Liu, H.
Osaka J. Math.
51 (2014), 225-244

L^{P}-ESTIMATES FOR THE ROUGH SINGULAR INTEGRALS ASSOCIATED TO SURFACES

Honghai LIU

(Received November 18, 2011, revised July 27, 2012)

Abstract

In this paper we obtain the L^{p}-boundedness for the maximal functions and the singular integrals associated to surfaces $(y, \phi(|y|))$ with rough kernels, $1<p<\infty$. The analogue estimate is also established for the corresponding maximal singular integrals.

1. Introduction

Let $K: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a Calderón-Zygmund standard kernel in $\mathbb{R}^{n}(n \geq 2)$, that is, $K(y)=\Omega(y) /|y|^{n}$ with $y \neq 0$, where $\Omega(y)$ satisfies

$$
\begin{aligned}
& \Omega(y) \in C^{\infty}\left(\mathbf{S}^{n-1}\right), \\
& \Omega(\lambda y)=\Omega(y), \quad \lambda>0,
\end{aligned}
$$

and

$$
\begin{equation*}
\int_{\mathbf{S}^{n-1}} \Omega(y) d \sigma(y)=0 \tag{1.1}
\end{equation*}
$$

Let $\Gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a smooth map. Then, we define the singular integrals \mathcal{T} associated with Γ by the principal-value integral

$$
\begin{equation*}
\mathcal{T} f(x)=\text { p.v. } \int_{\mathbb{R}^{n}} f(x-\Gamma(y)) K(y) d y \tag{1.2}
\end{equation*}
$$

where $x \in \mathbb{R}^{m}$ and $f \in \mathscr{S}\left(\mathbb{R}^{m}\right)$. Similar to the case of classical singular integrals theory, one can define the corresponding maximal functions as

$$
\mathcal{M} f(x)=\sup _{h>0} \frac{1}{h^{n}} \int_{|y| \leq h}|f(x-\Gamma(y))| d y
$$

The boundedness of the two operators \mathcal{T} and \mathcal{M} above on $L^{p}\left(\mathbb{R}^{m}\right)$ has been well studied. We begin with the classical results by Stein, which can be found in [15].

[^0]Theorem A (See [15]). If Γ is any polynomial map from \mathbb{R}^{n} to \mathbb{R}^{m}, then the operators \mathcal{T} and \mathcal{M} are both bounded on $L^{p}\left(\mathbb{R}^{m}\right)$ for $1<p<\infty$.

Moreover, if Γ is a smooth mapping from the unit ball in \mathbb{R}^{n} to \mathbb{R}^{m}, and of finite type at the origin, then \mathcal{T} and \mathcal{M} are bounded operators on $L^{p}\left(\mathbb{R}^{m}\right)$ for $1<p<\infty$.

Later, the theorem above was extended. That is, even in the case Ω is rough, the two results above still holds (see [9] and [10]). Furthermore, \mathcal{T} is bounded on $\dot{F}_{\alpha}^{p, q}$ for $1<p, q<\infty$ and $\alpha \in \mathbb{R}$, where Ω is rough and Γ is a polynomial map or a smooth mapping of finite type. More details can be found in [6] and [12].

For $\Gamma(y)=(y, \phi(|y|)), y \in \mathbb{R}^{n}$ and $\phi \in C\left(\mathbb{R}^{+}\right)$, Kim, Wainger, Wright and Ziesler proved the following result in [11].

Theorem B (See [11]). Let $\phi(t)$ be a C^{2} function on $[0, \infty)$, and assume that ϕ is convex and increasing on $[0, \infty)$, and $\phi(0)=0$. Then, for $1<p<\infty$, there exists a positive constant A_{p} such that

$$
\|\mathcal{T} f\|_{L^{p}} \leq A_{p}\|f\|_{L^{p}} \quad \text { and } \quad\|\mathcal{M} f\|_{L^{p}} \leq A_{p}\|f\|_{L^{p}} \quad\left(f \in L^{p}\right) .
$$

In this case, the L^{p}-boundedness for the singular integrals in (1.2) with rough kernel is studied by Chen-Fan [5] and Lu-Pan-Yang [13].

Let $P(t)$ be a real-valued polynomial of t in \mathbb{R}, and assume that γ satisfies

$$
\gamma \in C^{2}[0, \infty), \quad \text { convex on }[0, \infty) \text { and } \quad \gamma(0)=0
$$

In this paper, we consider the hypersurface parameterized by $\Gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+1}$, where Γ is given by

$$
\Gamma(y)=(y, P(\gamma(|y|))), \quad y \in \mathbb{R}^{n}
$$

Then, the operators \mathcal{T} and \mathcal{M} above take the form

$$
\begin{equation*}
\mathcal{T} f(u)=p \cdot v \cdot \int_{\mathbb{R}^{n}} f(x-y, s-P(\gamma(|y|))) K(y) d y \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{M} f(u)=\sup _{h>0} \frac{1}{h^{n}} \int_{|y| \leq h}|f(x-y, s-P(\gamma(|y|)))||\Omega(y)| d y, \tag{1.4}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}, s \in \mathbb{R}$ and $u=(x, s), K$ is the Calderón-Zygmund standard kernel as before.

For the L^{p}-boundedness of the singular integrals \mathcal{T} in (1.3) and the maximal functions \mathcal{M} in (1.4), Bez proved the following theorem in [1].

Theorem C (See [1]). For \mathcal{T} in (1.3) and \mathcal{M} in (1.4), if $\gamma^{\prime}(0) \geq 0, \Omega \in C^{\infty}\left(\mathbf{S}^{n-1}\right)$, then, for $1<p<\infty$, there exists a positive constant C only dependent on p, n, γ and the degree of P such that

$$
\|\mathcal{T} f\|_{L^{p}} \leq C\|f\|_{L^{p}} \quad \text { and } \quad\|\mathcal{M} f\|_{L^{p}} \leq C\|f\|_{L^{p}} \quad\left(f \in L^{p}\right) .
$$

Remark 1.1. One may notice that there is a little difference between the maximal function in (1.4) and that in Bez's paper [1], we represent the maximal function in this form just for convenient. But Bez's results still hold, since $C^{\infty}\left(\mathbf{S}^{n-1}\right) \subset L^{\infty}\left(\mathbf{S}^{n-1}\right)$.

Besides the operators \mathcal{T} and \mathcal{M} above, we also consider the corresponding maximal singular integrals

$$
\begin{equation*}
\mathcal{T}^{*} f(u)=\sup _{\varepsilon>0}\left|\int_{|y| \geq \varepsilon} f(x-y, s-P(\gamma(|y|))) K(y) d y\right| . \tag{1.5}
\end{equation*}
$$

Appropriate estimates for the maximal singular integrals give the pointwise existence of the principle value singular integrals.

REmARK 1.2. For $n=1$, if Γ satisfies a 'finite type condition' at origin in \mathbb{R}^{m}, the L^{p}-estimates for the Hilbert transform, the maximal function and the maximal Hilbert transform can be found in the survey [14] of results through 1978. For other one-dimensional curves Γ, there are considerable results about the L^{p}-estimates for the Hilbert transform and the maximal function, see [2], [7] and [8] for example. Specially, the maximal Hilbert transform has been discussed in detail in [8].

The purpose of this note is to study the L^{p}-boundedness for \mathcal{T} in (1.3) and \mathcal{M} in (1.4), also, the analogue estimate for the maximal singular integrals \mathcal{T}^{*} in (1.5) is considered. Main results are presented as follows.

Theorem 1.3. Let \mathcal{T} and \mathcal{M} be given as in (1.3) and (1.4), respectively. If $\gamma^{\prime}(0) \geq$ 0 and $\Omega \in L^{q}\left(\mathbf{S}^{n-1}\right)$ for some $1<q \leq \infty$, then \mathcal{T} and \mathcal{M} are bounded on $L^{p}\left(\mathbb{R}^{n+1}\right)$ for $1<p<\infty$.

Remark 1.4. Note that $C^{\infty}\left(\mathbf{S}^{n-1}\right) \subset L^{q}\left(\mathbf{S}^{n-1}\right)$ for $1<q \leq \infty$, so, Theorem 1.3 improves and extends Theorem C. Also, Theorem B is a special case of Theorem 1.3 for $P(t)=t$. Further, the L^{p}-boundedness for \mathcal{M} can be proved by using CalderónZygmund's rotation method with $\Omega \in L^{1}\left(\mathbf{S}^{n-1}\right)$, if either
(1) $P^{\prime}(0)=0$, or
(2) $P^{\prime}(0) \neq 0$ and $\gamma^{\prime}(\lambda t) \geq 2 \lambda^{\prime}(t)$ for some $\lambda>1$.

Theorem 1.5. Let \mathcal{T}^{*} be given as in (1.5). If $\gamma^{\prime}(0) \geq 0$ and $\Omega \in L^{q}\left(\mathbf{S}^{n-1}\right)$ for some $1<q \leq \infty$, then \mathcal{T}^{*} is bounded on $L^{p}\left(\mathbb{R}^{n+1}\right)$ for $1<p<\infty$.

This paper is organized as follows. In Section 2 we list some key properties concerning polynomials of one variable and give some fundamental lemmas for the proof of main results. The L^{p}-boundedness of \mathcal{M} and \mathcal{T} is proved following the arguments of Bez [1] and Carbery et al. [2] in Section 3 and Section 4, respectively. The last section contains the proof of Theorem 1.5, where we use the ideas of Córdoba and Rubio de Francia [8].

