitable description of the center. From our perspective, one would expect that the ring which appears as the center of the affine BMW algebra should also appear as the K-theory of the orthogonal and symplectic Grassmannians and as the K-theory of the loop Grassmannian for the symplectic group, but we are not aware that these identifications have yet been made in the literature.

The recent paper [31] classifies the irreducible representations of W_{k} by multisegments, and the recent paper [6] adds to this program of study by setting up commuting actions between the algebras \mathcal{W}_{k} and W_{k} and the enveloping algebras of orthogonal and symplectic Lie algebras and their quantum groups, showing how the central elements which arise in the Nazarov recursions coincide with central elements studied in Baumann [3], and providing an approach to admissibility conditions by providing "universal admissible parameters" in an appropriate ground ring (arising naturally, from Schur-Weyl duality, as the center of the enveloping algebra, or quantum group). We would also like to mention the recent paper of A. Sartori [36] which establishes similar results in the case of the degenerate affine walled Brauer algebra and the recent work of M. Ehrig and C. Stroppel [7] which studies these algebras in the context of categorification.

2. Affine and degenerate affine BMW algebras

In this section, we define the affine Birman-Murakami-Wenzl (BMW) algebra W_{k} and its degenerate version \mathcal{W}_{k}. We have adjusted the definitions to unify the theory. In particular, in Section 2.2, we define a new algebra, the degenerate affine braid algebra \mathcal{B}_{k}, which has the degenerate affine BMW algebras \mathcal{W}_{k} and the degenerate affine Hecke algebras \mathcal{H}_{k} as quotients. The motivation for the definition of \mathcal{B}_{k} is that the affine BMW algebras W_{k} and the affine Hecke algebras H_{k} are quotients of the group algebra of affine braid group $C B_{k}$.

The definition of the degenerate affine braid algebra \mathcal{B}_{k} also makes the Schur-Weyl duality framework completely analogous in both the affine and degenerate affine cases. Both \mathcal{B}_{k} and $C B_{k}$ are designed to act on tensor space of the form $M \otimes V^{\otimes k}$. In the degenerate affine case this is an action commuting with a complex semisimple Lie algebra \mathfrak{g}, and in the affine case this is an action commuting with the Drinfeld-Jimbo quantum group $U_{q} \mathfrak{g}$. The degenerate affine and affine BMW algebras arise when \mathfrak{g} is $\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{n}$ and V is the first fundamental representation and the degenerate affine and affine Hecke algebras arise when \mathfrak{g} is $\mathfrak{g l}_{n}$ or $\mathfrak{s l}_{n}$ and V is the first fundamental representation. In the case when M is the trivial representation and \mathfrak{g} is $\mathfrak{s o}_{n}$, the "Jucys-Murphy" elements y_{1}, \ldots, y_{k} in \mathcal{B}_{k} become the "Jucys-Murphy" elements for the Brauer algebras used in [27] and, in the case that $\mathfrak{g}=\mathfrak{g l}_{n}$, these become the classical Jucys-Murphy elements in the group algebra of the symmetric group. The Schur-Weyl duality actions are explained in [6].
2.1. The affine BMW algebra $\boldsymbol{W}_{\boldsymbol{k}}$. The affine braid group B_{k} is the group given by generators $T_{1}, T_{2}, \ldots, T_{k-1}$ and $X^{\varepsilon_{1}}$, with relations

$$
\begin{array}{rlrl}
T_{i} T_{j} & =T_{j} T_{i}, & & \text { if } \quad j \neq i \pm 1, \\
T_{i} T_{i+1} T_{i} & =T_{i+1} T_{i} T_{i+1}, & \text { for } \quad i=1,2, \ldots, k-2, \\
X^{\varepsilon_{1}} T_{1} X^{\varepsilon_{1}} T_{1} & =T_{1} X^{\varepsilon_{1}} T_{1} X^{\varepsilon_{1}}, & & \\
X^{\varepsilon_{1}} T_{i} & =T_{i} X^{\varepsilon_{1}}, & & \text { for } \quad i=2,3, \ldots, k-1 . \tag{2.4}
\end{array}
$$

Let C be a commutative ring and let $C B_{k}$ be the group algebra of the affine braid group. Fix constants

$$
q, z \in C \quad \text { and } \quad Z_{0}^{(l)} \in C, \quad \text { for } \quad l \in \mathbb{Z}
$$

with q and z invertible. Let $Y_{i}=z X^{\varepsilon_{i}}$ so that

$$
\begin{equation*}
Y_{1}=z X^{\varepsilon_{1}}, \quad Y_{i}=T_{i-1} Y_{i-1} T_{i-1}, \quad \text { and } \quad Y_{i} Y_{j}=Y_{j} Y_{i}, \quad \text { for } \quad 1 \leq i, j \leq k \tag{2.5}
\end{equation*}
$$

In the affine braid group

$$
\begin{equation*}
T_{i} Y_{i} Y_{i+1}=Y_{i} Y_{i+1} T_{i} \tag{2.6}
\end{equation*}
$$

Assume that $q-q^{-1}$ is invertible in C and define E_{i} in the group algebra of the affine braid group by

$$
\begin{equation*}
T_{i} Y_{i}=Y_{i+1} T_{i}-\left(q-q^{-1}\right) Y_{i+1}\left(1-E_{i}\right) \tag{2.7}
\end{equation*}
$$

The affine $B M W$ algebra W_{k} is the quotient of the group algebra $C B_{k}$ of the affine braid group B_{k} by the relations

$$
\begin{gather*}
E_{i} T_{i}^{ \pm 1}=T_{i}^{ \pm 1} E_{i}=z^{\mp 1} E_{i}, \quad E_{i} T_{i-1}^{ \pm 1} E_{i}=E_{i} T_{i+1}^{ \pm 1} E_{i}=z^{ \pm 1} E_{i} \tag{2.8}\\
E_{1} Y_{1}^{l} E_{1}=Z_{0}^{(l)} E_{1}, \quad E_{i} Y_{i} Y_{i+1}=E_{i}=Y_{i} Y_{i+1} E_{i} \tag{2.9}
\end{gather*}
$$

The affine Hecke algebra H_{k} is the affine BMW algebra W_{k} with the additional relations

$$
\begin{equation*}
E_{i}=0, \quad \text { for } \quad i=1, \ldots, k-1 \tag{2.10}
\end{equation*}
$$

Fix $b_{1}, \ldots, b_{r} \in C$. The cyclotomic BMW algebra $W_{r, k}\left(b_{1}, \ldots, b_{r}\right)$ is the affine BMW algebra W_{k} with the additional relation

$$
\begin{equation*}
\left(Y_{1}-b_{1}\right) \cdots\left(Y_{1}-b_{r}\right)=0 \tag{2.11}
\end{equation*}
$$

The cyclotomic Hecke algebra $H_{r, k}\left(b_{1}, \ldots, b_{r}\right)$ is the affine Hecke algebra H_{k} with the additional relation (2.11).

Since the composite map $C\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right] \rightarrow C B_{k} \rightarrow W_{k} \rightarrow H_{k}$ is injective and the last two maps are surjections, it follows that the Laurent polynomial ring $C\left[Y_{1}^{ \pm 1}, \ldots\right.$, $\left.Y_{k}^{ \pm 1}\right]$ is a subalgebra of $C B_{k}$ and W_{k}.

Proposition 2.1. The affine BMW algebra W_{k} coincides with the one defined in [28].

Proof. In [28] the affine BMW algebra is defined as the quotient of the group algebra of the affine braid group by the relations in (2.8) which are [28, (6.3b) and
(6.3c)], the first relation in (2.9) which is [28, (6.3d)], the second relation in (2.9) for $i=1$ which is [28, (6.3e)], and the second relation in (2.15) below where, in [28], the element E_{i} is defined by the first equation in (2.13) below.

Working in W_{k}, since $Y_{i+1}^{-1}\left(T_{i} Y_{i}\right) Y_{i+1}=Y_{i+1}^{-1} Y_{i} Y_{i+1} T_{i}=Y_{i} T_{i}$, conjugating (2.7) by Y_{i+1}^{-1} gives

$$
\begin{equation*}
Y_{i} T_{i}=T_{i} Y_{i+1}-\left(q-q^{-1}\right)\left(1-E_{i}\right) Y_{i+1} . \tag{2.12}
\end{equation*}
$$

Left multiplying (2.7) by Y_{i+1}^{-1} and using the second identity in (2.5) shows that (2.7) is equivalent to $T_{i}-T_{i}^{-1}=\left(q-q^{-1}\right)\left(1-E_{i}\right)$, so that

$$
\begin{equation*}
E_{i}=1-\frac{T_{i}-T_{i}^{-1}}{q-q^{-1}} \quad \text { and } \quad T_{i} T_{i+1} E_{i} T_{i+1}^{-1} T_{i}^{-1}=E_{i+1} \tag{2.13}
\end{equation*}
$$

Thus the E_{i} in W_{k} coincides with the E_{i} used in [28].
Multiply the second relation in (2.13) on the left and the right by E_{i}, and then use the relations in (2.8) to get

$$
E_{i} E_{i+1} E_{i}=E_{i} T_{i} T_{i+1} E_{i} T_{i+1}^{-1} T_{i}^{-1} E_{i}=E_{i} T_{i+1} E_{i} T_{i+1}^{-1} E_{i}=z E_{i} T_{i+1}^{-1} E_{i}=E_{i},
$$

so that

$$
\begin{equation*}
E_{i} E_{i \pm 1} E_{i}=E_{i}, \quad \text { and } \quad E_{i}^{2}=\left(1+\frac{z-z^{-1}}{q-q^{-1}}\right) E_{i} \tag{2.14}
\end{equation*}
$$

is obtained by multiplying the first equation in (2.13) by E_{i} and using (2.8). As one can construct representations on which E_{1} acts non-trivially, the first relation in (2.9) implies

$$
\begin{equation*}
Z_{0}^{(0)}=1+\frac{z-z^{-1}}{q-q^{-1}} \quad \text { and } \quad\left(T_{i}-z^{-1}\right)\left(T_{i}+q^{-1}\right)\left(T_{i}-q\right)=0 \tag{2.15}
\end{equation*}
$$

since $\left(T_{i}-z^{-1}\right)\left(T_{i}+q^{-1}\right)\left(T_{i}-q\right) T_{i}^{-1}=\left(T_{i}-z^{-1}\right)\left(T_{i}^{2}-\left(q-q^{-1}\right) T_{i}-1\right) T_{i}^{-1}=\left(T_{i}-\right.$ $\left.z^{-1}\right)\left(T_{i}-T_{i}^{-1}-\left(q-q^{-1}\right)\right)=\left(T_{i}-z^{-1}\right)\left(q-q^{-1}\right)\left(-E_{i}\right)=-\left(z^{-1}-z^{-1}\right)\left(q-q^{-1}\right) E_{i}=0$. This shows that the relation [28, (6.3a)] follows from the relations in W_{k}.

To complete the proof let us show that the relations in W_{k} follow from [28, (6.3a-e)]. Given the equivalence of the definitions of E_{i} as established in (2.13), and the coincidences of the relations [28, (6.3b-e)] with the relations in (2.8) and (2.9) it only remains to show that the second set of relations in (2.9), for $i>1$ follow from [28, (6.3a-e)]. But this is established by [28, (6.12)] and the identity

$$
E_{i} Y_{i} Y_{i+1}=\left(1-\frac{T_{i}-T_{i}^{-1}}{q-q^{-1}}\right) Y_{i} Y_{i+1}=Y_{i} Y_{i+1}\left(1-\frac{T_{i}-T_{i}^{-1}}{q-q^{-1}}\right)=Y_{i} Y_{i+1} E_{i}
$$

which follows from (2.6).

