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Abstract
We consider a parametric nonlinear elliptic equation driven by the Dirichlet

p-Laplacian. We study the existence, nonexistence and multiplicity of positive so-
lutions as the parameter� varies inRC0 and the potential exhibits ap-superlinear
growth, without satisfying the usual in such cases Ambrosetti–Rabinowitz condition.
We prove a bifurcation-type result when the reaction has (p � 1)-sublinear terms
near zero (problem with concave and convex nonlinearities). We show that a similar
bifurcation-type result is also true, if near zero the righthand side is (p� 1)-linear.

1. Introduction

Let � � RN be a bounded domain with aC2 boundary�� and p > 1 be a real
number. In this paper we study the following nonlinear parametric Dirichlet problem:

8

<

:

�1pu D f (z, u, �) in �,
u > 0 in �,
u D 0 on ��.

(P
�

)

The aim of this study is to establish the existence, nonexistence and multiplicity of
positive smooth solutions of (P

�

) as the parameter� varies over ]0,C1[ and when
the reaction termf (z, x, �) exhibits a (p � 1)-superlinear growth asx goes toC1.
However, we do not employ the usual in such cases Ambrosetti–Rabinowitz condition
(AR-condition for short). Instead, we use a weaker condition which permits a much
slower growth forx 7! f (z, x,�) nearC1. Our setting incorporates, as a very special
case, equations involving the combined effects of concave and convex nonlinearities.
Such problems were studied by Ambrosetti, Brezis and Cerami[2] (semilinear equa-
tions, i.e. pD 2) and by Garcia Azorero, Manfredi and Peral Alonso [7] and Guoand
Zhang [12] (nonlinear equations, i.e.p¤ 2; in Guo and Zhang [12] it is assumed that
p � 2). In all the aforementioned works, the reaction term has the form

f (x, �) D �jxjq�2x C jxjr�2x, for all x 2 R, � > 0, with 1< q < p < r < p�
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(recall that p� D N p=(N � p) if p < N and p� D1 if p � N).
Recently, Hu and Papageorgiou [14] extended these results by considering reac-

tions of the form

f (z, x, �) D �jxjq�2x C f0(z, x), for all x 2 R, � > 0, with 1< q < p,

f0 W ��R! R being a Carathéodory function (i.e.,z 7! f0(z, x) is measurable for all
x 2 R and x 7! f0(z, x) is continuous for a.a.z 2 �) with subcritical growth inx and
which satisfies theAR-condition.

We should mention that there are alternative ways to generalize the AR-condition
and incorporate more general “superlinear” reactions. Formore information in this dir-
ection, we refer to the works of Li and Yang [17] and Miyagaki and Souto [19].

Other parametric equations driven by thep-Laplacian were also considered by
Brock, Itturiaga and Ubilla [4], Guo [11], Hu and Papageorgiou [13] and Takeuchi
[22]. However, their hypotheses preclude (p� 1)-superlinear terms.

We will prove the following bifurcation-type result: thereexists�� > 0 s.t. for all
0 < � < �

� problem (P
�

) admits at least two positive smooth solutions; for� D �

�

there is at least one positive smooth solution; and for� > �

� there is no positive solu-
tion. This holds for both problems with (p� 1)-sublinear reaction near zero (see The-
orem 10 below) and problems with (p� 1)-linear reaction near zero (see Theorem 13
below). Our approach is variational, based on the critical point theory coupled with
suitable truncation techniques.

2. Mathematical background

In this section we recall some basic notions and analytical tools which we will use
in the sequel. So, letX be a Banach space andX� its topological dual. Byh � , � i
we denote the duality brackets for the pair (X�, X). Let ' 2 C1(X) be a functional. A
point x0 2 X is called acritical point of ' if '0(x0) D 0. A numberc 2 R is a critical
value of ' if there exists a critical pointx0 2 X of ', s.t. '(x0) D c.

We say that' 2 C1(X) satisfies theCerami condition at level c2 R (the
Cc-condition, for short), if the following holds:every sequence(xn) � X, s.t.

'(xn)! c and (1C kxnk)'
0(xn)! 0 in X� as n!1,

admits a strongly convergent subsequence.If this is true at every levelc 2 R, then we
say that' satisfies theCerami condition(C-condition, for short).

Using this compactness-type condition, we can have the following minimax char-
acterization of certain critical values of aC1 functional. The result is known as the
mountain pass theorem.
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Theorem 1. If X is a Banach space, ' 2 C1(X), x0, x1 2 X, 0< � < kx1� x0k,

max{'(x0), '(x1)} � inf
kx�x0kD�

'(x) D �
�

,

and ' satisfies the Cc-condition, where

cD inf
20

max
t2[0,1]

'( (t)) and 0 D { 2 C([0, 1], X) W  (i ) D xi , i D 0, 1},

then c� �
�

and c is a critical value of'. Moreover, if c D �

�

, then there exists a
critical point x 2 X s.t. '(x) D c and kx � x0k D �.

In the study of problem (P
�

), we will use the Sobolev spaceW D W1,p
0 (�), en-

dowed with the normkuk D kDukp, whose dual is the spaceW�

DW�1,p0(�) (1=pC
1=p0 D 1). We will also use the space

C1
0(�) D {u 2 C1(�) W u(z) D 0 for all z 2 ��}.