2. Preliminaries

Without loss of generality, we suppose that $P(t)=\sum_{k=1}^{d} p_{k} t^{k}$, where $d \geq 2$. Let $z_{1}, z_{2}, \cdots, z_{d}$ be the d complex roots of P ordered as

$$
0=\left|z_{1}\right| \leq\left|z_{2}\right| \leq \cdots \leq\left|z_{d}\right| .
$$

Let $A>1$, whose value we fix in Lemma 2.1. Define $G_{j}=\left(A\left|z_{j}\right|, A^{-1}\left|z_{j+1}\right|\right]$ if it is nonempty for $1 \leq j<d$ and $G_{d}=\left(A\left|z_{d}\right|, \infty\right)$. Let $\mathcal{J}=\left\{j: G_{j} \neq \emptyset\right\}$, then, $(0, \infty) \backslash \bigcup_{j \in \mathcal{J}} G_{j}$ can be decomposed as $\bigcup_{k \in \mathcal{K}} D_{k}$, where D_{k} is the interval between G_{k} and adjacent G_{k+l} for some $l \geq 1$, it it obvious that D_{k} 's are disjoint. Then, we can split $(0, \infty)$ as

$$
(0, \infty)=\bigcup_{j \in \mathcal{J}} \gamma^{-1}\left(G_{j}\right) \cup \bigcup_{k \in \mathcal{K}} \gamma^{-1}\left(D_{k}\right),
$$

where $\gamma^{-1}(I)=\{t \in(0, \infty): \gamma(t) \in I\}$.
The properties of P on D_{k} and G_{j} are important for our proof, the following related lemma can be found in [1] and [3].

Lemma 2.1. There exists a constant $C_{d}>1$ such that for any $A \geq C_{d}$ and any $j \in \mathcal{J}$,
(1) $|P(t)| \sim\left|p_{j}\right||t|^{j}$ for $|t| \in G_{j}$;
(2) $P^{\prime}(t) / P(t)>0$ for $t \in G_{j}, P^{\prime}(t) / P(t)<0$ for $-t \in G_{j}$;
(3) $\left|P^{\prime}(t) / P(t)\right| \sim 1 /|t|$ for $|t| \in G_{j}$;
(4) $P^{\prime \prime}(t) / P(t)>0$ and $P^{\prime \prime}(t) / P(t) \sim 1 / t^{2}$ for $|t| \in G_{j}, j \in \mathcal{J} \backslash\{1\}$.

The following trivial fact follows the proof of Lemma 2.1 (see [1]), that is, we can choose $A>0$ such that for $|t| \in G_{j}$,

$$
\begin{equation*}
|P(t)| \leq 2\left|p_{j}\right||t|^{j} \quad \text { and } \quad \frac{1}{2} j\left|p_{j}\right||t|^{j-1} \leq\left|P^{\prime}(t)\right| \leq 2 j\left|p_{j}\right||t|^{j-1} \tag{2.1}
\end{equation*}
$$

Let $\rho=n+2$, for $I \subset(0, \infty), \mathcal{M}_{I}$ and \mathcal{T}_{I} are given by

$$
\mathcal{M}_{I} f(u)=\sup _{k \in \mathbb{Z}} \frac{1}{\rho^{n k}} \int_{|y| \in \gamma^{-1}(I) \cap\left(\rho^{k}, \rho^{k+1}\right]}|f(x-y, s-P(\gamma(|y|)))||\Omega(y)| d y,
$$

and

$$
\mathcal{T}_{I} f(u)=\int_{|y| \in \gamma^{-1}(I)} f(x-y, s-P(\gamma(|y|))) K(y) d y .
$$

For $k \in \mathbb{Z}$ and $j \in \mathcal{J}$, let

$$
A_{k, j}=\left(\begin{array}{cccc}
\rho^{k} & 0 & \cdots & 0 \\
0 & \rho^{k} & 0 & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & \left|p_{j}\right| \gamma^{j}\left(\rho^{k}\right)
\end{array}\right)_{(n+1) \times(n+1)}
$$

then, $A_{k, j}$ satisfies Rivière condition, that is $\left\|A_{k+1, j}^{-1} A_{k, j}\right\| \leq \alpha<1$. In fact,

$$
A_{k+1, j}^{-1} A_{k, j}=\left(\begin{array}{cc}
\rho^{-1} I_{n} & 0 \\
0 & \left(\frac{\gamma\left(\rho^{k}\right)}{\gamma\left(\rho^{k+1}\right)}\right)^{j}
\end{array}\right) .
$$

Note that γ is convex, $\gamma(t) / t \leq \gamma(s) / s$ for $0<t \leq s$, therefore,

$$
\left(\frac{\gamma\left(\rho^{k}\right)}{\gamma\left(\rho^{k+1}\right)}\right) \leq \frac{1}{\rho}<1 .
$$

We choose $\phi \in C^{\infty}\left(\mathbb{R}^{n+1}\right)$ such that $\hat{\phi}(\zeta)=1$ for $|\zeta| \leq 1$ and $\hat{\phi}(\zeta)=0$ for $|\zeta| \geq 2$. For $k \in \mathbb{Z}$ and $j \in \mathcal{J}$, the multiplier $m_{k, j}$ is defined by

$$
m_{k, j}(\zeta)=\hat{\phi}\left(A_{k, j}^{*} \zeta\right)-\hat{\phi}\left(A_{k+1, j}^{*} \zeta\right),
$$

where $A_{k, j}^{*}$ is the adjoint of $A_{k, j}$. Then, we define the operator $S_{k, j}$ by

$$
\left(S_{k, j} f\right)^{\wedge}(\zeta)=m_{k, j}(\zeta) \hat{f}(\zeta)
$$

In the next proposition, we state a useful result for future reference.
Proposition 2.2. For any $j \in \mathcal{J}$, if $m_{l+k, j}(\zeta) \neq 0$ for some $k, l \in \mathbb{Z}$, then

$$
\begin{equation*}
\left|A_{k, j}^{*} \zeta\right| \geq C \rho^{-l}, \quad l<0 ; \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{k+1, j}^{*} \zeta\right| \leq C \rho^{-l}, \quad l>0 . \tag{2.3}
\end{equation*}
$$

Proof. If $m_{l+k, j}(\zeta) \neq 0$, then $\left|A_{l+k, j}^{*} \zeta\right| \leq 2$ and $\left|A_{l+k+1, j}^{*} \zeta\right|>1$. For $l<0$, by the convexity of γ,

$$
1<\left|A_{l+k+1, j}^{*} \zeta\right| \leq \rho^{l+1}\left|A_{k, j}^{*} \zeta\right|
$$

that is (2.2). When $l>0$,

$$
2 \geq\left|A_{l+k, j}^{*} \zeta\right| \geq \rho^{l-1}\left|A_{k+1, j}^{*} \zeta\right|
$$

then, (2.3) is obtained.
We need the following Littlewood-Paley theorem, which can be found in [2] and [4].

Lemma 2.3. For $m_{k, j}$ and $S_{k, j}$ above, we have the following properties:
(i) for each ζ at most C_{0} of the $m_{k, j}(\zeta)$ are not zero;
(ii) for each $\zeta \neq 0, \sum_{k \in \mathbb{Z}} m_{k, j}(\zeta)=1$;
(iii) $\left\|\left(\sum_{k \in \mathbb{Z}}\left|S_{k, j} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \leq C_{p}\|f\|_{L^{p}}, 1<p<\infty$;
(iv) $\left\|\sum_{k \in \mathbb{Z}} S_{k, j} f_{k}\right\|_{L^{p}} \leq C_{p}\left\|\left(\sum_{k \in \mathbb{Z}}\left|S_{k, j} f_{k}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}}, 1<p<\infty$.

3. The L^{p}-boundedness for \mathcal{M}

It is trivial that

$$
\mathcal{M} f(u) \leq C\left[\sum_{k \in \mathcal{K}} \mathcal{M}_{D_{k}} f(u)+\sum_{j \in \mathcal{J}} \mathcal{M}_{G_{j}} f(u)\right]
$$

Note that the cardinalities of \mathcal{K} and \mathcal{J} are less than d, so we just need to verify that $\mathcal{M}_{D_{k}}$ and $\mathcal{M}_{G_{j}}$ are L^{p}-bounded for each $k \in \mathcal{K}$ and $j \in \mathcal{J}$.
3.1. The \boldsymbol{L}^{p}-bounedness for $\mathcal{M}_{\boldsymbol{D}_{\boldsymbol{k}}}$. For any $u \in \mathbb{R}^{n+1}$, there exists an integer $j(u)$ such that

$$
\mathcal{M}_{D_{k}} f(u) \leq \frac{2}{\rho^{n j(u)}} \int_{|y| \in \gamma^{-1}\left(D_{k}\right) \cap\left(\rho^{j(u)}, \rho^{j(u)+1}\right]}|f(x-y, s-P(\gamma(|y|)))||\Omega(y)| d y
$$

Then, by Minkowski's inequality, the L^{p}-norm of $\mathcal{M}_{D_{k}} f$ can be dominated by

$$
\begin{aligned}
& \left(\int_{\mathbb{R}^{n+1}}\left[\frac{1}{\rho^{n j(u)}} \int_{|y| \in \gamma^{-1}\left(D_{k}\right) \cap\left(\rho^{j(u)}, \rho^{(\mu u)+1}\right]}|f(x-y, s-P(\gamma(|y|)))||\Omega(y)| d y\right]^{p} d u\right)^{1 / p} \\
& \leq \int_{|y| \in \gamma^{-1}\left(D_{k}\right)} \frac{|\Omega(y)|}{|y|^{n}}\left(\int_{\mathbb{R}^{n+1}}|f(x-y, s-P(\gamma(|y|)))|^{p} d u\right)^{1 / p} d y \\
& \leq C\|f\|_{L^{p}}\|\Omega\|_{L^{1}\left(S^{n-1}\right)} \int_{r \in \gamma^{-1}\left(D_{k}\right)} \frac{1}{r} d r .
\end{aligned}
$$