The relations

$$
\begin{align*}
E_{i+1} E_{i} & =E_{i+1} T_{i} T_{i+1}, \quad E_{i} E_{i+1}=T_{i+1}^{-1} T_{i}^{-1} E_{i+1} \tag{2.16}\\
T_{i} E_{i+1} E_{i} & =T_{i+1}^{-1} E_{i}, \quad \text { and } \quad E_{i+1} E_{i} T_{i+1}=E_{i+1} T_{i}^{-1} \tag{2.17}
\end{align*}
$$

are consequences of (2.8), and the second relation in (2.13).
2.2. The degenerate affine braid algebra \mathcal{B}_{k}. Let C be a commutative ring, and let S_{k} denote the symmetric group on $\{1, \ldots, k\}$. For $i \in\{1, \ldots, k\}$, write s_{i} for the transposition in S_{k} that switches i and $i+1$. The degenerate affine braid algebra is the algebra \mathcal{B}_{k} over C generated by

$$
\begin{equation*}
t_{u} \quad\left(u \in S_{k}\right), \quad \kappa_{0}, \kappa_{1}, \quad \text { and } \quad y_{1}, \ldots, y_{k} \tag{2.18}
\end{equation*}
$$

with relations
(2.20) $\quad \kappa_{0} t_{s_{i}}=t_{s_{i}} \kappa_{0}, \quad \kappa_{1} t_{s_{1}} \kappa_{1} t_{s_{1}}=t_{s_{1}} \kappa_{1} t_{s_{1}} \kappa_{1}, \quad$ and $\quad \kappa_{1} t_{s_{j}}=t_{s_{j}} \kappa_{1}, \quad$ for $j \neq 1$,
(2.21) $\quad t_{s_{i}}\left(y_{i}+y_{i+1}\right)=\left(y_{i}+y_{i+1}\right) t_{s_{i}}, \quad$ and $\quad y_{j} t_{s_{i}}=t_{s_{i}} y_{j}, \quad$ for $\quad j \neq i, i+1$,

$$
\begin{equation*}
\kappa_{1} t_{s_{1}} y_{1} t_{s_{1}}=t_{s_{1}} y_{1} t_{s_{1}} \kappa_{1} \tag{2.22}
\end{equation*}
$$

and

$$
\begin{align*}
& t_{s_{i}} t_{s_{i+1}} \gamma_{i, i+1} t_{s_{i+1}} t_{s_{i}}=\gamma_{i+1, i+2} \tag{2.23}\\
& \text { where } \quad \gamma_{i, i+1}=y_{i+1}-t_{s_{i}} y_{i} t_{s_{i}} \quad \text { for } \quad i=1, \ldots, k-2
\end{align*}
$$

In the degenerate affine braid algebra \mathcal{B}_{k} let $c_{0}=\kappa_{0}$ and

$$
\begin{align*}
& c_{j}=\kappa_{0}+2\left(y_{1}+\cdots+y_{j}\right) \\
& \text { so that } \quad y_{j}=\frac{1}{2}\left(c_{j}-c_{j-1}\right), \text { for } j=1, \ldots, k \tag{2.24}
\end{align*}
$$

Then c_{0}, \ldots, c_{k} commute with each other, commute with κ_{1}, and the relations (2.21) are equivalent to

$$
\begin{equation*}
t_{s_{i}} c_{j}=c_{j} t_{s_{i}}, \quad \text { for } \quad j \neq i \tag{2.25}
\end{equation*}
$$

Theorem 2.2. The degenerate affine braid algebra \mathcal{B}_{k} has another presentation by generators

$$
\begin{align*}
& t_{u}, \quad \text { for } \quad u \in S_{k}, \quad \kappa_{0}, \ldots, \kappa_{k} \quad \text { and } \quad \gamma_{i, j} \\
& \text { for } \quad 0 \leq i, j \leq k \quad \text { with } \quad i \neq j \tag{2.26}
\end{align*}
$$

and relations

$$
\begin{gather*}
t_{u} t_{v}=t_{u v}, \quad t_{w} \kappa_{i} t_{w^{-1}}=\kappa_{w(i)}, \quad t_{w} \gamma_{i, j} t_{w^{-1}}=\gamma_{w(i), w(j)}, \tag{2.27}\\
\kappa_{i} \kappa_{j}=\kappa_{j} \kappa_{i}, \quad \kappa_{i} \gamma_{l, m}=\gamma_{l, m} \kappa_{i}, \tag{2.28}\\
\gamma_{i, j}=\gamma_{j, i}, \quad \gamma_{p, r} \gamma_{l, m}=\gamma_{l, m} \gamma_{p, r}, \quad \text { and } \quad \gamma_{i, j}\left(\gamma_{i, r}+\gamma_{j, r}\right)=\left(\gamma_{i, r}+\gamma_{j, r}\right) \gamma_{i, j}, \tag{2.29}
\end{gather*}
$$

for $p \neq l$ and $p \neq m$ and $r \neq l$ and $r \neq m$ and $i \neq j, i \neq r$ and $j \neq r$.
The commutation relations between the κ_{i} and the $\gamma_{i, j}$ can be rewritten in the form

$$
\begin{equation*}
\left[\kappa_{r}, \gamma_{l, m}\right]=0, \quad\left[\gamma_{i, j}, \gamma_{l, m}\right]=0, \quad \text { and } \quad\left[\gamma_{i, j}, \gamma_{i, m}\right]=\left[\gamma_{i, m}, \gamma_{j, m}\right], \tag{2.30}
\end{equation*}
$$

for all r and all $i \neq l$ and $i \neq m$ and $j \neq l$ and $j \neq m$.
Proof of Theorem 2.2. The generators in (2.26) are written in terms of the generators in (2.18) by the formulas

$$
\begin{equation*}
\kappa_{0}=\kappa_{0}, \quad \kappa_{1}=\kappa_{1}, \quad t_{w}=t_{w}, \tag{2.31}
\end{equation*}
$$

$$
\begin{equation*}
\gamma_{0,1}=y_{1}-\frac{1}{2} \kappa_{1}, \quad \text { and } \quad \gamma_{j, j+1}=y_{j+1}-t_{s_{j}} y_{j} t_{s_{j}}, \quad \text { for } \quad j=1, \ldots, k-1, \tag{2.32}
\end{equation*}
$$

and

$$
\begin{equation*}
\kappa_{m}=t_{u} \kappa_{1} t_{u^{-1}}, \quad \gamma_{0, m}=t_{u} \gamma_{0,1} t_{u^{-1}} \quad \text { and } \quad \gamma_{i, j}=t_{v} \gamma_{1,2} t_{v^{-1}}, \tag{2.33}
\end{equation*}
$$

for $u, v \in S_{k}$ such that $u(1)=m, v(1)=i$ and $v(2)=j$.
The generators in (2.18) are written in terms of the generators in (2.26) by the formulas

$$
\begin{equation*}
\kappa_{0}=\kappa_{0}, \quad \kappa_{1}=\kappa_{1}, \quad t_{w}=t_{w}, \quad \text { and } \quad y_{j}=\frac{1}{2} \kappa_{j}+\sum_{0 \leq l<j} \gamma_{l, j} . \tag{2.34}
\end{equation*}
$$

Let us show that relations in (2.19)-(2.22) follow from the relations in (2.27)-(2.29).
(a) The relation $t_{u} t_{v}=t_{u v}$ in (2.19) is the first relation in (2.27).
(b) The relation $y_{i} y_{j}=y_{j} y_{i}$ in (2.19): Assume that $i<j$. Using the relations in (2.28) and (2.29),

$$
\begin{aligned}
{\left[y_{i}, y_{j}\right] } & =\left[\frac{1}{2} \kappa_{i}+\sum_{l<i} \gamma_{l, i}, \frac{1}{2} \kappa_{j}+\sum_{m<j} \gamma_{m, j}\right]=\left[\sum_{l<i} \gamma_{l, i}, \sum_{m<j} \gamma_{m, j}\right] \\
& =\sum_{l<i}\left[\gamma_{l, i}, \sum_{m<j} \gamma_{m, j}\right]=\sum_{l<i}\left[\gamma_{l, i},\left(\gamma_{l, j}+\gamma_{i, j}\right)+\sum_{\substack{m<j \\
m \neq l, m \neq i}} \gamma_{m, j}\right]=0 .
\end{aligned}
$$

(c) The relation $\kappa_{0} \kappa_{1}=\kappa_{1} \kappa_{0}$ in (2.19) is part of the first relation in (2.28), and the relations $\kappa_{0} y_{i}=y_{i} \kappa_{0}$ and $\kappa_{1} y_{i}=y_{i} \kappa_{1}$ in (2.19) follow from the relations $\kappa_{i} \kappa_{j}=\kappa_{j} \kappa_{i}$ and $\kappa_{i} \gamma_{l, m}=\gamma_{l, m} \kappa_{i}$ in (2.28).
(d) The relations $\kappa_{0} t_{s_{i}}=t_{s_{i}} \kappa_{0}$ and $\kappa_{1} t_{s_{j}}=t_{s_{j}} \kappa_{1}$ for $j \neq 1$ from (2.20) follow from the relation $t_{w} \kappa_{i} t_{w}^{-1}=\kappa_{w(i)}$ in (2.27), and the relation $\kappa_{1} t_{s_{1}} \kappa_{1} t_{s_{1}}=t_{s_{1}} \kappa_{1} t_{s_{1}} \kappa_{1}$ from (2.20) follows from $\kappa_{1} \kappa_{2}=\kappa_{2} \kappa_{1}$, which is part of the first relation in (2.28).
(e) The relations in (2.21) and (2.23) all follow from the relations $t_{w} \kappa_{i} t_{w^{-1}}=\kappa_{w(i)}$ and $t_{w} \gamma_{i, j} t_{w^{-1}}=\gamma_{w(i), w(j)}$ in (2.27).
(f) By second relation in (2.28) and the (already established) second relation in (2.20)

$$
\begin{aligned}
{\left[\kappa_{1}, t_{s_{1}} y_{1} t_{s_{1}}\right] } & =\left[\kappa_{1}, t_{s_{1}}\left(y_{1}-\frac{1}{2} \kappa_{1}\right) t_{s_{1}}+\frac{1}{2} t_{s_{1}} \kappa_{1} t_{s_{1}}\right] \\
& =\left[\kappa_{1}, \gamma_{02}+\frac{1}{2} t_{s_{1}} \kappa_{1} t_{s_{1}}\right]=0
\end{aligned}
$$

which establishes (2.22).
To complete the proof let us show that the relations of (2.27)-(2.29) follow from the relations in (2.19)-(2.22).
(a) The relation $t_{u} t_{v}=t_{u v}$ in (2.27) is the first relation in (2.19).
(b) The relations $t_{w} \kappa_{i} t_{w^{-1}}=\kappa_{w(i)}$ in (2.27) follow from the first and last relations in (2.20) (and force the definition of κ_{m} in (2.33)).
(c) Since $\gamma_{0,1}=y_{1}-(1 / 2) \kappa_{1}$, the relations $t_{w} \gamma_{0, j} t_{w^{-1}}=\gamma_{0, w(j)}$ in (2.28) follow from the last relation in each of (2.20) and (2.21) (and force the definition of $\gamma_{0, m}$ in (2.33)).
(d) Since $\gamma_{1,2}=y_{2}-t_{s_{1}} y_{1} t_{s_{1}}$, the first relation in (2.21) gives that $\gamma_{2,1}=\gamma_{1,2}$ since

$$
\begin{align*}
t_{s_{1}} \gamma_{1,2} t_{s_{1}}-\gamma_{1,2} & =\left(t_{s_{1}} y_{2} t_{s_{1}}-y_{1}\right)-y_{2}+t_{s_{1}} y_{1} t_{s_{1}} \tag{2.35}\\
& =t_{s_{1}}\left(y_{1}+y_{2}\right) t_{s_{1}}-\left(y_{1}+y_{2}\right)=0 .
\end{align*}
$$