This is an ordered Banach space with positive cone

C
C

D {u 2 C1
0(�) W u(z) � 0 for all z 2 �}.

This cone has a nonempty interior, given by

int(C
C

) D

�

u 2 C
C

W u(z) > 0 for all z 2 �,
�u

�n
(z) < 0 for all z 2 ��

�

.

Here n(z) denotes the outward unit normal to�� at a pointz.
Concerning ordered Banach spaces, in the sequel we will use the following simple

fact about them.

Lemma 2. If X is an ordered Banach space with positive(order) cone C and
x0 2 int(C), then for every y2 X we can find t> 0 s.t. tx0 � y 2 int(C).

A nonlinear mapAW X ! X� is of type (S)
C

if, for every sequence (xn) � X s.t.

xn * x in X and lim sup
n
hA(xn), xn � xi � 0,

we havexn ! x in X.
Let AW W! W� be defined by

(1) hA(u), vi D
Z

�

jDujp�2Du � Dv dz for all u, v 2 W1,p
0 (�).

We have the following result (see, for example, Papageorgiou and Kyritsi [20]).
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Proposition 3. The map AW W!W� defined by(1) is continuous, strictly mono-
tone (hence maximal monotone too) and of type(S)

C

.

Next, let us recall some basic facts about the spectrum of thenegative Dirichlet
p-Laplacian. Letm 2 L1(�)

C

, m¤ 0 and consider the following nonlinear weighted
eigenvalue problem:

(2)

�

�1pu D O�m(z)jujp�2u in �,
u D 0 on ��.

By an eigenvalueof (2) we mean a numberO�(m) 2 R s.t. problem (2) has a non-
trivial solution u 2 W. Nonlinear regularity theory (see, for example, Papageorgiou
and Kyritsi [20], pp. 311–312) implies thatu 2 C1

0(�). We know that (2) has a smallest

eigenvalueO�1(m)> 0, which is simple and isolated. Moreover, the following variational
characterization is available:

(3) O

�1(m) D min
u2Wn{0}

kDukp
p

R

�

m(z)jujp dz
.

The minimum in (3) is attained on the one-dimensional eigenspace of O�1(m). Note
that, if m, m0

2 L1(�)
C

n {0}, m ¤ m0 and m � m0, then because of (3) we see that
O

�1(m) > O�1(m0). If mD 1, we simply write O�1 for O�1(1). Let Ou1 2 C1
0(�) be the L p-

normalized eigenfunction corresponding toO�1. It is clear from (3) thatOu1 does not
change sign, and so we may assumeOu1 2 C

C

. In fact the nonlinear maximum principle
of Vázquez [23] implies thatOu1 2 int(C

C

). Every eigenfunctionu corresponding to an
eigenvalueO� ¤ O�1 is necessarilynodal (i.e., sign changing).

Finally, in what follows we denote byj � jN the Lebesgue measure onRN . For all
x 2 R, we set

x� D max{�x, 0}.

3. Problems with concave and convex nonlinearities

In this section, we consider problems with reactions which are concave (i.e. (p�1)-
sublinear) near zero and convex (i.e. (p� 1)-superlinear) nearC1. More precisely, the
hypotheses onf (z, x, �) are the following (byp� we denote the Sobolev critical expo-
nent, defined as in Introduction):
H f W � � R � RC0 ! R is a Carathéodory function s.t.f (z, 0, �) D 0 for a.a.z 2 �
and all � > 0. We set

F(z, x, �) D
Z x

0
f (z, s, �) ds for a.a. z 2 � and all x 2 R, � > 0

and assume:
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(i) f (z, x, �) � a(z, �)C cjxjr�1 for a.a. z 2 � and all x 2 R, � > 0, with p <
r < p� and a( � , �) 2 L1(�)

C

s.t. the function� 7! ka( � , �)k
1

is bounded on
bounded sets and goes to 0 as�! 0C, c > 0;
(ii) for all � > 0

lim
x!C1

F(z, x, �)

xp
D C1 uniformly for a.a. z 2 �,

and there exist� 2 ](r � p) max{1, N=p}, p�[ and, for all boundedI � RC0 , a real
number�0 > 0 s.t.

(4) lim inf
x!C1

f (z, x, �)x � pF(z, x, �)

x�
� �0 for all � 2 I I

(iii) there existÆ0 > 0, � 2 ]1, p[ and �0 > 0 s.t.

f (z, x, �) � �0x��1 for a.a. z 2 � and all x 2 [0, Æ0], � > 0I

(iv) for a.a. z 2 � and all x � 0 the function� 7! f (z, x, �) is increasing, for all
� > �

0

> 0, s> 0 there exists�s > 0 s.t.

f (z, x, �) � f (z, x, �0) � �s for a.a. z 2 � and all x � s

and for all compactK � RC0

lim
�!C1

f (z, x, �) D C1 uniformly for a.a. z 2 � and all x 2 K I

(v) for all � > 0 and every bounded intervalI � RC0 , we can find� I
�

> 0 s.t. the

function x 7! f (z, x, �)C � I
�

xp�1 is nondecreasing on [0,� ] for a.a. z 2 � and all
� 2 I .