Let $D_{k}=\left(A^{-1}\left|z_{j}\right|, A\left|z_{j+l}\right|\right]$ for some $2 \leq j \leq d$ and $0 \leq l \leq d-j$, then

$$
A^{-1}\left|z_{j}\right| \leq A^{-1}\left|z_{j+1}\right| \leq A\left|z_{j}\right| \leq \cdots \leq A\left|z_{j+l}\right|<A^{-1}\left|z_{j+l+1}\right|
$$

and

$$
A^{2} \leq \frac{A\left|z_{j+l}\right|}{A^{-1}\left|z_{j}\right|} \leq \frac{A\left|z_{j+l}\right|}{A^{-2 l-1}\left|z_{j+l}\right|} \leq A^{2 l+2} .
$$

Notice that γ is convex and $\gamma(0)=0$, so, $\gamma(t) \leq t \gamma^{\prime}(t)$ for $t>0$. Thus,

$$
\begin{aligned}
\int_{r \in \gamma^{-1}\left(D_{k}\right)} \frac{1}{r} d r & =\int_{\gamma^{-1}\left(A^{-1}\left|z_{j}\right|\right)}^{\gamma^{-1}\left(A\left|z_{j+l}\right|\right)} \frac{1}{r} d r=\int_{A^{-1}\left|z_{j}\right|}^{A\left|z_{j+l}\right|} \frac{1}{\gamma^{-1}(r) \gamma^{\prime}\left(\gamma^{-1}(r)\right)} d r \\
& \leq \int_{A^{-1}\left|z_{j}\right|}^{A\left|z_{j+l}\right|} \frac{1}{r} d r \leq 2 d \ln A,
\end{aligned}
$$

where $\gamma^{-1}(t)$ is the inverse function of $\gamma(t)$.
According to the calculation above, the L^{p}-bounedness for $\mathcal{M}_{D_{k}}$ is established,

$$
\left\|\mathcal{M}_{D_{k}} f\right\|_{L^{p}} \leq C\|f\|_{L^{p}}, \quad \text { for } \quad 1<p<\infty, k \in \mathcal{K} .
$$

3.2. The \boldsymbol{L}^{p}-bounedness for $\mathcal{M}_{G_{j}}$. Next, we verify that $\mathcal{M}_{G_{j}}$ is L^{p}-bounded for $j \in \mathcal{J}$. The maximal operators $\mathcal{M}_{G_{j}}$ can be expressed as

$$
\mathcal{M}_{G_{j}} f(u)=\sup _{k \in \mathbb{Z}} \int_{|y| \in \rho^{-k} \gamma^{-1}\left(G_{j}\right) \cap(1, \rho]}\left|f\left(x-\rho^{k} y, s-P\left(\gamma\left(\left|\rho^{k} y\right|\right)\right)\right)\right||\Omega(y)| d y .
$$

Set $I_{k, j}=(1, \rho] \cap \rho^{-k} \gamma^{-1}\left(G_{j}\right)$, and define the measure $\mu_{k, j}$ by

$$
\left\langle\mu_{k, j}, \psi\right\rangle=\int_{|y| \in I_{k, j}} \psi\left(\rho^{k} y, P\left(\gamma\left(\left|\rho^{k} y\right|\right)\right)\right)|\Omega(y)| d y
$$

for $\psi \in \mathscr{S}\left(\mathbb{R}^{n+1}\right)$. Then, for $j \in \mathcal{J}, \mathcal{M}_{G_{j}} f$ also can be rewritten as

$$
\mathcal{M}_{G_{j}} f(u)=\sup _{k \in \mathbb{Z}} \mu_{k, j} *|f|(u) .
$$

We also need to define the measure $\sigma_{k, j}$ by

$$
\left\langle\sigma_{k, j}, \psi\right\rangle=\frac{\hat{\mu}_{k, j}(0)}{\left|A_{k+1, j} B\right|} \int_{A_{k+1, j}} \psi(u) d u,
$$

where $B=\left\{u \in \mathbb{R}^{n+1}:|u| \leq n+1\right\}$.

3.2.1. Fourier transform estimates for related measures.

Proposition 3.1. For $j \in \mathcal{J}$ and $k \in \mathbb{Z}$, then there exists $C>0$ and $\beta>0$ independent of j and k such that

$$
\begin{equation*}
\left|\hat{\mu}_{k, j}(\zeta)\right|,\left|\hat{\sigma}_{k, j}(\zeta)\right| \leq C \max \left\{\left|A_{k, j}^{*} \zeta\right|^{-1},\left|A_{k, j}^{*} \zeta\right|^{-\beta}\right\} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\hat{\mu}_{k, j}(\zeta)-\hat{\sigma}_{k, j}(\zeta)\right| \leq C\left|A_{k+1, j}^{*} \zeta\right| . \tag{3.2}
\end{equation*}
$$

Proof. The main idea of the following proof comes from the work of Bez (see [1]). For completeness, we show more details.

Let $\zeta=(\xi, \eta)$, where $\xi \in \mathbb{R}^{n}$ and $\eta \in \mathbb{R}$. For $k \in \mathbb{Z}$ and $j \in \mathcal{J}$, we have

$$
\begin{aligned}
\left|\hat{\mu}_{k, j}(\zeta)\right| & =\left|\int_{|y| \in I_{k, j}} e^{-i\left[\rho^{k} y \cdot \xi+\eta P\left(\gamma\left(\rho^{k} \mid y\right)\right)\right]}\right| \Omega(y)|d y| \\
& \leq \int_{I_{k, j}}\left|\int_{\mathbf{S}^{n-1}} e^{-i \rho^{k} t y^{\prime} \cdot \xi}\right| \Omega\left(y^{\prime}\right)\left|d \sigma\left(y^{\prime}\right)\right| d t .
\end{aligned}
$$

Set $I_{k}(t)=\int_{\mathbf{S}^{n-1}} e^{-i \rho^{k} t y^{\prime} \xi}\left|\Omega\left(y^{\prime}\right)\right| d \sigma\left(y^{\prime}\right)$, by Hölder's inequality,

$$
\begin{aligned}
\left|\hat{\mu}_{k, j}(\zeta)\right|^{2} & \leq C \int_{I_{k, j}}\left|I_{k}(t)\right|^{2} d t \\
& \leq C \int_{\left(\mathbf{S}^{n-1}\right)^{2}}\left|\Omega\left(y^{\prime}\right)\right|\left|\Omega\left(z^{\prime}\right)\right|\left|\int_{I_{k, j}} e^{i \rho^{k} t \xi \cdot\left(y^{\prime}-z^{\prime}\right)} d t\right| d \sigma\left(y^{\prime}\right) d \sigma\left(z^{\prime}\right)
\end{aligned}
$$

By van der Corput's lemma, for any $\alpha \in(0,1)$, we have

$$
\begin{aligned}
\left|\int_{I_{k, j}} e^{i \rho^{k} k \cdot\left(y^{\prime}-z^{\prime}\right)} d t\right| & \leq C \min \left\{1,\left|\rho^{k} \xi \cdot\left(y^{\prime}-z^{\prime}\right)\right|^{-1}\right\} \\
& \leq C\left(\rho^{k}|\xi|\right)^{-\alpha}\left|\xi^{\prime} \cdot\left(y^{\prime}-z^{\prime}\right)\right|^{-\alpha}
\end{aligned}
$$

If $q=\infty$, it is trivial, we set $\beta=1 / 2$. For $q \in(1, \infty)$, specially, we choose a positive constant α so that $\alpha q^{\prime}<1$. By Hölder's inequality, we get

$$
\begin{aligned}
\left|\hat{\mu}_{k, j}(\zeta)\right|^{2} \leq & C\left(\rho^{k}|\xi|\right)^{-\alpha} \int_{\left(\mathbf{S}^{n-1}\right)^{2}}\left|\Omega\left(y^{\prime}\right)\right|\left|\Omega\left(z^{\prime}\right)\right| \frac{d \sigma\left(y^{\prime}\right) d \sigma\left(z^{\prime}\right)}{\left|\xi^{\prime} \cdot\left(y^{\prime}-z^{\prime}\right)\right|^{\alpha}} \\
\leq & C\left(\rho^{k}|\xi|\right)^{-\alpha}\left(\int_{\left(\mathbf{S}^{n-1}\right)^{2}}\left|\Omega\left(y^{\prime}\right)\right|^{q}\left|\Omega\left(z^{\prime}\right)\right|^{q} d \sigma\left(y^{\prime}\right) d \sigma\left(z^{\prime}\right)\right)^{1 / q} \\
& \times\left(\int_{\left(\mathbf{S}^{n-1}\right)^{2}} \frac{d \sigma\left(y^{\prime}\right) d \sigma\left(z^{\prime}\right)}{\left|\xi^{\prime} \cdot\left(y^{\prime}-z^{\prime}\right)\right|^{\alpha q^{\prime}}}\right)^{1 / q^{\prime}} \\
\leq & C\|\Omega\|_{L^{q}\left(\mathbf{S}^{n-1}\right)}^{2}\left(\rho^{k}|\xi|\right)^{-\alpha} .
\end{aligned}
$$

Finally, there exists a constant $\beta \in\left(0,1 /\left(2 q^{\prime}\right)\right)$ such that

$$
\begin{equation*}
\left|\hat{\mu}_{k, j}(\zeta)\right| \leq C\left(\rho^{k}|\xi|\right)^{-\beta} \tag{3.3}
\end{equation*}
$$

CASE 1. $j \in \mathcal{J} \backslash\{1\}$. If ζ satisfies $4 \rho^{k}|\xi| \geq\left|p_{j}\right| \gamma^{j}\left(\rho^{k}\right)|\eta|$, then, $\left|A_{k, j}^{*} \zeta\right| \leq$ $\sqrt{17} \rho^{k}|\xi|$. Therefore, (3.3) implies $\left|\hat{\mu}_{k, j}(\zeta)\right| \leq C\left|A_{k, j}^{*} \zeta\right|^{-\beta}$.