The relations $t_{w} \gamma_{1,2} t_{w^{-1}}=\gamma_{w(1), w(2)}$ in (2.27) then follow from (2.35) and the last relation in (2.21) (and force the definitions $\gamma_{i, j}=t_{v} \gamma_{1,2} t_{v^{-1}}$ in (2.33)).
(e) The third relation in (2.19) is $\kappa_{0} \kappa_{1}=\kappa_{1} \kappa_{0}$ and the second relation in (2.20) gives $\kappa_{1} \kappa_{2}=\kappa_{2} \kappa_{1}$. The relations $\kappa_{i} \kappa_{j}=\kappa_{j} \kappa_{i}$ in (2.28) then follow from the second set of relations in (2.27).
(f) The second relation in (2.20) gives $\left[\kappa_{1}, \kappa_{2}\right]=0$. Multiplying (2.22) on the left and right by $t_{s_{1}}$ gives $\left[y_{1}, \kappa_{2}\right]=\left[y_{1}, t_{s_{1}} \kappa_{1} t_{s_{1}}\right]=0$. Using these and the relations in (2.19),

$$
\begin{equation*}
\left[\kappa_{1}, \gamma_{0,2}+\gamma_{1,2}\right]=\left[\kappa_{1},\left(y_{2}-\frac{1}{2} \kappa_{2}-\gamma_{1,2}\right)+\gamma_{1,2}\right]=-\left[\kappa_{1}, \frac{1}{2} \kappa_{2}\right]=0, \tag{2.36}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\gamma_{0,1}, \gamma_{0,2}+\gamma_{1,2}\right]=\left[y_{1}-\frac{1}{2} \kappa_{1}, y_{2}-\frac{1}{2} \kappa_{2}\right]=\frac{1}{4}\left[\kappa_{1}, \kappa_{2}\right]=0, \tag{2.37}
\end{equation*}
$$

so that

$$
\begin{aligned}
{\left[\gamma_{0,1}, \kappa_{2}\right] } & =\left[\gamma_{0,1}, 2 y_{2}-2\left(\gamma_{0,2}+\gamma_{1,2}\right)\right]=\left[\gamma_{0,1}, 2 y_{2}\right] \\
& =\left[y_{1}-\frac{1}{2} \kappa_{1}, 2 y_{2}\right]=-\left[\kappa_{1}, y_{2}\right]=0 .
\end{aligned}
$$

Conjugating the last relation by $t_{s_{1}}$ gives

$$
\left[\kappa_{1}, \gamma_{0,2}\right]=0, \quad \text { and thus } \quad\left[\kappa_{1}, \gamma_{1,2}\right]=0,
$$

by (2.36). By the third and fourth relations in (2.19),

$$
\left[\kappa_{0}, \gamma_{0,1}\right]=\left[\kappa_{0}, y_{1}-\frac{1}{2} \kappa_{1}\right]=0, \quad \text { and } \quad\left[\kappa_{1}, \gamma_{0,1}\right]=\left[\kappa_{1}, y_{1}-\frac{1}{2} \kappa_{1}\right]=0 .
$$

By the relations in (2.20) and (2.19),

$$
\left[\kappa_{0}, \gamma_{1,2}\right]=\left[\kappa_{0}, y_{2}-t_{s_{1}} y_{1} t_{s_{1}}\right]=0 \quad \text { and } \quad\left[\kappa_{1}, \gamma_{2,3}\right]=\left[\kappa_{1}, y_{3}-t_{s_{2}} y_{2} t_{s_{2}}\right]=0
$$

Putting these together with the (already established) relations in (2.27) provides the second set of relations in (2.28).
(g) From the commutativity of the y_{i} and the second relation in (2.21)

$$
\gamma_{1,2} \gamma_{3,4}=\left(y_{2}-t_{s_{1}} y_{1} t_{s_{1}}\right)\left(y_{4}-t_{s_{3}} y_{3} t_{s_{3}}\right)=\left(y_{4}-t_{s_{3}} y_{3} t_{s_{3}}\right)\left(y_{2}-t_{s_{1}} y_{1} t_{s_{1}}\right)=\gamma_{3,4} \gamma_{1,2} .
$$

By the last relation in (2.19) and the last relation in (2.20),

$$
\left[\gamma_{0,1}, \gamma_{2,3}\right]=\left[y_{1}-\frac{1}{2} \kappa_{1}, y_{3}-t_{s_{2}} y_{2} t_{s_{2}}\right]=0 .
$$

Together with the (already established) relations in (2.27), we obtain the first set of relations in (2.29).
(h) Conjugating (2.37) by $t_{s_{2}} t_{s_{1}} t_{s_{2}}$ gives $\left[\gamma_{0,2}, \gamma_{0,3}+\gamma_{2,3}\right]=0$, and this and the (already established) relations in (2.28) and the first set of relations in (2.29) provide

$$
\begin{aligned}
0 & =\left[y_{2}, y_{3}\right]=\left[\frac{1}{2} \kappa_{2}+\gamma_{0,2}+\gamma_{1,2}, \frac{1}{2} \kappa_{3}+\gamma_{0,3}+\gamma_{1,3}+\gamma_{2,3}\right] \\
& =\left[\gamma_{0,2}+\gamma_{1,2}, \gamma_{0,3}+\gamma_{1,3}+\gamma_{2,3}\right]=\left[\gamma_{1,2}, \gamma_{0,3}+\gamma_{1,3}+\gamma_{2,3}\right]=\left[\gamma_{1,2}, \gamma_{1,3}+\gamma_{2,3}\right] .
\end{aligned}
$$

Note also that

$$
\begin{aligned}
{\left[\gamma_{1,2}, \gamma_{1,0}+\gamma_{2,0}\right] } & =\left[\gamma_{1,2}, \gamma_{0,1}+\gamma_{0,2}\right]=-\left[\gamma_{0,1}, \gamma_{1,2}\right]+\left[\gamma_{1,2}, \gamma_{0,2}\right] \\
& =\left[\gamma_{0,1}, \gamma_{0,2}\right]+\left[\gamma_{1,2}, \gamma_{0,2}\right]=t_{s_{1}}\left[\gamma_{0,2}+\gamma_{1,2}, \gamma_{0,1}\right] t_{s_{1}}=0,
\end{aligned}
$$

by (two applications of) (2.37). The last set of relations in (2.29) now follow from the last set of relations in (2.27).

By the first formula in (2.24) and the last formula in (2.34),

$$
\begin{equation*}
c_{j}=\sum_{i=0}^{j} \kappa_{i}+2 \sum_{0 \leq l<m \leq j} \gamma_{l, m} . \tag{2.38}
\end{equation*}
$$

2.3. The degenerate affine BMW algebra \mathcal{W}_{k}. Let C be a commutative ring and let \mathcal{B}_{k} be the degenerate affine braid algebra over C as defined in Section 2.2. Define e_{i} in the degenerate affine braid algebra by

$$
\begin{equation*}
t_{s_{i}} y_{i}=y_{i+1} t_{s_{i}}-\left(1-e_{i}\right), \quad \text { for } \quad i=1,2, \ldots, k-1 \tag{2.39}
\end{equation*}
$$

so that, with $\gamma_{i, i+1}$ as in (2.23),

$$
\begin{equation*}
\gamma_{i, i+1} t_{s_{i}}=1-e_{i} . \tag{2.40}
\end{equation*}
$$

Fix constants

$$
\epsilon= \pm 1 \quad \text { and } \quad z_{0}^{(l)} \in C, \quad \text { for } \quad l \in \mathbb{Z}_{\geq 0}
$$

The degenerate affine Birman-Wenzl-Murakami (BMW) algebra \mathcal{W}_{k} (with parameters ϵ and $z_{0}^{(l)}$) is the quotient of the degenerate affine braid algebra \mathcal{B}_{k} by the relations

$$
\begin{gather*}
e_{i} t_{s_{i}}=t_{s_{i}} e_{i}=\epsilon e_{i}, \quad e_{i} t_{s_{i-1}} e_{i}=e_{i} t_{s_{i+1}} e_{i}=\epsilon e_{i}, \tag{2.41}\\
e_{1} y_{1}^{l} e_{1}=z_{0}^{(l)} e_{1}, \quad e_{i}\left(y_{i}+y_{i+1}\right)=0=\left(y_{i}+y_{i+1}\right) e_{i} . \tag{2.42}
\end{gather*}
$$

The degenerate affine Hecke algebra \mathcal{H}_{k} is the quotient of \mathcal{W}_{k} by the relations

$$
\begin{equation*}
e_{i}=0, \quad \text { for } \quad i=1, \ldots, k-1 \tag{2.43}
\end{equation*}
$$

Fix $b_{1}, \ldots, b_{r} \in C$. The degenerate cyclotomic BMW algebra $\mathcal{W}_{r, k}\left(b_{1}, \ldots, b_{r}\right)$ is the degenerate affine BMW algebra with the additional relation

$$
\begin{equation*}
\left(y_{1}-b_{1}\right) \cdots\left(y_{1}-b_{r}\right)=0 . \tag{2.44}
\end{equation*}
$$

The degenerate cyclotomic Hecke algebra $\mathcal{H}_{r, k}\left(b_{1}, \ldots, b_{r}\right)$ is the degenerate affine Hecke algebra \mathcal{H}_{k} with the additional relation (2.44).

Since the composite map $C\left[y_{1}, \ldots, y_{k}\right] \rightarrow \mathcal{B}_{k} \rightarrow \mathcal{W}_{k} \rightarrow \mathcal{H}_{k}$ is injective (see [20, Theorem 3.2.2]) and the last two maps are surjections, it follows that the polynomial ring $C\left[y_{1}, \ldots, y_{k}\right]$ is a subalgebra of \mathcal{B}_{k} and \mathcal{W}_{k}.

Proposition 2.3. Let $C=\mathbb{C}, \kappa_{0}, \kappa_{1} \in \mathbb{C}$ and $\epsilon=1$. Then the degenerate affine $B M W$ algebra \mathcal{W}_{k} coincides with the one defined in [27].

Proof. In [27], the degenerate affine BMW algebra is defined with the first two relations in (2.19) and the second set of relations in (2.21), which are [27, (4.1)] and the first relations in [27, (1.2) and (1.3)], the relations in (2.39) which are [27, (4.2)], the relations in (2.42) which are [27, (4.3) and (4.4)], the first relations in (2.41) which is the third set of relations in [27, (1.2)], the relations in (2.48) below which are the last two relations in [27, (1.3)] and the second relation in [27, (1.2)], the relations in (2.50) below which are [27, (1.4)], and the relations

$$
\begin{equation*}
e_{i} t_{s_{j}}=t_{s_{j}} e_{i} \quad \text { and } \quad e_{i} e_{j}=e_{j} e_{i}, \quad \text { for } \quad|j-i|>1, \tag{2.45}
\end{equation*}
$$

which are the second and third relations in [27, (1.5)].
Working in \mathcal{W}_{k} and conjugating (2.39) by $t_{s_{i}}$ and using the first relation in (2.41) gives

$$
\begin{equation*}
y_{i} t_{s_{i}}=t_{s_{i}} y_{i+1}-\left(1-e_{i}\right) . \tag{2.46}
\end{equation*}
$$

Then, by (2.40) and (2.23),

$$
\begin{equation*}
\gamma_{i, i+1}=t_{s_{i}}-\epsilon e_{i}, \quad \text { and } \quad e_{i+1}=t_{s_{i}} t_{s_{i+1}} e_{i} t_{s_{i+1}} t_{s_{i}} . \tag{2.47}
\end{equation*}
$$

Multiply the second relation in (2.47) on the left and the right by e_{i}, and then use the relations in (2.41) to get

$$
e_{i} e_{i+1} e_{i}=e_{i} t_{s_{i}} t_{s_{i+1}} e_{i} t_{s_{i+1}} t_{s_{i}} e_{i}=e_{i} t_{s_{i+1}} e_{i} t_{s_{i+1}} e_{i}=\epsilon e_{i} t_{s_{i+1}} e_{i}=e_{i},
$$

so that

$$
\begin{equation*}
e_{i} e_{i \pm 1} e_{i}=e_{i} . \quad \text { Note that } e_{i}^{2}=z_{0}^{(0)} e_{i} \tag{2.48}
\end{equation*}
$$

is, for $i=1$, a special case of the first identity in (2.42) and then, for general i, follows from the second identity in (2.47). The relations

$$
\begin{gather*}
e_{i+1} e_{i}=e_{i+1} t_{s_{i}} t_{s_{i+1}}, \quad e_{i} e_{i+1}=t_{s_{i+1}} t_{s_{i}} e_{i+1} \tag{2.49}\\
t_{s_{i}} e_{i+1} e_{i}=t_{s_{i+1}} e_{i}, \quad \text { and } \quad e_{i+1} e_{i} t_{s_{i+1}}=e_{i+1} t_{s_{i}} \tag{2.50}
\end{gather*}
$$

result from (2.41) and the second relation in (2.47). The relations in (2.45) follow from (2.39) the first two relations in (2.19) and the last relations in (2.21). Thus the relations in the definition of the degenerate affine BMW algebra in [27] follow from the defining relations of \mathcal{W}_{k}.