REMARK 4. Since we are interested in positive solutions and hypothesesH (ii)–
(v) concern only the positive semiaxisRC, by truncating things if necessary, we may
(and will) assume thatf (z, x, �) D 0 for a.a.z 2 � and all x � 0, � > 0. Hypothesis
H (i) imposes a growth condition only from above, since from below the other hypoth-
eses imply that for every� > 0 we can find�� > 0 s.t. f (z, x,�) � ��� for a.a.z2 �,
all x � 0. Indeed, fromH (ii) we see that forx > 0 large, say forx � M > 0, we have
f (z, x, �) � 0 for a.a.z 2 �. Similarly, hypothesisH (iii) implies that f (z, x, �) � 0
for a.a. z 2 �, all x 2 [0, Æ0]. Finally, for x 2 [Æ0, M] we useH (v) and obtain the
required bound from below. HypothesisH (ii) classifies problem (P

�

) as p-superlinear,
since it implies that near1 the potential functionx 7! F(z, x,�) grows faster thanxp.
Evidently, this is the case ifx 7! f (z, x, �) is (p� 1)-superlinear nearC1, i.e.

lim
x!C1

f (z, x, �)

xp�1
D C1 uniformly for a.a. z 2 � and all � > 0.
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In the literature, such problems are usually studied using the AR-condition. We recall
that f satisfies the (unilateral)AR-condition uniformly in � > 0, if there existM > 0,
� > p s.t.

(5) 0< � F(z, x, �) � f (z, x, �)x for a.a. z 2 � and all x � M, � > 0.

Integrating (5), we obtain the weaker condition

(6) c1x� � F(z, x, �) for a.a. z 2 � and all x � M, � > 0 (c1 > 0).

Clearly (6) implies the much weaker condition

(7) lim
x!C1

F(z, x, �)

xp
D C1 uniformly for a.a. z 2 � and all � > 0.

Here, instead of theAR-condition (5), we employ the more general conditions (7) and
(4). Similar assumptions can be found in Costa and Magalhães [5] and Fei [6]. Other
ways to relax theAR-condition in the study ofp-superlinear problems can be found in
the papers of Jeanjean [15], Miyagaki and Souto [19] and Schechter and Zou [21]. Fi-
nally, note that hypothesisH (iii) implies that x 7! F(z, x, �) is p-sublinear near zero.
Therefore hypothesesH correspond to problems withconcave and convex nonlinearities.

EXAMPLE 5. The following functionsfi W RC �R
C

0 ! R (i D 1, 2, 3) satisfy hy-
pothesesH:

f1(x, �) D �xq�1
C xr�1 (1< q < p < r < p�),

f2(x, �) D �xq�1
C xp�1

�

ln(1C x)C
1

p

x

1C x

�

(1< q < p),

f3(x, �) D

8

<

:

�xq�1 if 0 � x � 1,

p�xp�1

�

ln(x)C
1

p

�

if x > 1,
(1< q < p).

Of course, we setfi (x, �) D 0 for all x � 0, � > 0 and for i D 1, 2, 3. Note that
f1(x, �) is the reaction term used by Ambrosetti, Brezis and Cerami [2] (for p D 2),
by Garcia Azorero, Manfredi and Peral Alonso [7] (forp> 1) and by Guo and Zhang
[12] (for p � 2). Functions f2(x, �) and f3(x, �) do not satisfy theAR-condition. So,
our work generalizes significantly those in [7] and [12].

For all � > 0 andu 2 W, we denote

(8) N�

f (u)(z) D f (z, u(z), �) for a.a. z 2 �.

By a (weak) solution of (P
�

) we mean a functionu 2 W s.t.

A(u) D N�

f (u) in W�,
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that is,
Z

�

jDujp�2Du � Dv dzD
Z

�

f (z, u, �)v dz for all v 2 W.

We say thatu is positive if u(z) > 0 for a.a.z 2 �. Set

P D {� 2 RC0 W (P
�

) has a positive solution}.

The following Propositions illustrate the properties of the setP.

Proposition 6. If hypothesesH hold, then P ¤ ; and for all � 2 P, � 2 ]0, �[
we have� 2 P.

Proof. Let e 2 W n {0}, e� 0 be the unique solution of the following auxiliary
Dirichlet problem:

(9)

�

�1peD 1 in �,
eD 0 on ��.

Nonlinear regularity theory (see [20]) and the nonlinear maximum principle (see
Vázquez [23]) imply thate2 int(C

C

).

Claim. There existsQ� > 0 s.t., for all � 2 ]0, Q�[, we can findQ� > 0 s.t.

(10) ka( � , �)k
1

C c( Q�kek
1

)r�1
<

Q

�

p�1 (c > 0 as in H (i)).

We argue by contradiction. So, suppose we can find a sequence (�n)� RC0 s.t.�n!

0 and

�

p�1
� ka( � , �n)k

1

C c(�kek
1

)r�1 for all n 2 N, � > 0.

Passing to the limit asn!1 and using hypothesisH (i), we obtain

1� c� r�p
kekr�1

1

for all � > 0.