If ζ satisfies $4 \rho^{k}|\xi|<\left|p_{j}\right| \gamma^{j}\left(\rho^{k}\right)|\eta|$, in order to estimate $\left|\hat{\mu}_{k, j}(\zeta)\right|$, we need the following lemma which is Lemma 2.2 in [1].

Lemma 3.2. For all $j \in \mathcal{J} \backslash\{1\}$, the function

$$
t \mapsto P^{\prime \prime}\left(\gamma\left(\rho^{k} t\right)\right) \gamma^{\prime}\left(\rho^{k} t\right)^{2}+P^{\prime}\left(\gamma\left(\rho^{k} t\right)\right) \gamma^{\prime \prime}\left(\rho^{k} t\right)
$$

is singled-signed on $I_{k, j}$.
On the other hand,

$$
\left|\hat{\mu}_{k, j}(\zeta)\right| \leq \int_{\mathbf{S}^{n-1}}\left|\int_{I_{k, j}} e^{-i\left[\rho^{k} t y^{\prime} \xi+\eta P\left(\gamma\left(\rho^{k} t\right)\right]\right.} d t\right|\left|\Omega\left(y^{\prime}\right)\right| d \sigma\left(y^{\prime}\right) .
$$

For fixed $y^{\prime} \in \mathbf{S}^{n-1}$, let $h_{k}(t)=\rho^{k} t y^{\prime} \cdot \xi+\eta P\left(\gamma\left(\rho^{k} t\right)\right)$. For $t \in I_{k, j}$, by (2.1) and the convexity of γ, we have

$$
\begin{align*}
\left|h_{k}^{\prime}(t)\right| & \geq\left|\rho^{k} P^{\prime}\left(\gamma\left(\rho^{k} t\right)\right) \gamma^{\prime}\left(\rho^{k} t\right) \eta\right|-\left|\rho^{k} \xi\right| \\
& \geq \frac{1}{2} j\left|p_{j}\right| \rho^{k} \gamma^{j-1}\left(\rho^{k} t\right) \gamma^{\prime}\left(\rho^{k} t\right)|\eta|-\rho^{k}|\xi| \geq \frac{1}{2} j\left|p_{j}\right| \gamma^{j}\left(\rho^{k}\right)|\eta|-\rho^{k}|\xi| \tag{3.4}
\end{align*}
$$

Note that $4 \rho^{k}|\xi|<\left|p_{j}\right| \gamma^{j}\left(\rho^{k}\right)|\eta|$ and $\left|A_{k, j}^{*} \zeta\right| \leq\left(\sqrt{17} /\left|p_{j}\right|\right) \gamma^{j}\left(\rho^{k}\right)|\eta|$. Hence,

$$
\begin{equation*}
\left|h_{k}^{\prime}(t)\right| \geq \frac{1}{4}\left|p_{j}\right| \gamma^{j}\left(\rho^{k}\right)|\eta| \geq \frac{1}{\sqrt{17}}\left|A_{k, j}^{*} \zeta\right| . \tag{3.5}
\end{equation*}
$$

For $j \in \mathcal{J} \backslash\{1\}, h_{k}^{\prime}(t)$ is monotone on $I_{k, j}$ by Lemma 3.2. By van der Corput's lemma and (3.5), we get

$$
\left|\hat{\mu}_{k, j}(\zeta)\right| \leq C\|\Omega\|_{L^{1}\left(\mathbf{S}^{n-1}\right)}\left(\left|p_{j}\right| \gamma^{j}\left(\rho^{k}\right)|\eta|\right)^{-1} \leq C\left|A_{k, j}^{*} \zeta\right|^{-1}
$$

CASE 2. $j=1$. If ζ satisfies $|\xi| \geq(1 / 4)\left|p_{1}\right| \gamma^{\prime}\left(\rho^{k}\right)|\eta|$, by the convexity of γ, then, $\rho^{k}|\xi| \geq(1 / 4)\left|p_{1}\right| \gamma\left(\rho^{k}\right)|\eta|$ and $\left|A_{k, 1}^{*} \zeta\right| \leq \sqrt{17} \rho^{k}|\xi|$. According to (3.3), we obtain

$$
\left|\hat{\mu}_{k, 1}(\zeta)\right| \leq C\left|A_{k, 1}^{*} \zeta\right|^{-\beta} .
$$

If ζ satisfies $|\xi|<(1 / 4)\left|p_{1}\right| \gamma^{\prime}\left(\rho^{k}\right)|\eta|$, (3.4) implies
(3.6) $\quad\left|h_{k}^{\prime}(t)\right| \geq \frac{1}{2}\left|p_{1}\right| \rho^{k} \gamma^{\prime}\left(\rho^{k} t\right)|\eta|-\rho^{k}|\xi| \geq \frac{1}{4}\left|p_{1}\right| \rho^{k} \gamma^{\prime}\left(\rho^{k} t\right)|\eta| \geq \frac{1}{4}\left|p_{1}\right| \rho^{k} \gamma^{\prime}\left(\rho^{k}\right)|\eta|$.

Integration by parts and (3.6) show that

$$
\begin{aligned}
\left|\int_{I_{k, 1}} e^{-i\left[\rho^{k} t y^{\prime} \cdot \xi+\eta P\left(\gamma\left(\rho^{k} t\right)\right]\right]} d t\right| & =\left|\int_{I_{k, 1}} e^{-i h_{k}(t)} h_{k}^{\prime}(t) \frac{d t}{h_{k}^{\prime}(t)}\right| \\
& \leq 8\left(\left|p_{1}\right| \rho^{k} \gamma^{\prime}\left(\rho^{k}\right)|\eta|\right)^{-1}+\int_{I_{k, 1}} \frac{\left|h_{k}^{\prime \prime}(t)\right|}{\left[h_{k}^{\prime}(t)\right]^{2}} d t .
\end{aligned}
$$

Essentially, we just need to consider the second term, which can be dominated by

$$
\int_{I_{k, 1}} \frac{\rho^{2 k}|\eta|\left|P^{\prime}\left(\gamma\left(\rho^{k} t\right)\right)\right| \gamma^{\prime \prime}\left(\rho^{k} t\right)}{h_{k}^{\prime}(t)^{2}} d t+\int_{I_{k, 1}} \frac{\rho^{2 k}|\eta|\left|P^{\prime \prime}\left(\gamma\left(\rho^{k} t\right)\right)\right| \gamma^{\prime}\left(\rho^{k} t\right)^{2}}{h_{k}^{\prime}(t)^{2}} d t:=\alpha_{1}+\alpha_{2}
$$

In order to estimate the term α_{1}, we define $\varphi_{k}(t)=\rho^{k} t|\xi|+\left|p_{1}\right| \gamma\left(\rho^{k} t\right)|\eta|$, then, $\varphi_{k}^{\prime}(t)=\rho^{k}|\xi|+\left|p_{1}\right| \rho^{k} \gamma^{\prime}\left(\rho^{k} t\right)|\eta|$. By (3.6), for $t \in I_{k, 1}$, it is obvious that

$$
\begin{equation*}
\left|\varphi_{k}^{\prime}(t)\right| \leq \frac{5}{4}\left|p_{1}\right| \gamma^{\prime}\left(\rho^{k} t\right) \rho^{k}|\eta| \leq 5 h_{k}^{\prime}(t) \tag{3.7}
\end{equation*}
$$

On the other hand, for $t \in I_{k, 1}$,

$$
\begin{equation*}
\left|\varphi_{k}^{\prime}(t)\right| \geq\left|p_{1}\right| \rho^{k} \gamma^{\prime}\left(\rho^{k} t\right)|\eta|-\rho^{k}|\xi| \geq \frac{3}{4}\left|p_{1}\right| \rho^{k} \gamma^{\prime}\left(\rho^{k} t\right)|\eta| \tag{3.8}
\end{equation*}
$$

Also, by (2.1), for $t \in I_{k, 1}$,

$$
\begin{equation*}
\varphi_{k}^{\prime \prime}(t)=\left|p_{1}\right| \rho^{2 k} \gamma^{\prime \prime}\left(\rho^{k} t\right)|\eta| \geq \frac{1}{2} \rho^{2 k}|\eta|\left|P^{\prime}\left(\gamma\left(\rho^{k} t\right)\right)\right| \gamma^{\prime \prime}\left(\rho^{k} t\right) \tag{3.9}
\end{equation*}
$$

Thus, in view of (3.7), (3.9) and (3.8), we have

$$
\begin{equation*}
\alpha_{1} \leq C \int_{I_{k, 1}} \frac{\varphi_{k}^{\prime \prime}(t)}{\varphi_{k}^{\prime}(t)^{2}} d t \leq C\left(\left|p_{1}\right| \rho^{k} \gamma^{\prime}\left(\rho^{k}\right)|\eta|\right)^{-1} . \tag{3.10}
\end{equation*}
$$