To complete the proof we must show that the first relations in (2.21), the relations in (2.23), and the second relations in (2.41) follow from the defining relations used in [27]. Because of the assumption that $\kappa_{0}, \kappa_{1} \in \mathbb{C}$ the other relations in (2.19)-(2.23) are automatic.
(a) Multiplying the first relation in (2.50) on the left by e_{i} and using the first relations in (2.41) and the first relations in (2.48) provides part of the second relations in (2.41) and the other part is obtained similarly by multiplying the second relations in (2.50) on the right by e_{i+1}.
(b) Conjugating (2.39) by $t_{s_{i}}$ produces (2.46) and then adding (2.39) and (2.46) produces the first relations in (2.21).
(c) Using (2.50),

$$
e_{i+1}=t_{s_{i}} t_{s_{i}}\left(e_{i+1} t_{s_{i}}\right) t_{s_{i}}=t_{s_{i}} t_{s_{i}} e_{i+1} e_{i} t_{s_{i+1}} t_{s_{i}}=t_{s_{i}} t_{s_{i+1}} e_{i} t_{s_{i+1}} t_{s_{i}}
$$

which, with (2.39), gives the relations in (2.23).

3. Identities in affine and degenerate affine BMW algebras

In [27], Nazarov defined some naturally occurring central elements in the degenerate affine BMW algebra \mathcal{W}_{k} and proved a remarkable recursion for them. This recursion was generalized to analogous central elements in the affine BMW algebra W_{k} by Beliakova-Blanchet [4]. In both cases, the recursion was accomplished with an involved computation. In this section, we provide a new proof of the Nazarov and Beliakova-Blanchet recursions by lifting them out of the center, to intertwiner-like identities in \mathcal{W}_{k} and W_{k} (Propositions 3.1 and 3.3). These intertwiner-like identities for the degenerate affine and affine BMW algebras are reminiscent of the intertwiner identities for the degenerate affine and affine Hecke algebras found, for example, in [21, Proposition 2.5 (c)] and [30, Proposition 2.14 (c)], respectively. The central element recursions of [27] and [4] are then obtained by multiplying the intertwiner-like identities by the projectors e_{k} and E_{k}, respectively. We shall not include our new proofs of Proposition 3.1 and Theorem 3.2 here since, given our parallel setup of the degenerate affine and the affine BMW algebras in Section 2, the proof is exactly parallel to the proofs of Proposition 3.3 and Theorem 3.4.
3.1. The degenerate affine case. Let \mathcal{W}_{k} be the degenerate affine BMW algebra as defined in (2.41)-(2.42) and let $1 \leq i<k-1$. Let u be a variable and let

$$
\begin{equation*}
u_{i}^{+}=\frac{1}{u-y_{i}} \quad \text { and } \quad u_{i}^{-}=\frac{1}{u+y_{i}} \tag{3.1}
\end{equation*}
$$

Proposition 3.1. In the degenerate affine $B M W$ algebra \mathcal{W}_{i+1},

$$
\begin{align*}
& \left(e_{i} \frac{1}{1-y_{i+1}}-t_{s_{i}}-\frac{1}{2 u-\left(y_{i}+y_{i+1}\right)}\right)\left(e_{i} \frac{1}{1-y_{i}}+t_{s_{i}}-\frac{1}{2 u-\left(y_{i}+y_{i+1}\right)}\right) \tag{3.2}\\
& =\frac{-\left(2 u-\left(y_{i}+y_{i+1}\right)+1\right)\left(2 u-\left(y_{i}+y_{i+1}\right)-1\right)}{\left(2 u-\left(y_{i}+y_{i+1}\right)\right)^{2}}
\end{align*}
$$

and

$$
\begin{align*}
& \left(u_{i+1}^{+}+t_{s_{i}}-e_{i} \frac{1}{2 u-\left(y_{i}+y_{i+1}\right)}\right)-u_{i}^{+}\left(u_{i+1}^{+}+t_{s_{i}}-e_{i} \frac{1}{2 u-\left(y_{i}+y_{i+1}\right)}\right) u_{i}^{+} \\
& =\left(t_{s_{i}} u_{i}^{+} t_{s_{i}}+t_{s_{i}}-e_{i} \frac{1}{2 u-\left(y_{i}+y_{i+1}\right)}\right) \tag{3.3}\\
& \quad-u_{i+1}^{+}\left(e_{i} u_{i}^{+} e_{i}+\epsilon e_{i}-e_{i} \frac{1}{2 u-\left(y_{i}+y_{i+1}\right)}\right) u_{i+1}^{+} .
\end{align*}
$$

The identities (3.4) and (3.5) of the following theorem are [27, Lemma 2.5], and [27, Lemma 3.8], respectively.

Theorem 3.2 ([27]). Let \mathcal{W}_{k} be the degenerate affine BMW algebra as defined in (2.41)-(2.42) and let $1 \leq i<k-1$. Let $z_{0}(u)=\sum_{l \in \mathbb{Z}_{\geq 0}} z_{0}^{(l)} u^{-l}$. Then

$$
\begin{equation*}
\left(e_{i} u_{i}^{-}-\epsilon-\frac{1}{2 u}\right)\left(e_{i} u_{i}^{+}+\epsilon-\frac{1}{2 u}\right) e_{i}=-\left(\epsilon+\frac{1}{2 u}\right)\left(\epsilon-\frac{1}{2 u}\right) e_{i}, \tag{3.4}
\end{equation*}
$$

and

$$
\begin{align*}
& \left(e_{i+1} u_{i+1}^{+}+\epsilon-\frac{1}{2 u}\right) e_{i+1} \\
& =\left(\frac{z_{0}(u)}{u}+\epsilon-\frac{1}{2 u}\right) \prod_{j=1}^{i} \frac{\left(u+y_{j}-1\right)\left(u+y_{j}+1\right)\left(u-y_{j}\right)^{2}}{\left(u+y_{j}\right)^{2}\left(u-y_{j}+1\right)\left(u-y_{j}-1\right)} e_{i+1} . \tag{3.5}
\end{align*}
$$

3.2. The affine case. Let W_{k} be the affine BMW algebra as defined in (2.8)(2.9) and let $1 \leq i<k-1$. Let u be a variable,
(3.6) $\quad U_{i}^{+}=\frac{Y_{i}}{u-Y_{i}}$, and note that $\quad U_{i}^{+} U_{i+1}^{+}=\frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}}\left(U_{i}^{+}+U_{i+1}^{+}+1\right)$.

By the definition of E_{i} in (2.7),

$$
\left(u-Y_{i+1}\right) T_{i}=T_{i}\left(u-Y_{i}\right)-\left(q-q^{-1}\right) Y_{i+1}\left(1-E_{i}\right),
$$

and, by (2.12),

$$
\left(u-Y_{i}\right) T_{i}=T_{i}\left(u-Y_{i+1}\right)+\left(q-q^{-1}\right)\left(1-E_{i}\right) Y_{i+1},
$$

so that

$$
\begin{equation*}
T_{i} \frac{1}{u-Y_{i}}=\frac{1}{u-Y_{i+1}} T_{i}-\left(q-q^{-1}\right) \frac{Y_{i+1}}{u-Y_{i+1}}\left(1-E_{i}\right) \frac{1}{u-Y_{i}}, \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{i} \frac{1}{u-Y_{i+1}}=\frac{1}{u-Y_{i}} T_{i}+\left(q-q^{-1}\right) \frac{1}{u-Y_{i}}\left(1-E_{i}\right) \frac{Y_{i+1}}{u-Y_{i+1}} \tag{3.8}
\end{equation*}
$$

The relations

$$
\begin{align*}
T_{i} U_{i}^{+} & =U_{i+1}^{+} T_{i}^{-1}-\left(q-q^{-1}\right) U_{i+1}^{+}\left(1-E_{i}\right) U_{i}^{+} \tag{3.9}\\
& =U_{i+1}^{+}\left(T_{i}^{-1}-\left(q-q^{-1}\right)\left(1-E_{i}\right) U_{i}^{+}\right)
\end{align*}
$$

and

$$
\begin{align*}
T_{i}^{-1} U_{i+1}^{+} & =U_{i}^{+} T_{i}-\left(q-q^{-1}\right) U_{i}^{+} E_{i} U_{i+1}^{+}+\left(q-q^{-1}\right) U_{i+1}^{+} U_{i}^{+} \\
& =U_{i}^{+}\left(T_{i}+\left(q-q^{-1}\right)\left(1-E_{i}\right) U_{i+1}^{+}\right) \tag{3.10}
\end{align*}
$$

are obtained by multiplying (3.7) and (3.8) on the right (resp. left) by Y_{i} and using the relation $T_{i} Y_{i}=Y_{i+1} T_{i}^{-1}$.

Taking the coefficient of $u^{-(l+1)}$ on each side of (3.7) and (3.8) gives

$$
\begin{align*}
T_{i} Y_{i}^{l}=Y_{i+1}^{l} T_{i}-\left(q-q^{-1}\right)(& Y_{i+1}^{l}\left(1-E_{i}\right)+Y_{i+1}^{l-1}\left(1-E_{i}\right) Y_{i}+\cdots \tag{3.11}\\
& \left.+Y_{i+1}\left(1-E_{i}\right) Y_{i}^{l-1}\right) \\
T_{i} Y_{i+1}^{l}=Y_{i}^{l} T_{i}+\left(q-q^{-1}\right)(& Y_{i}^{l-1}\left(1-E_{i}\right) Y_{i+1}+Y_{i}^{l-2}\left(1-E_{i}\right) Y_{i+1}^{2}+\cdots \\
& \left.+\left(1-E_{i}\right) Y_{i+1}^{l}\right)
\end{align*}
$$

respectively, for $l \in \mathbb{Z}_{\geq 0}$. Therefore,

$$
\begin{align*}
& T_{i} Y_{i}^{-l}=Y_{i+1}^{-l} T_{i}+\left(q-q^{-1}\right)\left(Y_{i+1}^{-(l-1)}\left(1-E_{i}\right) Y_{i}^{-1}+\cdots+\left(1-E_{i}\right) Y_{i}^{-l}\right) \tag{3.13}\\
& T_{i} Y_{i+1}^{-l}=Y_{i}^{-l} T_{i}-\left(q-q^{-1}\right)\left(Y_{i}^{-l}\left(1-E_{i}\right)+\cdots+Y_{i}^{-1}\left(1-E_{i}\right) Y_{i+1}^{-(l-1)}\right) \tag{3.14}
\end{align*}
$$