Since r > p, letting � ! 0C we reach a contradiction. This proves the claim.
Now, we fix � 2 ]0, Q�[. Set Qu D Q�e2 int(C

C

). We have

A( Qu) D Q�p�1 (see (9)),

which implies

(11) A( Qu) � N�

f ( Qu) in W� (see (10) andH (i)),
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thereforeQu is an upper solution for problem (P
�

). We consider the following truncation
of f (z, x, �):
(12)

Qf (z, x, �) D

�

f (z, x, �) if x < Qu(z),
f (z, Qu(z), �) if x � Qu(z),

for a.a.z 2 � and all x 2 R, � 2 ]0, Q�[.

Evidently, (z, x) 7! Qf (z, x, �) is a Carathéodory function. We set

QF(z, x, �) D
Z x

0

Qf (z, s, �) ds

and consider the functionalQ'
�

W W! R defined by

Q'

�

(u) D
1

p
kDukp

p �

Z

�

QF(z, u, �) dz for all u 2 W.

It is clear from (12) thatQ'
�

2 C1(W) is coercive. Also, exploiting the compact em-
bedding ofW into Lr (�) (by the Sobolev embedding theorem), we can easily check
that Q'

�

is sequentially weakly l.s.c. Thus, by the Weierstrass theorem, we can find
u0 2 W s.t.

(13) Q'

�

(u0) D inf
u2W
Q'

�

(u) D Qm
�

.

Let Æ0 > 0 be as postulated in hypothesisH (iii) and let t 2 ]0, 1[ be s.t.

0� t Ou1(z) � min{Qu(z), Æ0} for all z 2 �

(recall that Qu, Ou1 2 int(C
C

) and use Lemma 2). Then, by virtue of hypothesisH (iii),
we have

(14) F(z, t Ou1(z), �) �
�0

�

(t Ou1(z))� for a.a. z 2 �.

So, we get

Q'

�

(t Ou1) D
t p

p
kD Ou1k

p
p �

Z

�

F(z, t Ou1, �) dz (see (12) and (14))

� t�
�

t p��

p
O

�1 �
�0

�

kOu1k
�

�

�

(see (3), (14) and recallkOu1kp D 1).

Since� < p (seeH (iii)), choosing t 2 ]0, 1[ even smaller if necessary, from the in-
equality above we infer that

Q'

�

(t Ou1) < 0,
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which in turn implies

Qm
�

< 0D Q'
�

(0).

So, by (13)u0 ¤ 0.
From (13) we deduce thatu0 is a critical point of Q'

�

, that is,

(15) A(u0) D N�

Qf
(u0) in W� (N�

Qf
defined as in (8), with Qf instead of f ).

On (15) we act withu�0 2 W and we obtain

kDu�0 kp D 0 (see (12)),

i.e. u0 � 0 a.e. in�.
Also, on (15) we act with (u0 � Qu)C 2 W. Then,

hA(u0), (u0 � Qu)Ci D
Z

�

Qf (z, u0, �)(u0 � Qu)C dz

D

Z

�

f (z, Qu, �)(u0 � Qu)C dz (see (12))

� hA( Qu), (u0 � Qu)Ci (see (11)),

that is,

hA(u0) � A( Qu), (u0 � Qu)Ci D
Z

{u0> Qu}

(jDu0j
p�2Du0 � jD Quj

p�2D Qu) � (Du0 � D Qu) dz

� 0.

So we have

j{u0 > Qu}jN D 0,

i.e. u0 � Qu. So (15) becomes

A(u0) D N�

Qf
(u0) in W�.

We have proved thatu0 2 W n {0}, 0� u0 � Qu and u0 solves problem (P
�

). As before,
nonlinear regularity theory (see [20]) assures thatu0 2 C

C

n {0}. Set � D ku0k1, I D
]0, Q�[ and find Q� D � I

�

as in hypothesisH (v). We have

�1pu0(z)C Q�u0(z)p�1
D f (z, u0(z), �)C Q�u0(z)p�1

� 0 for a.a. z 2 �,

so

1pu0(z) � Q�u0(z)p�1 for a.a. z 2 �,

hence u0 2 int(C
C

) (see [23]). Thus,u0 is a smooth positive solution of (P
�

), in
particular� 2 P. Therefore ]0,Q�[ � P, in particularP ¤ ;.
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Next, let � 2 P and 0< � < �. We can find a positive solutionu
�

2 int(C
C

) for
problem (P

�

). By hypothesisH (iv) we have

(16) A(u
�

) D N�

f (u�) � N�

f (u
�

) in W�,

thereforeu
�

is an upper solution for problem (P
�

). We truncatex 7! f (z, x,�) at u
�

(z)
and we argue as above. Via the direct method (using this time (16) instead of (11)),
we produce a positive solutionu

�

2 int(C
C

) for problem (P
�

), s.t. 0� u
�

� u
�

in �.
Therefore,� 2 P.

Denote

�

�

D supP.

Proposition 7. If hypothesesH hold, then �� < C1.

Proof. HypothesesH (ii), (iii) and (iv) imply that we can findN� > 0 large s.t.

(17) f (z, x, N�) � O�1xp�1 for a.a. z 2 �, all x � 0.

To see (17) note that by choosingÆ0 > 0 even smaller if necessary, fromH (iii) we have

f (z, x, �) � O�1xp�1 for a.a. z 2 �, all x 2 [0, Æ0].

Also, from hypothesisH (ii) we see that we can findM > 0 large enough s.t.

f (z, x, �) � O�1xp�1 for a.a. z 2 �, all x � M.