For α_{2}, by (3.6) and (2.1),

$$
\begin{align*}
\alpha_{2} & \leq C \int_{I_{k, 1}} \frac{\rho^{2 k}|\eta|\left|P^{\prime \prime}\left(\gamma\left(\rho^{k} t\right)\right)\right| \gamma^{\prime}\left(\rho^{k} t\right)^{2}}{\left[\left|p_{1}\right| \rho^{k} \gamma^{\prime}\left(\rho^{k} t\right)|\eta|\right]^{2}} d t \\
& \leq C \int_{I_{k, 1}}\left|p_{1}\right|^{-1}\left|P^{\prime \prime}\left(\gamma\left(\rho^{k} t\right)\right)\right| \rho^{k} \gamma^{\prime}\left(\rho^{k} t\right) \frac{1}{\left|p_{1}\right| \rho^{k} \gamma^{\prime}\left(\rho^{k} t\right)|\eta|} d t \tag{3.11}\\
& \leq C\left(\left|p_{1}\right| \rho^{k} \gamma^{\prime}\left(\rho^{k}\right)|\eta|\right)^{-1} \int_{G_{1}}\left|p_{1}\right|^{-1}\left|P^{\prime \prime}(t)\right| d t \\
& \leq C\left(\left|p_{1}\right| \rho^{k} \gamma^{\prime}\left(\rho^{k}\right)|\eta|\right)^{-1} .
\end{align*}
$$

Note that $\left|A_{k, 1}^{*} \zeta\right| \leq(\sqrt{17} / 4)\left|p_{1}\right| \rho^{k} \gamma^{\prime}\left(\rho^{k}\right)|\eta|$. Then, (3.10) and (3.11) imply

$$
\left|\hat{\mu}_{k, 1}(\zeta)\right| \leq C\left|A_{k, 1}^{*} \zeta\right|^{-1}
$$

For $\hat{\sigma}_{k, j}$, we have

$$
\left|\hat{\sigma}_{k, j}(\zeta)\right|=\frac{\hat{\mu}_{k, j}(0)}{|B|}\left|\int_{B} e^{-i u \cdot A_{k+1, j}^{*} \zeta} d u\right| \leq C\left|A_{k, j}^{*} \zeta\right|^{-1}
$$

According to the estimates for $\hat{\mu}_{k, j}$ and $\hat{\sigma}_{k, j}$ above, we obtain (3.1). (3.2) can be proved as follows,

$$
\begin{aligned}
\left|\hat{\mu}_{k, j}(\zeta)-\hat{\sigma}_{k, j}(\zeta)\right| \leq & \left|\hat{\mu}_{k, j}(\zeta)-\hat{\mu}_{k, j}(0)\right|+\left|\hat{\mu}_{k, j}(0)\right|\left|\hat{\sigma}_{k, j}(\zeta)-1\right| \\
\leq & \int_{|y| \in I_{k, j}}\left|e^{-i\left[\rho^{k} y \cdot \xi+\eta P\left(\gamma\left(\rho^{k}|y|\right)\right)\right]}-1\right||\Omega(y)| d y \\
& +\frac{\|\Omega\|_{L^{1}\left(\mathbf{S}^{n-1}\right)}}{|B|} \int_{B}\left|e^{-i u \cdot A_{k+1, j}^{*} \zeta}-1\right| d u \\
\leq & C\left|A_{k+1, j}^{*} \zeta\right| .
\end{aligned}
$$

3.2.2. The L^{p}-norm of $\mathcal{M}_{G_{j}} f$. For the maximal operators $\mathcal{M}_{G_{j}}$, it can be dominated by

$$
\begin{aligned}
\mathcal{M}_{G_{j}} f(u) & \leq \sup _{k \in \mathbb{Z}} \sigma_{k, j} * f(u)+\sup _{k \in \mathbb{Z}}\left|\left(\mu_{k, j}-\sigma_{k, j}\right) * f\right|(u) \\
& \leq \mathcal{M}_{s} f(u)+\sup _{k \in \mathbb{Z}}\left|\left(\mu_{k, j}-\sigma_{k, j}\right) * f\right|(u),
\end{aligned}
$$

where \mathcal{M}_{s} denotes the strong maximal function.
We first consider the L^{2}-estimates for $\mathcal{M}_{G_{j}}$. It is known that \mathcal{M}_{s} is L^{p} bounded for $1<p \leq \infty$, thus, it suffices to consider the L^{2}-norm of $\sup _{k \in \mathbb{Z}}\left|\left(\mu_{k, j}-\sigma_{k, j}\right) * f\right|$. In view of Lemma 2.3, we have

$$
\begin{align*}
& \left|\left(\mu_{k, j}-\sigma_{k, j}\right) * f\right| \\
& \leq\left|\sum_{l \leq 0} \mu_{k, j} * S_{l+k, j} f\right|+\left|\sum_{l \leq 0} \sigma_{k, j} * S_{l+k, j} f\right|+\left|\sum_{l=1}^{\infty}\left(\mu_{k, j}-\sigma_{k, j}\right) * S_{l+k, j} f\right| \tag{3.12}\\
& :=\mathcal{A}_{k, j}+\mathcal{B}_{k, j}+\mathcal{C}_{k, j}
\end{align*}
$$

The L^{2}-norm of the supremums of $\mathcal{A}_{k, j}, \mathcal{B}_{k, j}$ and $\mathcal{C}_{k, j}$ are considered separately. Now, the supremum of $\mathcal{A}_{k, j}$ is controlled by

$$
\sup _{k \in \mathbb{Z}} \mathcal{A}_{k, j} \leq \sum_{l \leq 0} \sup _{k \in \mathbb{Z}}\left|\mu_{k, j} * S_{l+k, j} f\right| \leq \sum_{l \leq 0}\left(\sum_{k \in \mathbb{Z}}\left|\mu_{k, j} * S_{l+k, j} f\right|^{2}\right)^{1 / 2}:=\sum_{l=-\infty}^{0} \mathcal{E}_{l, j} f
$$

For each integer $l \leq 0$, by Plancherel's theorem, (3.1) and (2.2),

$$
\begin{equation*}
\left\|\mathcal{E}_{l, j} f\right\|_{L^{2}}=\left(\sum_{k \in \mathbb{Z}} \int_{\mathbb{R}^{n+1}}\left|\hat{\mu}_{k, j}(\zeta)\right|^{2}\left|m_{l+k, j}(\zeta)\right|^{2}|\hat{f}(\zeta)|^{2} d \zeta\right)^{1 / 2} \leq C \rho^{\beta l}\|f\|_{L^{2}} \tag{3.13}
\end{equation*}
$$

Then, by the triangle inequality in L^{2}, we have

$$
\begin{equation*}
\left\|\sup _{k \in \mathbb{Z}} \mathcal{A}_{k, j}\right\|_{L^{2}} \leq C\|f\|_{L^{2}} \tag{3.14}
\end{equation*}
$$

The L^{2}-norm of $\sup _{k \in \mathbb{Z}} \mathcal{B}_{k, j}$ can be considered in the same way, therefore,

$$
\begin{equation*}
\left\|\sup _{k \in \mathbb{Z}} \mathcal{B}_{k, j}\right\|_{L^{2}} \leq C\|f\|_{L^{2}} \tag{3.15}
\end{equation*}
$$

Similarly, for $\sup _{k \in \mathbb{Z}} \mathcal{C}_{k, j}$, we have

$$
\sup _{k \in \mathbb{Z}} \mathcal{C}_{k, j} \leq \sum_{l=1}^{\infty}\left(\sum_{k \in \mathbb{Z}}\left|\left(\mu_{k, j}-\sigma_{k, j}\right) * S_{l+k, j} f\right|^{2}\right)^{1 / 2}:=\sum_{l=1}^{\infty} \mathcal{F}_{l, j} f
$$

For each integer $l \geq 1$, by Plancherel's theorem, (3.2) and (2.3), $\left\|\mathcal{F}_{l, j} f\right\|_{L^{2}} \leq$ $C \rho^{-l}\|f\|_{L^{2}}$. Furthermore,

$$
\begin{equation*}
\left\|\sup _{k \in \mathbb{Z}} \mathcal{C}_{k, j}\right\|_{L^{2}} \leq C\|f\|_{L^{2}} \tag{3.16}
\end{equation*}
$$

Then, combining (3.12), (3.14), (3.15) with (3.16), we have

$$
\begin{equation*}
\left\|\mathcal{M}_{G_{j}} f\right\|_{L^{2}} \leq C\|f\|_{L^{2}} \tag{3.17}
\end{equation*}
$$

For the L^{p}-boundedness of $\mathcal{M}_{G_{j}}$ with $p \neq 2$, we need the following lemma, which is Lemma 4 in [8].