Proposition 3.3. Let $Q=q-q^{-1}$. Then, in the affine $B M W$ algebra W_{i+1},

$$
\begin{align*}
& \left(E_{i} \frac{Y_{i+1}}{u-Y_{i+1}}-\frac{T_{i}}{Q}-\frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}}\right)\left(E_{i} \frac{Y_{i}}{u-Y_{i}}+\frac{T_{i}^{-1}}{Q}-\frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}}\right) \tag{3.15}\\
& =\frac{-\left(u^{2}-q^{2} Y_{i} Y_{i+1}\right)\left(u^{2}-q^{-2} Y_{i} Y_{i+1}\right)}{Q^{2}\left(u^{2}-Y_{i} Y_{i+1}\right)^{2}}
\end{align*}
$$

and

$$
\begin{align*}
& \left(U_{i+1}^{+}+\frac{T_{i}}{Q}-E_{i} \frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}}\right) \\
& -Q^{2}\left(U_{i}^{+}+1\right)\left(U_{i+1}^{+}+\frac{T_{i}}{Q}-E_{i} \frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}}\right) U_{i}^{+} \tag{3.16}\\
& =\left(T_{i} U_{i}^{+} T_{i}^{-1}+\frac{T_{i}}{Q}-E_{i} \frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}}\right) \\
& \quad-Q^{2} U_{i+1}^{+}\left(E_{i} U_{i}^{+} E_{i}+z \frac{E_{i}}{Q}-E_{i} \frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}}\right)\left(U_{i+1}^{+}+1\right)
\end{align*}
$$

Proof. Putting (3.6) into (3.9) says that if

$$
A=\frac{T_{i}}{Q}+\frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}}
$$

and

$$
B=E_{i} U_{i}^{+}+\frac{T_{i}^{-1}}{Q}-\frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}}
$$

then

$$
A U_{i}^{+}=U_{i+1}^{+} B-\frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}} .
$$

Next,

$$
A E_{i}=E_{i} A
$$

follows from (2.8) and (2.9). So

$$
\begin{aligned}
& \left(E_{i} \frac{Y_{i+1}}{u-Y_{i+1}}-\frac{T_{i}}{Q}-\frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}}\right)\left(E_{i} \frac{Y_{i}}{u-Y_{i}}+\frac{T_{i}^{-1}}{Q}-\frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}}\right) \\
& =E_{i}\left(U_{i+1}^{+} B\right)-A B=E_{i}\left(A U_{i}^{+}+\frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}}\right)-A B \\
& =A\left(E_{i} U_{i}^{+}-B\right)+E_{i} \frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}} \\
& =-\left(\frac{T_{i}}{Q}+\frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}}\right)\left(\frac{T_{i}^{-1}}{Q}-\frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}}\right)+E_{i} \frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}},
\end{aligned}
$$

and, by (2.13), multiplying out the right hand side gives (3.15).
Rewrite $T_{i}^{-1} U_{i+1}^{+}=U_{i}^{+} T_{i}^{-1}+Q U_{i}^{+}\left(1-E_{i}\right)\left(U_{i+1}^{+}+1\right)$ as

$$
T_{i}^{-1} U_{i+1}^{+}-Q\left(U_{i+1}^{+}+1\right) U_{i}^{+}=U_{i}^{+} T_{i}^{-1}-Q U_{i}^{+} E_{i}\left(U_{i+1}^{+}+1\right),
$$

and multiply on the left by T_{i} to get

$$
\begin{equation*}
U_{i+1}^{+}-Q T_{i}\left(U_{i+1}^{+}+1\right) U_{i}^{+}=T_{i} U_{i}^{+} T_{i}^{-1}-Q T_{i} U_{i}^{+} E_{i}\left(U_{i+1}^{+}+1\right) . \tag{3.17}
\end{equation*}
$$

Then, since $T_{i}=T_{i}^{-1}+Q\left(1-E_{i}\right)$, equations (3.10) and (3.9) imply

$$
T_{i}\left(U_{i+1}^{+}+1\right)=Q\left(U_{i}^{+}+1\right)\left(\frac{T_{i}}{Q}+\left(1-E_{i}\right) U_{i+1}^{+}\right)
$$

and

$$
T_{i} U_{i}^{+}=Q U_{i+1}^{+}\left(\frac{T_{i}^{-1}}{Q}-\left(1-E_{i}\right) U_{i}^{+}\right),
$$

and so (3.17) is

$$
\begin{align*}
U_{i+1}^{+} & -Q^{2}\left(U_{i}^{+}+1\right)\left(\frac{T_{i}}{Q}+\left(1-E_{i}\right) U_{i+1}^{+}\right) U_{i}^{+} \\
& =T_{i} U_{i}^{+} T_{i}^{-1}-Q^{2} U_{i+1}^{+}\left(\frac{T_{i}^{-1}}{Q}-\left(1-E_{i}\right) U_{i}^{+}\right) E_{i}\left(U_{i+1}^{+}+1\right) \tag{3.18}
\end{align*}
$$

Using (3.6) and adding

$$
\frac{T_{i}}{Q}-E_{i} \frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}}-Q^{2} \frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}}\left(U_{i}^{+}+1\right) E_{i}\left(U_{i+1}^{+}+1\right)
$$

to each side of (3.18) gives

$$
\begin{aligned}
& U_{i+1}^{+}+\frac{T_{i}}{Q}-E_{i} \frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}}-Q^{2}\left(U_{i}^{+}+1\right)\left(U_{i+1}^{+}+\frac{T_{i}}{Q}-E_{i} \frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}}\right) U_{i}^{+} \\
&= T_{i} U_{i}^{+} T_{i}^{-1}+\frac{T_{i}}{Q}-E_{i} \frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}} \\
& \quad-Q^{2} U_{i+1}^{+}\left(E_{i} U_{i}^{+}+\frac{T_{i}^{-1}}{Q}-\frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}}\right) E_{i}\left(U_{i+1}^{+}+1\right) \\
&= T_{i} U_{i}^{+} T_{i}^{-1}+\frac{T_{i}}{Q}-E_{i} \frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}} \\
&-Q^{2} U_{i+1}^{+}\left(E_{i} U_{i}^{+} E_{i}+z \frac{E_{i}}{Q}-E_{i} \frac{Y_{i} Y_{i+1}}{u^{2}-Y_{i} Y_{i+1}}\right)\left(U_{i+1}^{+}+1\right)
\end{aligned}
$$

completing the proof of (3.16).
Let Z_{0}^{+}and Z_{0}^{-}be the generating functions

$$
Z_{0}^{+}=\sum_{l \in \mathbb{Z}_{\geq 0}} Z_{0}^{(l)} u^{-l} \quad \text { and } \quad Z_{0}^{-}=\sum_{l \in \mathbb{Z}_{\leq 0}} Z_{0}^{(l)} u^{-l}
$$

If

$$
\begin{equation*}
U_{i}^{-}=\frac{Y_{i}^{-1}}{u-Y_{i}^{-1}} \quad \text { then } \quad E_{i} U_{i+1}^{+}=E_{i} U_{i}^{-} \quad \text { and } \quad U_{i+1}^{+} E_{i}=U_{i}^{-} E_{i} \tag{3.19}
\end{equation*}
$$

by the second identity in (2.9). The first identity in (2.9) is equivalent to

$$
E_{1} U_{1}^{+} E_{1}=\left(Z_{0}^{+}-Z_{0}^{(0)}\right) E_{1}
$$

In the following theorem, the identity (3.20) is equivalent to [13, Lemma 2.8, parts (2) and (3)] or [14, Lemma 2.6(4)] and the identity (3.21) is equivalent to the identity found in [4, Lemma 7.4].

Theorem 3.4 ([4, 13, 14]). Let W_{k} be the affine BMW algebra as defined in (2.8)-(2.9) and let $1 \leq i<k-1$. Then

$$
\begin{align*}
& \left(E_{i} U_{i}^{-}-\frac{z^{-1}}{q-q^{-1}}-\frac{1}{u^{2}-1}\right)\left(E_{i} U_{i}^{+}+\frac{z}{q-q^{-1}}-\frac{1}{u^{2}-1}\right) E_{i} \tag{3.20}\\
& =\frac{-\left(u^{2}-q^{2}\right)\left(u^{2}-q^{-2}\right)}{\left(u^{2}-1\right)^{2}\left(q-q^{-1}\right)^{2}} E_{i},
\end{align*}
$$

and

$$
\begin{align*}
& \left(E_{i+1} U_{i+1}^{+}+\frac{z}{q-q^{-1}}-\frac{1}{u^{2}-1}\right) E_{i+1} \\
& =\left(Z_{0}^{+}+\frac{z^{-1}}{q-q^{-1}}-\frac{u^{2}}{u^{2}-1}\right)\left(\prod_{j=1}^{i} \frac{\left(u-Y_{j}\right)^{2}\left(u-q^{-2} Y_{j}^{-1}\right)\left(u-q^{2} Y_{j}^{-1}\right)}{\left(u-Y_{j}^{-1}\right)^{2}\left(u-q^{2} Y_{j}\right)\left(u-q^{-2} Y_{j}\right)}\right) E_{i+1} . \tag{3.21}
\end{align*}
$$

Proof. Multiply (3.15) on the right by E_{i} and use $Z_{i-1}^{(0)}=1+\left(z-z^{-1}\right) /\left(q-q^{-1}\right)$ to ge (3.20).

Multiplying (3.16) on the left and right by E_{i+1} and using the relations in (2.8), (2.9), (2.14), and

$$
E_{i+1} T_{i} U_{i}^{+} T_{i}^{-1} E_{i+1}=E_{i+1} T_{i} T_{i+1} U_{i}^{+} T_{i+1}^{-1} T_{i}^{-1} E_{i+1}=E_{i+1} E_{i} U_{i}^{+} E_{i} E_{i+1},
$$

gives

$$
\begin{aligned}
& \left(E_{i+1} U_{i+1}^{+}+\frac{z}{Q}-\frac{1}{u^{2}-1}\right) E_{i+1}\left(1-Q^{2}\left(U_{i}^{+}+1\right) U_{i}^{+}\right) \\
& =E_{i+1}\left(E_{i} U_{i}^{+}+\frac{z}{Q}-\frac{1}{u^{2}-1}\right) E_{i} E_{i+1} \\
& \quad-Q^{2} U_{i}^{-} E_{i+1}\left(E_{i} U_{i}^{+}+\frac{z}{Q}-\frac{1}{u^{2}-1}\right) E_{i} E_{i+1}\left(U_{i}^{-}+1\right) \\
& =\left(1-Q^{2} L_{U_{i}^{-}} R_{U_{i}^{-}+1}\right)\left(E_{i+1}\left(E_{i} U_{i}^{+}+\frac{z}{Q}-\frac{1}{u^{2}-1}\right) E_{i} E_{i+1}\right)
\end{aligned}
$$

where $L_{U_{i}^{-}}$is the operator of left multiplication by U_{i}^{-}and $R_{U_{i}^{-}+1}$ is the operator of right multiplication by $U_{i}^{-}+1$. Then, by induction,

$$
\begin{aligned}
& \left(E_{i+1} U_{i+1}^{+}+\frac{z}{Q}-\frac{1}{u^{2}-1}\right) E_{i+1} \prod_{j=1}^{i}\left(1-Q^{2} U_{j}^{+}\left(U_{j}^{+}+1\right)\right) \\
& =\left(\prod_{j=1}^{i}\left(1-Q^{2} L_{U_{j}^{-}} R_{U_{j}^{-}+1}\right)\right)\left(E_{i+1} E_{i} \cdots E_{2}\left(E_{1} U_{1}^{+}+\frac{z}{Q}-\frac{1}{u^{2}-1}\right) E_{1} E_{2} \cdots E_{i} E_{i+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\prod_{j=1}^{i}\left(1-Q^{2} L_{U_{j}^{-}} R_{U_{j}^{-}+1}\right)\left(E_{i+1} E_{i} \cdots E_{2}\left(Z_{0}^{+}-Z_{0}^{(0)}+\frac{z}{Q}-\frac{1}{u^{2}-1}\right) E_{1} E_{2} \cdots E_{i} E_{i+1}\right) \\
& =\left(Z_{0}^{+}-Z_{0}^{(0)}+\frac{z}{Q}-\frac{1}{u^{2}-1}\right)\left(\prod_{j=1}^{i}\left(1-Q^{2} L_{U_{j}^{-}} R_{U_{j}^{-}+1}\right)\right)\left(E_{i+1} E_{i} \cdots E_{2} E_{1} E_{2} \cdots E_{i} E_{i+1}\right) \\
& =\left(Z_{0}^{+}-Z_{0}^{(0)}+\frac{z}{Q}-\frac{1}{u^{2}-1}\right) \prod_{j=1}^{i}\left(1-Q^{2} U_{j}^{-}\left(U_{j}^{-}+1\right)\right) E_{i+1} .
\end{aligned}
$$