Finally, invoking H (v), we infer that for all� > 0 big, we have

f (z, x, �) � O�1M p�1
�

O

�1xp�1 for a.a. z 2 �, all x 2 [Æ0, M].

From these estimates we have (17) for� > 0 big.
We will prove that�� � N�, arguing by contradiction. So, let� > N� and suppose

that problem (P
�

) has a nontrivial positive solutionu
�

2W. As before, we obtainu
�

2

int(C
C

). By virtue of Lemma 2, we can findt > 0 s.t.

t Ou1(z) � u
�

(z) for all z 2 �.

Let t > 0 be the largest such positive real number. Let� D ku
�

k

1

, I D [ N�, �] and



PARAMETRIC NONLINEAR ELLIPTIC EQUATIONS 189

choose N� D � I
�

as in hypothesisH (v). We have

�1pu
�

C N�up�1
�

D f (z, u
�

, �)C N�up�1
�

D f (z, u
�

, N�)C N�up�1
�

C �

�(z) (we set��(z) D f (z, u
�

, �) � f (z, u
�

, N�))

�

O

�1up�1
�

C N�up�1
�

C �

�(z) (see (17))

�

O

�1(t Ou1)p�1
C N� (t Ou1)p�1

C �

�(z) (recall t Ou1 � u
�

)

D �1p(t Ou1)C N� (t Ou1)p�1
C �

�(z).

Sinceu
�

2 int(C
C

), using hypothesisH (iv), we see that for every compactK � � we
can find�K > 0 s.t.

�

�(z) � �K for a.a. z 2 K .

Then, from Proposition 2.6 of Arcoya and Ruiz [3], we infer that u
�

� t Ou1 2 int(C
C

),
which contradicts the maximality oft > 0.

This proves that for� > N� problem (P
�

) has no nontrivial positive solution inW
and so�� � N�, in particular�� < C1.

Proposition 8. If hypothesesH hold, then �� 2 P and soP D ]0, ��].

Proof. Let (�n) � ]0, ��[ � P be an increasing sequence s.t.�n ! �

�. To each
�n there corresponds a positive smooth solutionun D u

�n 2 int(C
C

) for problem (P
�n).

For all m> n � 1 we have

(18) A(um) D N�m
f (um) � N�n

f (um) in W� (see hypothesisH (iv)).

Truncating x 7! f (z, x, �n) at um(z) and reasoning as in the proof of Proposition 6,
using the direct method and (18) we obtain a smooth positive solution for (P

�n) with
values in [0,um(z)], with negative energy. So, without any loss of generality, we may
assume that

(19) '

�n(un) < 0 for all n 2 N,

with

'

�

(u) D
1

p
kDukp

p �

Z

�

F(z, u, �) dz for all � > 0, u 2 W.

Also, we have

(20) A(un) D N�n
f (un) for all n 2 N.
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From (19) we have

(21) kDunk
p
p �

Z

�

pF(z, un, �n) dz< 0 for all n 2 N.

Acting on (20) withun 2 W, we obtain

(22) kDunk
p
p �

Z

�

f (z, un, �n)un dzD 0 for all n 2 N.

Subtracting (22) from (21), we get

(23)
Z

�

[ f (z, un, �n)un � pF(z, un, �n)] dz< 0 for all n 2 N.

HypothesesH (i), (ii) imply that we can find�1 2 ]0, �0[ and c2 > 0 s.t.

(24) �1x� �c2� f (z, x, �)x� pF(z, x, �) for a.a.z2� and all x�0, �2 ]0, ��].

Using (24) in (23), we see that

(25) (un) is bounded in L� (�).

Claim. There exists u� 2 W s.t., up to a subsequence,

(26) un * u� in W and un ! u� in Lr (�) as n!1.

First, suppose thatN ¤ p. From hypothesisH (ii) it is clear that we can always
assume� � r < p�. So, we can findt 2 [0, 1[ s.t.

1

r
D

1� t

�

C

t

p�
(recall that p� D C1 if N < p).

From the interpolation inequality (see, for example, Gasiński and Papageorgiou [8],
p. 905) we have

kunkr � kunk
1�t
�

kunk
t
p� for all n 2 N,

which (together with (25) and the Sobolev embedding theorem) implies

(27) kunk
r
r � c3kDunk

tr
p for all n 2 N (c3 > 0).

From hypothesisH (i) we have

(28) f (z, un(z), �n)un(z) � c4(1C jun(z)jr ) for a.a.z 2 � and all n 2 N (c4 > 0).
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From (20), we have for alln 2 N and somec5, c6 > 0

kDunk
p
p D

Z

�

f (z, un, �n)un dz

� c5(1C kunk
r
r ) (see (28))

� c6(1C kDunk
tr
p ) (see (27)).

The restriction on� in hypothesisH (ii) implies that tr < p. So, from the inequality
above we infer that (un) is bounded inW and we can findu� 2 W satisfying (26).

If N D p, then by the Sobolev theoremW is (compactly) embedded inL�(�) for
all � 2 [1, C1[ (see, for example, Gasiński and Papageorgiou [8], p. 222) while now
p� D C1. So, in the above argument, we replacep� by some� > r large enough s.t.

tr D
�(r � � )

� � �

< p (seeH (ii)).

Then, again we deduce that (un) is bounded inW and (26) holds. So, the Claim
is proved.