Lemma 3.3. Suppose that $U_{k} f=u_{k} * f$ is a sequence of positive operators uniformly bounded on L^{∞} and $U^{*} f=\sup _{k \in \mathbb{Z}}\left|u_{k} * f\right|$ is bounded on L^{r}, then, for $p>$ $2 r /(1+r)$, there exists a positive constant C_{p} such that

$$
\left\|\left(\sum_{k \in \mathbb{Z}}\left|u_{k} f_{k}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \leq C_{p}\left\|\left(\sum_{k \in \mathbb{Z}}\left|f_{k}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}}, \quad\left\{f_{k}\right\} \in L^{p}\left(l^{2}\right)
$$

By (3.17), Lemma 3.3 and Lemma 2.3, for $p>4 / 3$, we get

$$
\begin{align*}
\left\|\mathcal{E}_{l, j}\right\|_{L^{p}} & =\left\|\left(\sum_{k \in \mathbb{Z}}\left|\mu_{k, j} * S_{l+k, j} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \\
& \leq C\left\|\left(\sum_{k \in \mathbb{Z}}\left|S_{l+k, j} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \leq C\|f\|_{L^{p}} . \tag{3.18}
\end{align*}
$$

Interpolation between (3.13) and (3.18), and the triangle inequality in L^{p} imply that

$$
\begin{equation*}
\left\|\sup _{k \in \mathbb{Z}} \mathcal{A}_{k, j}\right\|_{L^{p}} \leq C\|f\|_{L^{p}}, \quad p>\frac{3}{4} . \tag{3.19}
\end{equation*}
$$

For $\sup _{k \in \mathbb{Z}} \mathcal{B}_{k, j}$ and $\sup _{k \in \mathbb{Z}} \mathcal{C}_{k, j}$, by the same argument as we used for $\sup _{k \in \mathbb{Z}} \mathcal{A}_{k, j}$, we obtain

$$
\begin{equation*}
\left\|\sup _{k \in \mathbb{Z}} \mathcal{B}_{k, j}\right\|_{L^{p}} \leq C\|f\|_{L^{p}} \quad \text { and } \quad\left\|\sup _{k \in \mathbb{Z}} \mathcal{C}_{k, j}\right\|_{L^{p}} \leq C\|f\|_{L^{p}}, \quad p>\frac{3}{4} . \tag{3.20}
\end{equation*}
$$

So, according to the L^{p}-boundedness of \mathcal{M}_{s}, (3.19) and (3.20), we have $\left\|\mathcal{M}_{G_{j}} f\right\|_{L^{p}} \leq C\|f\|_{L^{p}}$ for $p>4 / 3$.

Finally, by a bootstrap argument, we can apply Lemma 3.3 inductively to show that

$$
\left\|\mathcal{M}_{G_{j}} f\right\|_{L^{p}} \leq C\|f\|_{L^{p}}, \quad 1<p<\infty
$$

4. The L^{p}-boundedness for \mathcal{T}

Similar to the maximal functions \mathcal{M}, the singular integrals \mathcal{T} can be decomposed as

$$
\mathcal{T} f(u)=\sum_{k \in \mathcal{K}} \mathcal{T}_{D_{k}} f(u)+\sum_{j \in \mathcal{J}} \mathcal{T}_{G_{j}} f(u) .
$$

Then, the L^{p}-boundedness for $\mathcal{T}_{D_{k}}$ and $\mathcal{T}_{G_{j}}$ will be considered separately for each $k \in$ \mathcal{K} and $j \in \mathcal{J}$.
4.1. The L^{p}-bounedness for $\mathcal{T}_{D_{k}}$. For $k \in \mathcal{K}$, by Minkowski's inequality, we have

$$
\begin{align*}
\left\|\mathcal{T}_{D_{k}} f\right\|_{L^{p}} & \leq \int_{|y| \in \gamma^{-1}\left(D_{k}\right)}|K(y)|\left(\int_{\mathbb{R}^{n+1}}|f(x-y, s-P(\gamma(|y|)))|^{p} d u\right)^{1 / p} d y \tag{4.1}\\
& \leq\|f\|_{L^{p}} \int_{\mathbf{S}^{n-1}}\left|\Omega\left(y^{\prime}\right)\right| d \sigma\left(y^{\prime}\right) \int_{r \in \gamma^{-1}\left(D_{k}\right)} \frac{1}{r} d r .
\end{align*}
$$

As the L^{p}-estimates for $\mathcal{M}_{D_{k}}$ in Subsection 3.1, we get the L^{p}-bounedness of $\mathcal{T}_{D_{k}}$,

$$
\left\|\mathcal{T}_{D_{k}} f\right\|_{L^{p}} \leq C\|f\|_{L^{p}}, \quad 1<p<\infty .
$$

4.2. The \boldsymbol{L}^{p}-bounedness for $\mathcal{T}_{G_{j}}$. For $j \in \mathcal{J}, \mathcal{T}_{G_{j}} f$ can be rewritten as

$$
\mathcal{T}_{G_{j}} f(u)=\sum_{k \in \mathbb{Z}} v_{k, j} * f(u),
$$

where the measure $\nu_{k, j}$ is given by

$$
\left\langle v_{k, j}, \psi\right\rangle=\int_{|y| \in I_{k, j}} \psi\left(\rho^{k} y, P\left(\gamma\left(\left|\rho^{k} y\right|\right)\right)\right) K(y) d y
$$

for $\psi \in \mathscr{S}\left(\mathbb{R}^{n+1}\right)$.
For the estimates of $\hat{v}_{k, j}$, we have the following proposition.
Proposition 4.1. For $j \in \mathcal{J}$ and $k \in \mathbb{Z}$, then there exists $C>0$ and $\beta>0$ independent of j and k such that

$$
\begin{equation*}
\left|\hat{v}_{k, j}(\zeta)\right| \leq C \max \left\{\left|A_{k, j}^{*} \zeta\right|^{-1},\left|A_{k, j}^{*} \zeta\right|^{-\beta}\right\} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\hat{v}_{k, j}(\zeta)\right| \leq C\left|A_{k+1, j}^{*} \zeta\right| . \tag{4.3}
\end{equation*}
$$

Proof. (4.2) can be proved by using the same method as (3.1). It is trivial to verify (4.3). In fact, by (1.1),

$$
\begin{aligned}
\left|\hat{v}_{k, j}(\zeta)\right| & =\left|\int_{|y| \in I I_{k, j}}\left[e^{-i\left[\rho^{k} y \cdot \xi+\eta P(\gamma(|y|))\right]}-e^{-i \eta P(\gamma(|y|))}\right] K(y) d y\right| \\
& \leq \int_{|y| \in I_{k, j}}\left|e^{-i \rho^{k} y \cdot \xi}-1\right||K(y)| d y \leq C\|\Omega\|_{L^{1}\left(\mathbf{S}^{n-1}\right)} \rho^{k+1}|\xi| \\
& \leq C\left|A_{k+1, j}^{*} \zeta\right| .
\end{aligned}
$$

By Lemma 2.3, we can decompose $\mathcal{T}_{G_{j}}$ as

$$
\begin{equation*}
\mathcal{T}_{G_{j}} f=\sum_{k \in \mathbb{Z}} \sum_{l \geq 1} v_{k, j} * S_{l+k, j} f+\sum_{k \in \mathbb{Z}} \sum_{l \leq 0} v_{k, j} * S_{l+k, j} f:=\mathcal{D}_{j}+\mathcal{G}_{j} . \tag{4.4}
\end{equation*}
$$

By the triangle inequality in L^{p} and Lemma 2.3 , we have

$$
\begin{equation*}
\left\|\mathcal{D}_{j}\right\|_{L^{p}} \leq \sum_{l \geq 1}\left\|\sum_{k \in \mathbb{Z}} v_{k, j} * S_{l+k, j} f\right\|_{L^{p}} \leq C \sum_{l \geq 1}\left\|\mathcal{H}_{l, j}\right\|_{L^{p}}, \tag{4.5}
\end{equation*}
$$

where $\mathcal{H}_{l . j}=\left(\sum_{k \in \mathbb{Z}}\left|\nu_{k, j} * S_{l+k, j} f\right|^{2}\right)^{1 / 2}$. Plancherel's theorem, (4.3) and (2.3) give

$$
\begin{equation*}
\left\|\mathcal{H}_{l, j}\right\|_{L^{2}}=\left(\sum_{k \in \mathbb{Z}} \int_{\mathbb{R}^{n+1}}\left|m_{l+k, j}(\zeta)\right|^{2}\left|\hat{v}_{k, j}(\zeta)\right|^{2}|\hat{f}(\zeta)|^{2} d \zeta\right)^{1 / 2} \leq C \rho^{-l}\|f\|_{L^{2}} \tag{4.6}
\end{equation*}
$$

On the other hand, note that $\left|\nu_{k, j} * g\right| \leq C \mu_{k, j} *|g|$. For $1<p<\infty$, by the L^{p}-boundedness of $\mathcal{M}_{G_{j}}$, Lemma 3.3 and Lemma 2.3, we obtain

$$
\begin{equation*}
\left\|\mathcal{H}_{l, j}\right\|_{L^{p}} \leq C\left\|\left(\sum_{k \in \mathbb{Z}}\left|S_{l+k, j} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \leq C\|f\|_{L^{p}} . \tag{4.7}
\end{equation*}
$$

Interpolation between (4.6) and (4.7), and (4.5) imply that

$$
\begin{equation*}
\left\|\mathcal{D}_{j}\right\|_{L^{p}} \leq C\|f\|_{L^{p}}, \quad 1<p<\infty . \tag{4.8}
\end{equation*}
$$

The L^{p}-norm of \mathcal{G}_{j} can be obtained in the same way. For $l \leq 0$, using Plancherel's theorem, (4.2) and (2.2), we have $\left\|\mathcal{H}_{l, j}\right\|_{L^{2}} \leq C \rho^{\beta l}\|f\|_{L^{2}}$. Further, (4.7) still holds. Interpolation and the triangle inequality in L^{p} show that

$$
\begin{equation*}
\left\|\mathcal{G}_{j}\right\|_{L^{p}} \leq C\|f\|_{L^{p}}, \quad 1<p<\infty . \tag{4.9}
\end{equation*}
$$

Combining (4.8) and (4.9), we prove the L^{p}-boundedness for $\mathcal{T}_{G_{j}}$.