So (3.21) follows from

$$
\begin{aligned}
& \frac{1-\left(q-q^{-1}\right)^{2} U_{j}^{-}\left(U_{j}^{-}+1\right)}{1-\left(q-q^{-1}\right)^{2} U_{j}^{+}\left(U_{j}^{+}+1\right)} \\
& =\frac{1-\left(q-q^{-1}\right)^{2} Y_{j}^{-1} /\left(u-Y_{j}^{-1}\right)\left(Y_{j}^{-1} /\left(u-Y_{j}^{-1}\right)+1\right)}{1-\left(q-q^{-1}\right)^{2} Y_{j} /\left(u-Y_{j}\right)\left(Y_{j} /\left(u-Y_{j}\right)+1\right)} \\
& =\frac{\left(\left(u-Y_{j}^{-1}\right)^{2}-\left(q-q^{-1}\right)^{2} Y_{j}^{-1} u\right)\left(1 /\left(u-Y_{j}^{-1}\right)^{2}\right)}{\left(\left(u-Y_{j}\right)^{2}-\left(q-q^{-1}\right)^{2} Y_{j} u\right)\left(1 /\left(u-Y_{j}\right)^{2}\right)} \\
& =\frac{\left(u-q^{-2} Y_{j}^{-1}\right)\left(u-q^{2} Y_{j}^{-1}\right)\left(u-Y_{j}\right)^{2}}{\left(u-q^{-2} Y_{j}\right)\left(u-q^{2} Y_{j}\right)\left(u-Y_{j}^{-1}\right)^{2}}
\end{aligned}
$$

and $Z_{0}^{(0)}=1+\left(z-z^{-1}\right) /\left(q-q^{-1}\right)$.

4. The center of the affine and degenerate affine BMW algebras

In this section, we identify the center of \mathcal{W}_{k} and W_{k}. Both centers arise as algebras of symmetric functions with a "cancellation property" (in the language of [29]) or "wheel condition" (in the language of [9]). In the degenerate case, $Z\left(\mathcal{W}_{k}\right)$ is the ring of symmetric functions in y_{1}, \ldots, y_{k} with the Q-cancellation property of Pragacz. By [29, Theorem $2.11(\mathrm{Q})]$, this is the same ring as the ring generated by the odd power sums, which is the way that Nazarov [27] identified $Z\left(\mathcal{W}_{k}\right)$.

The cancellation property in the case of W_{k} is analogous, exhibiting the center of the affine BMW algebra $Z\left(W_{k}\right)$ as a subalgebra of the ring of symmetric Laurent polynomials. At the end of this section, in an attempt to make the theory for the affine BMW algebra completely analogous to that for the degenerate affine BMW algebra, we have formulated an alternate description of $Z\left(W_{k}\right)$ as a ring generated by "negative" power sums.
4.1. Bases of \mathcal{W}_{k} and \boldsymbol{W}_{k}. The Brauer algebra, depending on a parameter x, is given by generators e_{1}, \ldots, e_{k-1} and s_{1}, \ldots, s_{k-1} and relations as given in [27, (1.2)-(1.5)] (where our e_{i} is denoted \bar{s}_{i} and our x is denoted N). The Brauer algebra
also has a diagrammatic presentation (see [5]) with basis

$$
\begin{equation*}
D_{k}=\{\text { diagrams on } k \text { dots }\}, \tag{4.1}
\end{equation*}
$$

where a (Brauer) diagram on k dots is a graph with k dots in the top row, k dots in the bottom row and k edges pairing the dots. We label the vertices of the top row, left to right, with $1,2, \ldots, k$ and the vertices in the bottom row, left to right, with $1^{\prime}, 2^{\prime}, \ldots, k^{\prime}$ so that, for example,

is a Brauer diagram on 7 dots. Setting

$$
x=z_{0}^{(0)} \quad \text { and } \quad s_{i}=\epsilon t_{s_{i}}
$$

realizes the Brauer algebra as a subalgebra of the degenerate affine BMW algebra \mathcal{W}_{k}. The Brauer algebra is also the quotient of \mathcal{W}_{k} by $y_{1}=0$ and, hence, can be viewed as the degenerate cyclotomic BMW algebra $\mathcal{W}_{1, k}(0)$.

Theorem 4.1 ([27,2]). Let \mathcal{W}_{k} be the degenerate affine BMW algebra and let $\mathcal{W}_{r, k}\left(b_{1}, \ldots, b_{r}\right)$ be the degenerate cyclotomic BMW algebra as defined in (2.41)-(2.42) and (2.43), respectively. For $n_{1}, \ldots, n_{k} \in \mathbb{Z}_{\geq 0}$ and a diagram d on k dots let

$$
d^{n_{1}, \ldots, n_{k}}=y_{i_{1}}^{n_{1}} \cdots y_{i_{l}}^{n_{l}} d y_{i_{l+1}}^{n_{l+1}} \cdots y_{i_{k}}^{n_{k}},
$$

where, in the lexicographic ordering of the edges $\left(i_{1}, j_{1}\right), \ldots,\left(i_{k}, j_{k}\right)$ of d, i_{1}, \ldots, i_{l} are in the top row of d and i_{l+1}, \ldots, i_{k} are in the bottom row of d. Let D_{k} be the set of diagrams on k dots, as in (4.1).
(a) If $\kappa_{0}, \kappa_{1} \in C$ and

$$
\begin{equation*}
\left(z_{0}(-u)-\left(\frac{1}{2}+\epsilon u\right)\right)\left(z_{0}(u)-\left(\frac{1}{2}-\epsilon u\right)\right)=\left(\frac{1}{2}-\epsilon u\right)\left(\frac{1}{2}+\epsilon u\right) \tag{4.3}
\end{equation*}
$$

then $\left\{d^{n_{1}, \ldots, n_{k}} \mid d \in D_{k}, n_{1}, \ldots, n_{k} \in \mathbb{Z}_{\geq 0}\right\}$ is a C-basis of \mathcal{W}_{k}.
(b) If $\kappa_{0}, \kappa_{1} \in C$, (4.3) holds, and

$$
\begin{equation*}
\left(z_{0}(u)+u-\frac{1}{2}\right)=\left(u-\frac{1}{2}(-1)^{r}\right)\left(\prod_{i=1}^{r} \frac{u+b_{i}}{u-b_{i}}\right) \tag{4.4}
\end{equation*}
$$

then $\left\{d^{n_{1}, \ldots, n_{k}} \mid d \in D_{k}, 0 \leq n_{1}, \ldots, n_{k} \leq r-1\right\}$ is a C-basis of $\mathcal{W}_{r, k}\left(b_{1}, \ldots, b_{r}\right)$.
Part (a) of Theorem 4.1 is [27, Theorem 4.6] (see also [2, Theorem 2.12]) and part (b) is [2, Proposition 2.15 and Theorem 5.5].

Theorem 4.2 ($[14,39])$. Let W_{k} be the affine BMW algebra and let $W_{r, k}\left(b_{1}, \ldots\right.$, b_{r}) be the cyclotomic BMW algebra as defined in Section 2.1. Let $d \in D_{k}$ be a Brauer diagram, where D_{k} is as in (4.1). Choose a minimal length expression of d as a product of $e_{1}, \ldots, e_{k-1}, s_{1}, \ldots, s_{k-1}$,

$$
d=a_{1} \cdots a_{l}, \quad a_{i} \in\left\{e_{1}, \ldots, e_{k-1}, s_{1}, \ldots, s_{k-1}\right\}
$$

such that the number of s_{i} in this product is the number of crossings in d. For each a_{i} which is in $\left\{s_{1}, \ldots, s_{k-1}\right\}$ fix a choice of sign $\epsilon_{j}= \pm 1$ and set

$$
T_{d}=A_{1} \cdots A_{l}, \quad \text { where } \quad A_{j}=\left\{\begin{array}{lll}
E_{i}, & \text { if } a_{j}=e_{i} \\
T_{i}^{\epsilon_{j}}, & \text { if } a_{j}=s_{i}
\end{array}\right.
$$

For $n_{1}, \ldots, n_{k} \in \mathbb{Z}$ let

$$
T_{d}^{n_{1}, \ldots, n_{k}}=Y_{i_{1}}^{n_{1}} \cdots Y_{i_{l}}^{n_{l}} T_{d} Y_{i_{l+1}}^{n_{l+1}} \cdots Y_{i_{k}}^{n_{k}}
$$

where, in the lexicographic ordering of the edges $\left(i_{1}, j_{1}\right), \ldots,\left(i_{k}, j_{k}\right)$ of d, i_{1}, \ldots, i_{l} are in the top row of d and i_{l+1}, \ldots, i_{k} are in the bottom row of d.
(a) If

$$
\begin{align*}
& \left(Z_{0}^{-}-\frac{z}{q-q^{-1}}-\frac{u^{2}}{u^{2}-1}\right)\left(Z_{0}^{+}+\frac{z^{-1}}{q-q^{-1}}-\frac{u^{2}}{u^{2}-1}\right) \\
& =\frac{-\left(u^{2}-q^{2}\right)\left(u^{2}-q^{-2}\right)}{\left(u^{2}-1\right)^{2}\left(q-q^{-1}\right)^{2}} \tag{4.5}
\end{align*}
$$

then $\left\{T_{d}^{n_{1}, \ldots, n_{k}} \mid d \in D_{k}, n_{1}, \ldots, n_{k} \in \mathbb{Z}\right\}$ is a C-basis of W_{k}.
(b) If (4.5) holds and

$$
\begin{equation*}
Z_{0}^{+}+\frac{z^{-1}}{q-q^{-1}}-\frac{u^{2}}{u^{2}-1}=\left(\frac{z}{q-q^{-1}}+\frac{u z}{u^{2}-1}\right) \prod_{j=1}^{r} \frac{u-b_{j}^{-1}}{u-b_{j}} \tag{4.6}
\end{equation*}
$$

then $\left\{T_{d}^{n_{1}, \ldots, n_{k}} \mid d \in D_{k}, 0 \leq n_{1}, \ldots, n_{k} \leq r-1\right\}$ is a C-basis of $W_{r, k}\left(b_{1}, \ldots, b_{r}\right)$.
Part (a) of Theorem 4.2 is [14, Theorem 2.25] and part (b) is [14, Theorem 5.5] and [39, Theorem 8.1]. We refer to these references for proof, remarking only that one key point in showing that $\left\{T_{d}^{n_{1}, \ldots, n_{k}} \mid d \in D_{k}, n_{1}, \ldots, n_{k} \in \mathbb{Z}\right\}$ spans W_{k} is that if (i, j) is a top-to-bottom edge in d then

$$
\begin{equation*}
Y_{i} T_{d}=T_{d} Y_{j}+(\text { terms with fewer crossings }), \tag{4.7}
\end{equation*}
$$

and, if (i, j) is a top-to-top edge in d then

$$
\begin{equation*}
Y_{i} T_{d}=Y_{j}^{-1} T_{d}+(\text { terms with fewer crossings }) \tag{4.8}
\end{equation*}
$$

4.2. The center of \mathcal{W}_{k}. The degenerate affine BMW algebra is the algebra \mathcal{W}_{k} over C defined in Section 2.3 and the polynomial ring $C\left[y_{1}, \ldots, y_{k}\right]$ is a subalgebra of \mathcal{W}_{k}. The symmetric group S_{k} acts on $C\left[y_{1}, \ldots, y_{k}\right]$ by permuting the variables. A classical fact (see, for example, [20, Theorem 3.3.1]) is that the center of the degenerate affine Hecke algebra \mathcal{H}_{k} is the ring of symmetric functions

$$
Z\left(\mathcal{H}_{k}\right)=C\left[y_{1}, \ldots, y_{k}\right]^{S_{k}}=\left\{f \in C\left[y_{1}, \ldots, y_{k}\right] \mid w f=f, \text { for } w \in S_{k}\right\}
$$

Theorem 4.3 gives an analogous characterization of the center of the degenerate affine BMW algebra. We shall not include the proof here since, given our parallel setup of the degenerate affine BMW algebras and the affine BMW algebras in Section 2, the proof is exactly parallel to the proof of Theorem 4.4.