On (20) we act withun � u� 2 W and we pass to the limit asn!1. We obtain

lim
n
hA(un), un � u�i D 0 (see (26)),

which implies

(29) un ! u� in W (see Proposition 3).

Therefore, if on (20) we pass to the limit asn!1 and use (29), then

A(u�) D N�

�

f (u�),

i.e. u� 2 C
C

(by nonlinear regularity theory) and it solves (P
�

�).
We need to show thatu� ¤ 0. We argue by contradiction. So, supposeu� D 0 and

consider the following auxiliary Dirichlet problem:

(30)

�

�1pw D �0(wC)��1 in �,
w D 0 on ��

(seeH (iii)). Since � < p, the energy functional for (30), defined by

 (w) D
1

p
kDwkp

p �
�0

�

kw

C

k

�

�

for all w 2 W,

is coercive and of course it is sequentially weakly l.s.c. Hence, by the Weierstrass the-
orem, we can find a minimizerw 2 W of  . Note that, since� < p, we have

 (w) D inf
u2W

 (u) < 0D  (0),
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so w 2 W n {0}. Then

A(w) D �0(wC)��1 in W�,

which impliesw 2 int(C
C

) and it solves (30).
From Ladyzhenskaya and Uraltseva [16] (p. 286, see also [20], p. 311) we can find

OM > 0 s.t.kuk
1

�

OM for all n � 1. Then we can apply Theorem 1 of Lieberman [18]
(see also [20], p. 312) and find� 2 ]0, 1[ and c7 > 0 s.t.

un 2 C1,�
0 (�) and kunkC1,�

0 (�) � c7 for all n 2 N.

Recalling thatC1,�
0 (�) is compactly embedded inC1(�), we may assume thatun !

u� D 0 in C1
0(�) as n!1, so there existsn0 2 N s.t.

(31) 0� un(z) � Æ0 for all z 2 � and all n � n0.

Fix n � n0 and choosetn > 0 s.t.

tnw(z) � un(z) for all z 2 � (recall un 2 int(C
C

) and use Lemma 2).

Let tn be the biggest such number and suppose thattn 2 ]0, 1[. Set � D kunk1, I D
]0, ��] and let �n D �

I
�

be as in hypothesisH (v). Then

�1p(tnw)C �n(tnw)p�1

D t p�1
n �0w

��1
C �n(tnw)p�1 (see (30))

< �0(tnw)��1
C �n(tnw)p�1 (recall thattn 2 ]0, 1[ and� < p)

� �0u��1
n C �nup�1

n (since tnw � un)

� f (z, un, �n)C �nup�1
n (sincen � n0, see (31) and hypothesisH (iii))

D �1pun C �nup�1
n .

Note that if we set

h1(z) D t p�1
n �0w

��1
C �n(tnw)p�1, h2(z) D �0u��1

n C �nup�1
n ,

then h1, h2 2 C(�) and

h1(z) < h2(z) for all z 2 �.

Moreover, we have

h2(z) � f (z, un, �n)C �nup�1
n a.e. in �.
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Therefore, we can apply Proposition 2.6 of Arcoya and Ruiz [3] (see also Guedda and
Veron [10]) and we have

un � tnw 2 int(C
C

),

which contradicts the maximality oftn. Thereforetn � 1 and so we havew � un for
all n � n0, hencew � 0, a contradiction. Thus,u� ¤ 0.

As before, by using hypothesisH (v) and the nonlinear maximum principle of
Vázquez [23], we haveu� 2 int(C

C

). So, �� 2 P, i.e., P D ]0, ��].

Proposition 9. If hypothesesH hold, then for all � 2 ]0,��[ problem(P
�

) has at
least two positive smooth solutions u0, Ou 2 int(C

C

) s.t. u0 � Ou in � and u0 ¤ Ou.

Proof. From Proposition 8, we know that�� 2 P, i.e., there is a solutionu� 2
int(C

C

) for problem (P
�

�). We have

(32) A(u�) D N�

�

f (u�) � N�

f (u
�) in W� (seeH (iv)),

so u� is an upper solution of (P
�

) when � 2 ]0, ��[. In what follows � 2 ]0, ��[. We
truncatex 7! f (z, x, �) at u�(z) and, using the direct method and (32), as in the proof
of Proposition 6, we obtain a solutionu0 2 int(C

C

) for problem (P
�

), s.t. 0� u0(z) �
u�(z) for all z 2 �. For � D ku�k

1

and I D ]0, ��], let O� D � I
�

be as postulated by
hypothesisH (v). We have

�1pu0C O�up�1
0

D f (z, u0, �)C O�up�1
0

D f (z, u0, ��)C O�up�1
0 C

O

�(z) (we set O�(z) D f (z, u0, �) � f (z, u0, ��))

� f (z, u�, ��)C O� (u�)p�1
C

O

�(z) (seeH (v) and recallu0 � u�)

D �1pu� C O� (u�)p�1
C

O

�(z).

By virtue of hypothesisH (iv), for every compactK � �, we have

esssupK O� < 0.

Invoking Proposition 2.6 of Arcoya and Ruiz [3], we have

(33) u� � u0 2 int(C
C

).