5. The \boldsymbol{L}^{p}-boundedness for \mathcal{T}^{*}

Let \mathcal{K} and \mathcal{J} be given as in the second section. Then, we have the following majorization

$$
\begin{aligned}
\mathcal{T}^{*} f(u) \leq & \sum_{k \in \mathcal{K}} \sup _{\varepsilon>0}\left|\int_{|y| \in \gamma^{-1}\left(D_{k}\right) \cap\{t \geq \varepsilon\}} f(x-y, s-P(\gamma(|y|))) K(y) d y\right| \\
& +\sum_{j \in \mathcal{J}} \sup _{\varepsilon>0}\left|\int_{|y| \in \gamma^{-1}\left(G_{j}\right) \cap\{t \geq \varepsilon\}} f(x-y, s-P(\gamma(|y|))) K(y) d y\right| \\
:= & \sum_{k \in \mathcal{K}} \mathcal{T}_{D_{k}}^{*} f(u)+\sum_{j \in \mathcal{J}} \mathcal{T}_{G_{j}}^{*} f(u) .
\end{aligned}
$$

In the same way, we just need to show that $\mathcal{T}_{D_{k}}^{*}$ and $\mathcal{T}_{G_{j}}^{*}$ are L^{p} bounded for $k \in \mathcal{K}$ and $j \in \mathcal{J}$.

For $k \in \mathcal{K}$, let $\varepsilon(u)$ be some measurable function from \mathbb{R}^{n+1} to \mathbb{R}^{+}such that

$$
\mathcal{T}_{D_{k}}^{*} f(u) \leq 2\left|\int_{|y| \in \gamma^{-1}\left(D_{k}\right) \cap\{t \geq \varepsilon(u)\}} f(x-y, s-P(\gamma(|y|))) K(y) d y\right| .
$$

Then, the L^{p}-boundedness for $\mathcal{T}_{D_{k}}^{*}$ can be proved in the same way as (4.1).
For $j \in \mathcal{J}$, it is trivial that

$$
\mathcal{T}_{G_{j}}^{*} f(u) \leq \mathcal{M}_{G_{j}} f(u)+\sup _{i \in \mathbb{Z}}\left|\sum_{k \geq i} \nu_{k, j} * f(u)\right| .
$$

By the L^{p}-boundedness for $\mathcal{M}_{G_{j}}$, it suffices to consider the latter term. Let $\Phi \in$ $\mathscr{S}\left(\mathbb{R}^{n}\right)$ be such that $\hat{\Phi}(\xi)=1$ for $|\xi| \leq 1$ and $\hat{\Phi}(\xi)=0$ for $|\xi| \geq 2$. Write $\hat{\Phi}_{i}(\xi)=$ $\hat{\Phi}\left(\rho^{i} \xi\right)$, and denote by \star convolution in the first n variables. For $i \in \mathbb{Z}$, the truncated singular integrals can be split as

$$
\sum_{k \geq i} \nu_{k, j} * f=\Phi_{i} \star\left(\mathcal{T}_{G_{j}} f-\sum_{k<i} \nu_{k, j} * f\right)+\left(\delta-\Phi_{i}\right) \star \sum_{k \geq i} \nu_{k, j} * f=: \mathscr{A}_{i, j}+\mathscr{B}_{i, j},
$$

where δ is the Dirac measure in \mathbb{R}^{n}. Then, we just need to estimate $\sup _{i \in \mathbb{Z}}\left|\mathscr{A}_{i, j}\right|$ and $\sup _{i \in \mathbb{Z}}\left|\mathscr{B}_{i, j}\right|$ for $j \in \mathcal{J}$.
5.1. The L^{p}-estimates of $\sup _{i \in \mathbb{Z}}\left|\mathscr{A}_{i, j}\right|$. By a linear transformation and (1.1), we observe that

$$
\begin{aligned}
& \Phi_{i} \star \sum_{k<i} \nu_{k, j} * f(u) \\
& =\int_{\mathbb{R}^{n}} \Phi_{i}(x-y) \sum_{k<i} \int_{|z| \in \rho^{k} I_{k, j}} f(y-z, s-P(\gamma(|z|))) K(z) d z d y \\
& =\sum_{k<i} \int_{|z| \mid \rho^{k} I_{k, j}} K(z) \int_{\mathbb{R}^{n}} \Phi_{i}(x-y-z) f(y, s-P(\gamma(|z|))) d y d z \\
& =\sum_{k<i} \int_{|z| \in \rho^{k} k_{k, j}} K(z) \int_{\mathbb{R}^{n}}\left[\Phi_{i}(x-y-z)-\Phi_{i}(x-y)\right] f(y, s-P(\gamma(|z|))) d y d z
\end{aligned}
$$

Note that $\Phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$, then, for any $N>0$,

$$
\begin{aligned}
& \left|\Phi_{i} \star \sum_{k<i} v_{k, j} * f(u)\right| \\
& \leq \int_{|z| \in\left(0, \rho^{i}\right] \cap \gamma^{-1}\left(G_{j}\right)}|K(z)| \int_{\mathbb{R}^{n}} \frac{|z| \rho^{-i}}{\rho^{i n}\left(1+\rho^{-i}|x-y|\right)^{N}}|f(y, s-P(\gamma(|z|)))| d y d z \\
& \leq \int_{\mathbb{R}^{n}} \frac{\rho^{-i n}}{\left(1+\left|\rho^{-i} x-\rho^{-i} y\right|\right)^{N}} \frac{1}{\rho^{i}} \int_{|z| \in\left(0, \rho^{i}\right] \cap \gamma^{-1}\left(G_{j}\right)}|f(y, s-P(\gamma(|z|)))| \frac{|\Omega(z)|}{|z|^{n-1}} d z d y .
\end{aligned}
$$

For the inner integral in z, by a rotation,

$$
\frac{1}{\rho^{i}} \int_{|z| \in\left(0, \rho^{i}\right] \cap \gamma^{-1}\left(G_{j}\right)}|f(y, s-P(\gamma(|z|)))| \frac{|\Omega(z)|}{|z|^{n-1}} d z \leq\|\Omega\|_{L^{1}\left(\mathbf{S}^{n-1}\right)} \mathcal{N}_{j} f(y, s),
$$

where \mathcal{N}_{j} is defined by

$$
\mathcal{N}_{j} g(s)=\sup _{i \in \mathbb{Z}} \frac{1}{\rho^{i}} \int_{t \in\left(0, \rho^{i}\right] \cap \gamma^{-1}\left(G_{j}\right)}|g(s-P(\gamma(t)))| d t
$$

Thus, we obtain

$$
\begin{equation*}
\sup _{i \in \mathbb{Z}}\left|\mathscr{A}_{i, j}\right| \leq C\left[\|\Omega\|_{L^{1}\left(\mathbf{S}^{n-1}\right)}\left(\mathcal{N}_{j} f\right)^{\star}(u)+\left(\mathcal{T}_{G_{j}} f\right)^{\star}(u)\right] \tag{5.1}
\end{equation*}
$$

where $f^{\star}(x, s)$ is the Hardy-Littlewood maximal function of $f(y, s)$ in the first n variables.

Proposition 5.1. For $j \in \mathcal{J}, \mathcal{N}_{j}$ is a bounded operator on $L^{p}(\mathbb{R}), 1<p<\infty$.

Proof. We denote $P(\gamma(t))$ by $\Upsilon(t)$ for short, then, $\Upsilon(t)^{\prime}=P^{\prime}(\gamma(t)) \gamma^{\prime}(t)$. Note that $P(s)$ has no null point on G_{j}, then, it is singled-signed. For $t \in \gamma^{-1}\left(G_{j}\right), \gamma(t) \in$ G_{j}, by (2) of Lemma 2.1, $P^{\prime}(\gamma(t))$ is also singled-signed on $\gamma^{-1}\left(G_{j}\right)$. By $\gamma^{\prime}(0) \geq 0$ and the convexity of $\gamma, \gamma^{\prime}(t)>0$ for $t>0$. Then, $\Upsilon(t)$ is monotonous on $\gamma^{-1}\left(G_{j}\right)$. Suppose that $\Upsilon(t)$ is increasing on $\gamma^{-1}\left(G_{j}\right)$, then

$$
\begin{aligned}
\frac{1}{\rho^{i}} \int_{t \in\left(0, \rho^{i}\right] \cap \gamma^{-1}\left(G_{j}\right)}|g(s-\Upsilon(t))| d t & =\frac{1}{\rho^{i}} \int_{t \in\left(0, \Upsilon\left(\rho^{i}\right)\right] \cap P\left(G_{j}\right)}|g(s-t)| \frac{d t}{\Upsilon^{\prime}\left(\Upsilon^{-1}(t)\right)} \\
& :=\int_{0}^{\infty}|g(s-t)| \phi_{i, j}(t) d t
\end{aligned}
$$

For $j \in \mathcal{J} \backslash\{1\}$, by Lemma 3.2, $\Upsilon(t)^{\prime}$ is monotonous on $\gamma^{-1}\left(G_{j}\right)$. If $\Upsilon^{\prime}(t)$ is increasing on $\gamma^{-1}\left(G_{j}\right)$, then, for $i \in \mathbb{Z}, \phi_{i, j}(t)$ is nonnegative and decreasing on $P\left(G_{j}\right)$. Furthermore, one should note that

$$
\int_{0}^{\infty} \phi_{i, j}(t) d t \leq \frac{1}{\rho^{i}} \int_{t \in\left(0, \Upsilon\left(\rho^{i}\right)\right]} \frac{d t}{\Upsilon^{\prime}\left(\Upsilon^{-1}(t)\right)}=1
$$