Theorem 4.3. The center of the degenerate affine BMW algebra \mathcal{W}_{k} is

$$
\mathcal{R}_{k}=\left\{f \in C\left[y_{1}, \ldots, y_{k}\right]^{S_{k}} \mid f\left(y_{1},-y_{1}, y_{3}, \ldots, y_{k}\right)=f\left(0,0, y_{3}, \ldots, y_{k}\right)\right\} .
$$

The power sum symmetric functions p_{i} are given by

$$
p_{i}=y_{1}^{i}+y_{2}^{i}+\cdots+y_{k}^{i}, \quad \text { for } \quad i \in \mathbb{Z}_{>0} .
$$

The Hall-Littlewood polynomials (see [25, Chapter III (2.1)]) are given by

$$
P_{\lambda}(y ; t)=P_{\lambda}\left(y_{1}, \ldots, y_{k} ; t\right)=\frac{1}{v_{\lambda}(t)} \sum_{w \in S_{k}} w\left(y_{1}^{\lambda_{1}} \cdots y_{k}^{\lambda_{k}} \prod_{1 \leq i<j \leq k} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}}\right),
$$

where $v_{\lambda}(t)$ is a normalizing constant (a polynomial in t) so that the coefficient of $y_{1}^{\lambda_{1}} \cdots y_{k}^{\lambda_{k}}$ in $P_{\lambda}(y ; t)$ is equal to 1 . The Schur Q-functions (see [25, Chapter III (8.7)]) are

$$
Q_{\lambda}= \begin{cases}0, & \text { if } \lambda \text { is not strict }, \\ 2^{l(\lambda)} P_{\lambda}(y ;-1), & \text { if } \lambda \text { is strict },\end{cases}
$$

where $l(\lambda)$ is the number of (nonzero) parts of λ and the partition λ is strict if all its (nonzero) parts are distinct. Let \mathcal{R}_{k} be as in Theorem 4.3. Then (see [27, Corollary 4.10], [29, Theorem 2.11 (Q)] and [25, Chapter III §8])

$$
\begin{equation*}
\mathcal{R}_{k}=C\left[p_{1}, p_{3}, p_{5}, \ldots\right]=C \text { span }\left\{Q_{\lambda} \mid \lambda \text { is strict }\right\} . \tag{4.9}
\end{equation*}
$$

More generally, let $r \in \mathbb{Z}_{>0}$ and let ζ be a primitive r th root of unity. Define

$$
\begin{aligned}
\mathcal{R}_{r, k}= & \left\{f \in \mathbb{Z}[\zeta]\left[y_{1}, \ldots, y_{k}\right]^{S_{k}} \mid\right. \\
& \left.f\left(y_{1}, \zeta y_{1}, \ldots, \zeta^{r-1} y_{1}, y_{r+1}, \ldots, y_{k}\right)=f\left(0,0, \ldots, 0, y_{r+1}, \ldots, y_{k}\right)\right\} .
\end{aligned}
$$

Then

$$
\begin{equation*}
\mathcal{R}_{r, k} \otimes_{\mathbb{Z}[\zeta]} \mathbb{Q}(\zeta)=\mathbb{Q}(\zeta)\left[p_{i} \mid i \neq 0 \bmod r\right], \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{R}_{r, k} \quad \text { has } \mathbb{Z}[\zeta] \text {-basis }\left\{P_{\lambda}(y ; \zeta) \mid m_{i}(\lambda)<r \text { and } \lambda_{1} \leq k\right\}, \tag{4.11}
\end{equation*}
$$

where $m_{i}(\lambda)$ is the number parts of size i in λ. The ring $\mathcal{R}_{r, k}$ is studied in [26], [23], [25, Chapter III Example 5.7 and Example 7.7], [37], [9], and others. The proofs of (4.10) and (4.11) follow from [25, Chapter III Example 7.7], [37, Lemma 2.2 and following remarks] and the arguments in the proofs of [9, Lemma 3.2 and Proposition 3.5].
4.3. The center of $\boldsymbol{W}_{\boldsymbol{k}}$. The affine BMW algebra is the algebra W_{k} over C defined in Section 2.1 and the ring of Laurent polynomials $C\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]$ is a subalgebra of W_{k}. The symmetric group S_{k} acts on $C\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]$ by permuting the variables. A classical fact (see, for example, [16, Proposition 2.1]) is that the center of the affine Hecke algebra H_{k} is the ring of symmetric functions,

$$
Z\left(H_{k}\right)=C\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{S_{k}}=\left\{f \in C\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right] \mid w f=f, \text { for } w \in S_{k}\right\}
$$

Theorem 4.4 is a characterization of the center of the affine BMW algebra.
Theorem 4.4. The center of the affine BMW algebra W_{k} is
$R_{k}=\left\{f \in C\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{S_{k}} \mid f\left(Y_{1}, Y_{1}^{-1}, Y_{3}, \ldots, Y_{k}\right)=f\left(1,1, Y_{3}, \ldots, Y_{k}\right)\right\}$.
Proof. Step 1: $f \in W_{k}$ commutes with all $Y_{i} \Leftrightarrow f \in C\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]$: Assume $f \in W_{k}$ and write

$$
f=\sum c_{d}^{n_{1}, \ldots, n_{k}} T_{d}^{n_{1}, \ldots, n_{k}}
$$

in terms of the basis in Theorem 4.2. Let $d \in D_{k}$ with the maximal number of crossings such that $c_{d}^{n_{1}, \ldots, n_{k}} \neq 0$ and, using the notation after (4.2), suppose there is an edge (i, j) of d such that $j \neq i^{\prime}$. Then, by (4.7) and (4.8),
the coefficient of $Y_{i} T_{d}^{n_{1}, \ldots, n_{k}}$ in $Y_{i} f$ is $c_{d}^{n_{1}, \ldots, n_{k}}$
and

$$
\text { the coefficient of } Y_{i} T_{d}^{n_{1}, \ldots, n_{k}} \text { in } f Y_{i} \text { is } 0 .
$$

If $Y_{i} f=f Y_{i}$ it follows that there is no such edge, and so $d=1$ (and therefore $T_{d}=1$). Thus $f \in C\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]$. Conversely, if $f \in C\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]$, then $Y_{i} f=f Y_{i}$.

Step 2: $f \in C\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]$ commutes with all $T_{i} \Leftrightarrow f \in R_{k}$: Assume $f \in$ $C\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]$ and write

$$
f=\sum_{a, b \in \mathbb{Z}} Y_{1}^{a} Y_{2}^{b} f_{a, b}, \quad \text { where } \quad f_{a, b} \in C\left[Y_{3}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]
$$

Then $f\left(1,1, Y_{3}, \ldots, Y_{k}\right)=\sum_{a, b \in \mathbb{Z}} f_{a, b}$ and

$$
\begin{equation*}
f\left(Y_{1}, Y_{1}^{-1}, Y_{3}, \ldots, Y_{k}\right)=\sum_{a, b \in \mathbb{Z}} Y_{1}^{a-b} f_{a, b}=\sum_{l \in \mathbb{Z}} Y_{1}^{l}\left(\sum_{b \in \mathbb{Z}} f_{l+b, b}\right) \tag{4.12}
\end{equation*}
$$

By direct computation using (3.12) and (3.14),

$$
T_{1} Y_{1}^{a} Y_{2}^{b}=Y_{1}^{a} Y_{2}^{a} T_{1} Y_{2}^{b-a}=s_{1}\left(Y_{1}^{a} Y_{2}^{b}\right) T_{1}+\left(q-q^{-1}\right) \frac{Y_{1}^{a} Y_{2}^{b}-s_{1}\left(Y_{1}^{a} Y_{2}^{b}\right)}{1-Y_{1} Y_{2}^{-1}}+\mathcal{E}_{b-a}
$$

where

$$
\mathcal{E}_{l}= \begin{cases}-\left(q-q^{-1}\right) \sum_{r=1}^{l} Y_{1}^{l-r} E_{1} Y_{1}^{-r}, & \text { if } l>0 \\ \left(q-q^{-1}\right) \sum_{r=1}^{-l} Y_{1}^{l+r-1} E_{1} Y_{1}^{r-1}, & \text { if } l<0 \\ 0, & \text { if } l=0\end{cases}
$$

It follows that

$$
\begin{equation*}
T_{1} f=\left(s_{1} f\right) T_{1}+\left(q-q^{-1}\right) \frac{f-s_{1} f}{1-Y_{1} Y_{2}^{-1}}+\sum_{l \in \mathbb{Z}_{\neq 0}} \mathcal{E}_{l}\left(\sum_{b \in \mathbb{Z}} f_{l+b, b}\right) . \tag{4.13}
\end{equation*}
$$

Thus, if $f\left(Y_{1}, Y_{1}^{-1}, Y_{3}, \ldots, Y_{k}\right)=f\left(1,1, Y_{3}, \ldots, Y_{k}\right)$ then, by (4.12),

$$
\begin{equation*}
\sum_{b \in \mathbb{Z}} f_{l+b, b}=0, \quad \text { for } \quad l \neq 0 \tag{4.14}
\end{equation*}
$$

Hence, if $f \in C\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{S_{k}}$ and $f\left(Y_{1}, Y_{1}^{-1}, Y_{3}, \ldots, Y_{k}\right)=f\left(1,1, Y_{3}, \ldots, Y_{k}\right)$ then $s_{1} f=f$ and (4.14) holds so that, by (4.13), $T_{1} f=f T_{1}$. Similarly, f commutes with all T_{i}.

Conversely, if $f \in C\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]$ and $T_{i} f=f T_{i}$ then

$$
s_{i} f=f \quad \text { and } \quad \sum_{b \in \mathbb{Z}} f_{l+b, b}=0, \quad \text { for } \quad l \neq 0,
$$

so that $f \in C\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{S_{k}}$ and $f\left(Y_{1}, Y_{1}^{-1}, Y_{3}, \ldots, Y_{k}\right)=f\left(1,1, Y_{3}, \ldots, Y_{k}\right)$.
It follows from (2.7) that $R_{k}=Z\left(W_{k}\right)$.