We consider the following truncation ofx 7! f (z, x, �):
(34)

g(z,x,�)D

�

f (z, u0(z), �) if x � u0(z),
f (z, x, �) if x > u0(z),

for a.a.z 2 � and all x 2 R, � 2 ]0, ��[.
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This is a Carathéodory function. We set

G(z, x, �) D
Z x

0
g(z, s, �) ds for a.a. z 2 � and all x 2 R, � 2 ]0, ��[

and consider theC1 functional 
�

W W! R defined by

 

�

(u) D
1

p
kDukp

p �

Z

�

G(z, u, �) dz for all u 2 W.

Claim 1.  

�

satisfies the C-condition.

Let (un) 2 W be a sequence s.t.

(35) j 

�

(un)j � c8 for all n 2 N (c8 > 0)

and

(36) lim
n

(1C kunk) 
0

�

(un) D 0 in W�.

From (35) we have

(37) kDunk
p
p �

Z

�

pG(z, un, �) dz� pc8 for all n 2 N.

From (36) we have
(38)
�

�

�

�

A(un),vi�
Z

�

g(z,un,�)vdz

�

�

�

�

� "n
kvk

1Ckunk
for all v 2W, n2N ("n!0C as n!1).

In (38) we choosev D �u�n 2 W. Then,

kDu�n k
p
p � "n C

Z

�

f (z, u0, �)(�u�n ) dz (see (34))

� c9(1C kDu�n kp) for some c9 > 0 (seeH (i)),

which implies that (u�n ) is bounded inW.
Next, in (38) we choosev D uCn 2 W. Then,

(39) �kDuCn k
p
p C

Z

�

g(z, uCn , �)uCn dz� "n for all n 2 N.

We add (37) and (39) and use (34) and the boundedness of (u�n ) to obtain, for all
n 2 N,

(40)
Z

�

[ f (z, uCn , �)uCn � pF(z, uCn , �)] dz� c10 (c10 > 0).
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From (40), using hypothesisH (ii) and the interpolation inequality, as in the proof of
Proposition 8, we show that (uCn ) is bounded inW as well. Thus, (un) is bounded in
W. So, we may assume that there existsu 2 W s.t.

un * u in W and un ! u in Lr (�) as n!1,

from which, using as before Proposition 3, we show thatun! u in W (as in the proof
of Proposition 8), hence 

�

satisfies theC-condition. This proves Claim 1.

Claim 2. u0 is a local minimizer of 
�

.

We can always assume thatu0 is the only nontrivial positive solution of problem
(P
�

) in the order interval

I D {u 2 W W 0� u(z) � u�(z) for a.a.z 2 �},

or otherwise we already have a second nontrivial smooth solution and we are done (see
also [9]).

We introduce the following truncation ofx 7! g(z, x, �):

(41) Og(z, x, �) D

8

<

:

f (z, u0(z), �) if x � u0(z),
f (z, x, �) if u0(z) < x < u�(z),
f (z, u�(z), �) if x � u�(z),

for a.a. z 2 � and all x 2 R, � 2 RC0 . This is a Carathéodory function. As usual,
we set

OG(z, x, �) D
Z x

0
Og(z, s, �) ds for a.a. z 2 � and all x 2 R, � 2 RC0

and consider the functionalO 
�

2 C1(W) given by

O

 

�

(u) D
1

p
kDukp

p �

Z

�

OG(z, u, �) dz for all u 2 W.

Evidently O 
�

is coercive (see (41)) and is as well sequentially weakly l.s.c. So, we can
find Ou0 2 W s.t.

O

 

�

( Ou0) D inf
W
O

 

�

,

in particular Ou0 is a critical point of O �, i.e.

(42) A( Ou0) D N�

Og ( Ou0) in W� (N�

Og defined as in (8)).
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On (42) we act with (u0 � Ou0)C 2 W. Then

hA( Ou0), (u0 � Ou0)Ci D
Z

�

Og(z, Ou0, �)(u0 � Ou0)C dz

D

Z

�

f (z, u0, �)(u0 � Ou0)C dz (sinceu0 � u�, see (41))

D hA(u0), (u0 � Ou0)Ci,

which implies

hA(u0)� A( Ou0), (u0� Ou0)CiD
Z

{u0> Ou0}

(jDu0j
p�2Du0�jD Ou0j

p�2D Ou0) � (Du0�D Ou0)dz

D0.

So

j{u0 > Ou0}jN D 0,

i.e. u0 � Ou0. Also, acting on (42) with (Ou0 � u�)C 2 W, we have

hA( Ou0), (Ou0 � u�)Ci D
Z

�

Og(z, Ou0, �)( Ou0 � u�)C dz

D

Z

�

f (z, u�, �)( Ou0 � u�)C dz (see (41) and recallu0 � u�)

� hA(u�), (Ou0 � u�)Ci (see (32)),

i.e.

hA( Ou0)� A(u�), (Ou0�u�)CiD
Z

{Ou0>u�}
(jD Ou0j

p�2D Ou0�jDu�jp�2Du�) � (D Ou0�Du�)dz

�0.

So

j{Ou0 > u�}jN D 0,

i.e. Ou0 � u�. Hence, (42) becomes

A( Ou0) D N�

f ( Ou0) in W� (see (41) and (34))

and Ou0 2 int(C
C

) \ I is a solution of problem (P
�

). This implies

Ou0 D u0 (recall thatu0 is the only nontrivial solution of (P
�

) in I).