Therefore, for $i \in \mathbb{Z}$, we have

$$
\frac{1}{\rho^{i}} \int_{t \in\left(0, \rho^{i}\right] \cap \gamma^{-1}\left(G_{j}\right)}|g(s-\Upsilon(t))| d t \leq C M g(s)
$$

If $\Upsilon^{\prime}(t)$ is decreasing on $\gamma^{-1}\left(G_{j}\right)$, write

$$
\int_{0}^{\infty}|g(s-t)| \phi_{i, j}(t) d t=\int_{0}^{\infty}|\tilde{g}(-s+t)| \tilde{\phi}_{i, j}(-t) d t=\int_{-\infty}^{0}|\tilde{g}(-s-t)| \tilde{\phi}_{i, j}(t) d t
$$

where \tilde{g} denotes the reflection of g. Notice that $\tilde{\phi}_{i, j}(t)$ is nonnegative and decreasing on $-P\left(G_{j}\right)$. Also, $\left\|\tilde{\phi}_{i, j}\right\|_{L^{1}} \leq 1$. Similarly,

$$
\frac{1}{\rho^{i}} \int_{t \in\left(0, \rho^{i}\right] \cap \gamma^{-1}\left(G_{j}\right)}|g(s-\Upsilon(t))| d t \leq C M \tilde{g}(-s)
$$

For $j=1$, note that $\Upsilon(t)$ and $\gamma(t)$ are increasing on $\gamma^{-1}\left(G_{1}\right)$ and \mathbb{R}^{+}, respectively. Then, $P(s)$ is increasing on G_{1}, that is, $P^{\prime}(s)>0$. According to $(2.1),(1 / 2)\left|p_{1}\right| \leq$ $P^{\prime}(t) \leq 2\left|p_{1}\right|$, furthermore, (1/2)| $p_{1}|t \leq P(t) \leq 2| p_{1} \mid t$ for $t \in G_{1}$. Therefore, combining the convexity of γ, we get

$$
\begin{aligned}
& \frac{1}{\rho^{i}} \int_{t \in\left(0, \Upsilon\left(\rho^{i}\right)\right] \cap P\left(G_{1}\right)}|g(s-t)| \frac{d t}{\Upsilon^{\prime}\left(\Upsilon^{-1}(t)\right)} \\
& \leq \frac{1}{\rho^{i}} \int_{t \in\left(0,2\left|p_{1}\right| \gamma\left(\rho^{i}\right)\right] \cap 2\left|p_{1}\right| G_{1}}|g(s-t)| \frac{d t}{(1 / 2)\left|p_{1}\right| \gamma^{\prime}\left(\gamma^{-1}\left(2\left|p_{1}\right|^{-1} t\right)\right)} \\
& \leq \frac{1}{\rho^{i}} \int_{t \in\left(0,4 \gamma\left(\rho^{i}\right)\right] \cap 4 G_{1}}\left|g\left(s-\frac{t\left|p_{1}\right|}{2}\right)\right| \frac{d t}{\gamma^{\prime}\left(\gamma^{-1}(t)\right)} \leq C M g_{\left|p_{1}\right| / 2}\left(\frac{2}{\left|p_{1}\right|} s\right),
\end{aligned}
$$

where $g_{\left|p_{1}\right| / 2}(t)=g\left(\left|p_{1}\right| t / 2\right)$.
Thus, for $j \in \mathcal{J}, \mathcal{N}_{j}$ is bounded on $L^{p}(\mathbb{R}), 1<p<\infty$.
Finally, by Lemma 5.1 and the L^{p}-boundedness for $\mathcal{T}_{G_{j}}$, we obtain

$$
\left\|\sup _{i \in \mathbb{Z}}\left|\mathscr{A}_{i, j}\right|\right\|_{L^{p}} \leq C\|f\|_{L^{p}} .
$$

5.2. The \boldsymbol{L}^{p}-estimates of $\sup _{i \in \mathbb{Z}}\left|\mathscr{B}_{i, j}\right| \cdot \sup _{i \in \mathbb{Z}}\left|\mathscr{B}_{i, j}\right|$ is dominated by

$$
\sup _{i \in \mathbb{Z}}\left|\mathscr{B}_{i, j}\right| \leq \sum_{l \geq 0} \sup _{i \in \mathbb{Z}}\left|\left(\delta-\Phi_{i}\right) \star v_{l+i, j} * f\right|:=\sum_{l \geq 0} \mathscr{P}_{l, j} .
$$

The maximal operator $\mathscr{P}_{l, j}$ is uniformly bounded on $L^{p}, 1<p<\infty$, since

$$
\mathscr{P}_{l, j} \leq C\left(\mathcal{M}_{G_{j}} f\right)^{\star} .
$$

On the other hand, for $p=2$, we have

$$
\begin{aligned}
\left\|\mathscr{P}_{l, j}\right\|_{L^{2}} & \leq\left\|\left(\sum_{i \in \mathbb{Z}}\left|\left(\delta-\Phi_{i}\right) \star \nu_{l+i, j} * f\right|^{2}\right)^{1 / 2}\right\|_{L^{2}} \\
& \leq\left(\sum_{i \in \mathbb{Z}} \int_{\mathbb{R}^{n+1}}\left|1-\hat{\Phi}\left(\rho^{i} \xi\right)\right|^{2}\left|\hat{\nu}_{l+i, j}(\zeta)\right|^{2}|\hat{f}(\zeta)|^{2} d \zeta\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq C\left(\sum_{i \in \mathbb{Z}} \int_{\mathbb{R}^{n+1}} \chi_{\left\{\rho^{i}|\xi| \geq 1\right\}}(\zeta)\left|\rho^{l+i} \xi\right|^{-2 \beta}|\hat{f}(\zeta)|^{2} d \zeta\right)^{1 / 2} \\
& \leq C \rho^{-l \beta}\left(\int_{\mathbb{R}^{n+1}} \sum_{i: \rho^{-i} \leq|\xi|}\left|\rho^{i} \xi\right|^{-2 \beta}|\hat{f}(\zeta)|^{2} d \zeta\right)^{1 / 2} \\
& \leq C \rho^{-l \beta}\|f\|_{L^{2}}
\end{aligned}
$$

where the fact $\left|\hat{v}_{k, j}(\zeta)\right| \leq C\left(\rho^{k}|\xi|\right)^{-\beta}$ can be proved in the same way as (3.3).
Interpolation and the triangle inequality in L^{p} imply that

$$
\left\|\sup _{i \in \mathbb{Z}}\left|\mathscr{B}_{i, j}\right|\right\|_{L^{p}} \leq \sum_{l \geq 0}\left\|\mathscr{P}_{l, j}\right\|_{L^{p}} \leq C\|f\|_{L^{p}}, \quad 1<p<\infty .
$$

References

[1] N. Bez: L L^{p}-boundedness for the Hilbert transform and maximal operator along a class of nonconvex curves, Proc. Amer. Math. Soc. 135 (2007), 151-161.
[2] A. Carbery, M. Christ, J. Vance, S. Wainger and D. Watson: Operators associated to flat plane curves: L^{p} estimates via dilation methods, Duke Math. J. 59 (1989), 675-700.
[3] A. Carbery, F. Ricci and J. Wright: Maximal functions and Hilbert transforms associated to polynomials, Rev. Mat. Iberoamericana 14 (1998), 117-144.
[4] A. Carbery, J. Vance, S. Wainger and D. Watson: The Hilbert transform and maximal function along flat curves, dilations, and differential equations, Amer. J. Math. 116 (1994), 1203-1239.
[5] L.-K. Chen and D. Fan: On singular integrals along surfaces related to block spaces, Integral Equations Operator Theory 29 (1997), 261-268.
[6] Y. Chen, Y. Ding and H. Liu: Rough singular integrals supported on submanifolds, J. Math. Anal. Appl. 368 (2010), 677-691.
[7] A. Córdoba, A. Nagel, J. Vance, S. Wainger: L ${ }^{p}$ bounds for Hilbert transforms along convex curves, Invent. Math. 83 (1986), 59-71.
[8] A. Córdoba and J.L. Rubio de Francia: Estimates for Wainger's singular integrals along curves, Rev. Mat. Iberoamericana 2 (1986), 105-117.
[9] D. Fan, K. Guo and Y. Pan: Singular integrals along submanifolds of finite type, Michigan Math. J. 45 (1998), 135-142.
[10] D. Fan and Y. Pan: Singular integral operators with rough kernels supported by subvarieties, Amer. J. Math. 119 (1997), 799-839.
[11] W.-J. Kim, S. Wainger, J. Wright and S. Ziesler: Singular integrals and maximal functions associated to surfaces of revolution, Bull. London Math. Soc. 28 (1996), 291-296.
[12] H. Liu: Rough singular integrals supported on submanifolds of finite type, Acta Math. Sinica (Chin. Ser.) 55 (2012), 311-320.
[13] S. Lu, Y. Pan and D. Yang: Rough singular integrals associated to surfaces of revolution, Proc. Amer. Math. Soc. 129 (2001), 2931-2940.
[14] E.M. Stein and S. Wainger: Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295.
[15] E.M. Stein: Problems in harmonic analysis related to curvature and oscillatory integrals; in Proceedings of the International Congress of Mathematicians, I, II (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, 196-221.

School of Mathematics and Information Science

Henan Polytechnic University
Jiaozuo 454000
P.R. of China
e-mail: hhliu@hpu.edu.cn

[^0]: 2000 Mathematics Subject Classification. Primary 42B20, 42B25; Secondary 42B15.
 The author was supported by the National Natural Science Foundation of China (No. 11226103) and Doctor Foundation of Henan Polytechnic University (No. B2011-034).