The symmetric group S_{k} acts on \mathbb{Z}^{k} by permuting the factors. The ring

$$
C\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{S_{k}} \quad \text { has basis } \quad\left\{m_{\lambda} \mid \lambda \in \mathbb{Z}^{k} \text { with } \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}\right\}
$$

where

$$
m_{\lambda}=\sum_{\mu \in S_{k} \lambda} Y_{1}^{\mu_{1}} \cdots Y_{k}^{\mu_{k}}
$$

The elementary symmetric functions are

$$
e_{r}=m_{\left(1^{r}, 0^{k-r}\right)} \quad \text { and } \quad e_{-r}=m_{\left(0^{k-r},(-1)^{r}\right)}, \quad \text { for } \quad r=0,1, \ldots, k
$$

and the power sum symmetric functions are

$$
p_{r}=m_{\left(r, 0^{k-1}\right)} \quad \text { and } \quad p_{-r}=m_{\left(0^{k-1},-r\right)}, \quad \text { for } \quad r \in \mathbb{Z}_{>0}
$$

The Newton identities (see [25, Chapter I $\left.\left(2.11^{\prime}\right)\right]$) say

$$
\begin{equation*}
l e_{l}=\sum_{r=1}^{l}(-1)^{r-1} p_{r} e_{l-r} \quad \text { and } \quad l e_{-l}=\sum_{r=1}^{l}(-1)^{r-1} p_{-r} e_{-(l-r)} \tag{4.15}
\end{equation*}
$$

where the second equation is obtained from the first by replacing Y_{i} with Y_{i}^{-1}. For $l \in \mathbb{Z}$ and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in \mathbb{Z}^{k}$,

$$
e_{k}^{l} m_{\lambda}=m_{\lambda+\left(l^{k}\right)}, \quad \text { where } \quad \lambda+\left(l^{k}\right)=\left(\lambda_{1}+l, \ldots, \lambda_{k}+l\right)
$$

In particular,

$$
\begin{equation*}
e_{-r}=e_{k}^{-1} e_{k-r}, \quad \text { for } \quad r=0, \ldots, k \tag{4.16}
\end{equation*}
$$

Define

$$
\begin{equation*}
p_{i}^{+}=p_{i}+p_{-i} \quad \text { and } \quad p_{i}^{-}=p_{i}-p_{-i}, \quad \text { for } \quad i \in \mathbb{Z}_{>0} \tag{4.17}
\end{equation*}
$$

The consequence of (4.16) and (4.15) is that

$$
\begin{aligned}
\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{S_{k}} & =\mathbb{C}\left[e_{k}^{ \pm 1}, e_{1}, \ldots, e_{k-1}\right] \\
& =\mathbb{C}\left[e_{k}^{ \pm 1}\right]\left[e_{1}, e_{2}, \ldots, e_{\lfloor k / 2\rfloor}, e_{k} e_{-\lfloor(k-1) / 2\rfloor}, \ldots, e_{k} e_{-2}, e_{k} e_{-1}\right] \\
& =\mathbb{C}\left[e_{k}^{ \pm 1}\right]\left[e_{1}, e_{2}, \ldots, e_{\lfloor k / 2\rfloor}, e_{-\lfloor(k-1) / 2\rfloor}, \ldots, e_{-2}, e_{-1}\right] \\
& =\mathbb{C}\left[e_{k}^{ \pm 1}\right]\left[p_{1}, p_{2}, \ldots, p_{\lfloor k / 2\rfloor}, p_{-\lfloor(k-1) / 2\rfloor}, \ldots, p_{-2}, p_{-1}\right] \\
& =\mathbb{C}\left[e_{k}^{ \pm 1}\right]\left[p_{1}^{+}, p_{2}^{+}, \ldots, p_{\lfloor k / 2\rfloor}^{+}, p_{\lfloor(k-1) / 2\rfloor}^{-}, \ldots, p_{2}^{-}, p_{1}^{-}\right]
\end{aligned}
$$

For $v \in \mathbb{Z}^{k}$ with $\nu_{1} \geq \cdots \geq v_{l}>0$ define

$$
p_{v}^{+}=p_{v_{1}}^{+} \cdots p_{v_{l}}^{+} \quad \text { and } \quad p_{v}^{-}=p_{v_{1}}^{-} \cdots p_{v_{l}}^{-}
$$

Then

$$
\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{k}^{ \pm 1}\right]^{S_{k}} \quad \text { has basis } \quad\left\{e_{k}^{l} p_{\lambda}^{+} p_{\mu}^{-} \mid l \in \mathbb{Z}, l(\lambda) \leq\left\lfloor\frac{k}{2}\right\rfloor, l(\mu) \leq\left\lfloor\frac{k-1}{2}\right\rfloor\right\}
$$

In analogy with (4.9) we expect that if R_{k} is as in Theorem 4.4 then

$$
R_{k}=C\left[e_{k}^{ \pm 1}\right]\left[p_{1}^{-}, p_{2}^{-}, \ldots\right] .
$$

Acknowledgements. Significant work on this paper was done while the authors were in residence at the Mathematical Sciences Research Institute (MSRI) in 2008, and the writing was completed when A. Ram was in residence at the Hausdorff Institute for Mathematics (HIM) in 2011. We thank MSRI and HIM for hospitality, support, and a wonderful working environment during these stays. This research has been partially supported by the National Science Foundation (DMS-0353038) and the Australian Research Council (DP-0986774). We thank S. Fomin for providing the reference [29] and Fred Goodman for providing the reference [4], many informative discussions, much help in processing the theory and for correcting many of our errors. We thank J. Enyang for his helpful comments on the manuscript. Finally, many thanks to the referee for a critical reading and the discovery of an omission in our original definition of the degenerate affine braid algebra.

References

[1] T. Arakawa and T. Suzuki: Duality between $\mathfrak{s l}_{n}(\mathbf{C})$ and the degenerate affine Hecke algebra, J. Algebra 209 (1998), 288-304.
[2] S. Ariki, A. Mathas and H. Rui: Cyclotomic Nazarov-Wenzl algebras, Nagoya Math. J. 182 (2006), 47-134.
[3] P. Baumann: On the center of quantized enveloping algebras, J. Algebra 203 (1998), 244-260.
[4] A. Beliakova and C. Blanchet: Skein construction of idempotents in Birman-Murakami-Wenzl algebras, Math. Ann. 321 (2001), 347-373.
[5] R. Brauer: On algebras which are connected with the semisimple continuous groups, Ann. of Math. (2) 38 (1937), 857-872.
[6] Z. Daugherty, A. Ram and R. Virk: Affine and degenerate affine BMW algebras: actions on tensor space, Selecta Math. (N.S.) 19 (2013), 611-653.
[7] M. Ehrig and C. Stroppel: Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality, arXiv:1310.1972.
[8] J. Enyang: Specht modules and semisimplicity criteria for Brauer and Birman-Murakami-Wenzl algebras, J. Algebraic Combin. 26 (2007), 291-341.
[9] B. Feigin, M. Jimbo, T. Miwa, E. Mukhin and Y. Takeyama: Symmetric polynomials vanishing on the diagonals shifted by roots of unity, Int. Math. Res. Not. 2003, 999-1014.
[10] F.M. Goodman: Cellularity of cyclotomic Birman-Wenzl-Murakami algebras, J. Algebra 321 (2009), 3299-3320.
[11] F.M. Goodman: Comparison of admissibility conditions for cyclotomic Birman-Wenzl-Murakami algebras, J. Pure Appl. Algebra 214 (2010), 2009-2016.
[12] F.M. Goodman: Admissibility conditions for degenerate cyclotomic BMW algebras, Comm. Algebra 39 (2011), 452-461.
[13] F.M. Goodman and H. Hauschild: Affine Birman-Wenzl-Murakami algebras and tangles in the solid torus, Fund. Math. 190 (2006), 77-137.
[14] F.M. Goodman and H.H. Mosley: Cyclotomic Birman-Wenzl-Murakami algebras, I, Freeness and realization as tangle algebras, J. Knot Theory Ramifications 18 (2009), 1089-1127.
[15] F.M. Goodman and H.H. Mosley: Cyclotomic Birman-Wenzl-Murakami algebras, II, admissibility relations and freeness, Algebr. Represent. Theory 14 (2011), 1-39.
[16] I. Grojnowski and M. Vazirani: Strong multiplicity one theorems for affine Hecke algebras of type A, Transform. Groups 6 (2001), 143-155.
[17] R. Häring-Oldenburg: The reduced Birman-Wenzl algebra of Coxeter type B, J. Algebra 213 (1999), 437-466.
[18] R. Häring-Oldenburg: An Ariki-Koike like extension of the Birman-Murakami-Wenzl algebra, preprint (1998), arXiv:q-alg/9712030.
[19] R. Häring-Oldenburg: Cyclotomic Birman-Murakami-Wenzl algebras, J. Pure Appl. Algebra 161 (2001), 113-144.
[20] A. Kleshchev: Linear and Projective Representations of Symmetric Groups, Cambridge Tracts in Mathematics 163, Cambridge Univ. Press, Cambridge, 2005.
[21] C. Kriloff and A. Ram: Representations of graded Hecke algebras, Represent. Theory 6 (2002), 31-69.
[22] T. Lam: Affine Schubert classes, Schur positivity, and combinatorial Hopf algebras, Bull. Lond. Math. Soc. 43 (2011), 328-334.
[23] A. Lascoux, B. Leclerc and J.-Y. Thibon: Green polynomials and Hall-Littlewood functions at roots of unity, European J. Combin. 15 (1994), 173-180.
[24] T. Lam, A. Schilling and M. Shimozono: Schubert polynomials for the affine Grassmannian of the symplectic group, Math. Z. 264 (2010), 765-811.
[25] I.G. Macdonald: Symmetric Functions and Hall Polynomials, second edition, Oxford Univ. Press, New York, 1995.
[26] A.O. Morris: On an algebra of symmetric functions, Quart. J. Math. Oxford Ser. (2) 16 (1965), 53-64.
[27] M. Nazarov: Young's orthogonal form for Brauer's centralizer algebra, J. Algebra 182 (1996), 664-693.
[28] R. Orellana and A. Ram: Affine braids, Markov traces and the category \mathcal{O}; in Algebraic Groups and Homogeneous Spaces, Tata Inst. Fund. Res. Stud. Math, Tata Inst. Fund. Res., Mumbai, 2007, 423-473.
[29] P. Pragacz: Algebro-geometric applications of Schur S - and Q-polynomials; in Topics in Invariant Theory (Paris, 1989/1990), Lecture Notes in Math. 1478, Springer, Berlin, 1991, 130-191.
[30] A. Ram: Affine Hecke algebras and generalized standard Young tableaux, J. Algebra 260 (2003), 367-415.
[31] H. Rui: On the classification of finite dimensional irreducible modules for affine BMW algebras, arXiv:1206.3771.
[32] H. Rui and M. Si: On the structure of cyclotomic Nazarov-Wenzl algebras, J. Pure Appl. Algebra 212 (2008), 2209-2235.
[33] H. Rui and M. Si: Gram determinants and semisimplicity criteria for Birman-Wenzl algebras, J. Reine Angew. Math. 631 (2009), 153-179.
[34] H. Rui and J. Xu: On the semisimplicity of the cyclotomic Brauer algebras, II, J. Algebra 312 (2007), 995-1010.
[35] H. Rui and J. Xu: The representations of cyclotomic BMW algebras, J. Pure Appl. Algebra 213 (2009), 2262-2288.
[36] A. Sartori: The degenerate affine walled Brauer algebra, arXiv:1305.2347.
[37] B. Totaro: Towards a Schubert calculus for complex reflection groups, Math. Proc. Cambridge Philos. Soc. 134 (2003), 83-93.
[38] S. Wilcox and S. Yu: The cyclotomic BMW algebra associated with the two string type B braid group, Comm. Algebra 39 (2011), 4428-4446.
[39] S. Wilcox and S. Yu: On the freeness of the cyclotomic BMW algebras: admissibility and an isomorphism with the cyclotomic Kauffman tangle algebras. arXiv:0911.5284.
[40] S. Yu: The cyclotomic Birman-Murakami-Wenzl algebras, Ph.D. Thesis, University of Sydney (2007). arXiv:0810.0069.
[41] A.V. Zelevinskiĭ: Resolutions, dual pairs and character formulas, Funktsional. Anal. i Prilozhen. 21 (1987), 74-75.

Zajj Daugherty
Department of Mathematics
Dartmouth College
Hanover, NH 03755
U.S.A.
e-mail: zajj.b.daugherty@dartmouth.edu
Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville VIC 3010
Australia
e-mail: aram@unimelb.edu.au
Rahbar Virk
Department of Mathematics
University of Colorado
Campus Box 395
Boulder, Colorado 80309
U.S.A.
e-mail: rahbar.virk @colorado.edu