Note that

O

 

�

(u) D  
�

(u) for all u 2 I.
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Recall, also, thatu� � u0 2 int(C
C

) (see (33)) andu0 2 int(C
C

). Therefore,I is a
neighborhood ofu0 in the topology ofC1

0(�), and sou0 is a local C1
0(�)-minimizer

of  
�

. By virtue of Theorem 1.2 of Garcia Azorero, Manfredi and Peral Alonso [7],
it is also a localW-minimizer of  

�

. This proves Claim 2.
We may assume thatu0 is an isolated critical point of 

�

(otherwise we have a
whole sequence of distinct positive smooth solutions converging to u0). Therefore we
can find� 2 ]0, 1[ small enough s.t.

(43)  

�

(u0) < inf
ku�u0kD�

 

�

(u) D �
�

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 29).
Clearly hypothesisH (ii) implies that

(44) lim
t!C1

 

�

(t Ou1) D �1.

Then, (43), (44) and Claim 1 permit the use of Theorem 1 (the mountain pass the-
orem). So, we obtainOu 2 W s.t.

(45)  

�

(u0) < �
�

�  

�

( Ou) (see (43))

and

(46)  

0

�

( Ou) D 0.

From (45) we haveOu ¤ u0. From (46), we have

(47) A( Ou) D N�

g ( Ou) in W�.

Acting on (47) with (u0 � Ou)C 2 W, as before we show thatu0 � Ou. Hence (47)
becomes

A( Ou) D N�

f ( Ou) in W� (see (34)),

so Ou 2 int(C
C

) (nonlinear regularity) is a solution of (P
�

).

Summarizing the situation, we have the following bifurcation-type result for
problem (P

�

).

Theorem 10. If hypothesesH hold, then there exists�� 2 RC0 s.t.
(a) for every� 2 ]0,��[ problem(P

�

) has at least two positive smooth solutions u0, Ou 2
int(C

C

) s.t. u0 � Ou in � and u¤ Ou;
(b) for � D �� problem (P

�

) has at least one positive smooth solution u�

2 int(C
C

);
(c) for every� > �� problem (P

�

) has no positive solution.
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REMARK 11. If p D 2 and 0< � < �

�, then the two positive solutionsu0, Ou 2
int(C

C

) satisfy

Ou � u0 2 int(C
C

).

Indeed, if� D kOuk
1

and I D ]0, ��], then we find O� D � I
�

as in hypothesisH (v) and
we have

�1( Ou � u0)C O� ( Ou � u0) D f (z, Ou, �)C O� Ou � f (z, u0, �) � O�u0

� 0 (seeH (v)),

i.e.

1( Ou � u0) � O� ( Ou � u0) a.e. in �,

which implies

Ou � u0 2 int(C
C

) (see Vázquez [23]).

Finally, note that, if f (z, � , �) 2 C1(R), then by the mean value theoremH (v) is
automatically true.

4. Problems with (p � 1)-linear nonlinearities near zero

In the previous section, we examined problems in which the reaction was concave
near the origin (see hypothesisH (iii)). Here, we consider equations in whichx 7!
f (z, x, �) exhibits (p� 1)-linear growth near zero. We show that in this case we can
still have a bifurcation-type theorem similar to Theorem 10.

The new hypotheses on the nonlinearityf (z, x, �) are the following.
H0 f W � � R � RC0 ! R is a Carathéodory function s.t.f (z, 0, �) D 0 for a.a.z 2 �
and all � > 0. We set

F(z, x, �) D
Z x

0
f (z, s, �) ds for a.a. z 2 � and all x 2 R, � > 0.

Let hypothesesH0 (i), (ii), (iv), (v) be as H (i), (ii), (iv), (v) and
(iii) for all bounded I � R

C

0 there exist�0 2 L1(�), �0(z) � O�1 for a.a. z 2 �,

�0 ¤ O�1, and�1 > 0 s.t.

�0(z) � lim inf
x!0C

f (z, x, �)

xp�1
� lim sup

x!0C

f (z, x, �)

xp�1

� �1 uniformly for a.a. z 2 � and all � 2 I .

EXAMPLE 12. Let � > O�1, 1< q < p< r < p�. The following function satisfies
hypothesesH0:

f (x, �)D

8

<

:

�xr�1
C�xp�1 if 0� x�1,

�xq�1
C p�xp�1

�

ln(x)C
1

p

�

if x>1,
for a.a.z2� and all �2RC0 .
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Again this (p� 1)-superlinear function (at1) does not satisfy theAR-condition.

A careful inspection of the proofs in Section 3 reveals that they remain essentially
unchanged. The only two parts which need to be modified are thefollowing:
(A) in the proof of Proposition 6, the part where we show that the minimizeru0 is
nontrivial;
(B) in the proof of Proposition 8, the part where we show thatu� ¤ 0.
First we deal with (A). By virtue of hypothesisH0 (iii), given " > 0, we can find
Æ > 0 s.t.

(48) F(z, x, �) �
1

p
(�0(z) � ")xp for a.a.z 2 �, all x 2 [0, Æ] and all � 2 ]0, Q�[.

Let t 2 ]0, 1[ be s.t.

(49) 0� t Ou1(z) � min{Æ, Qu(z)} for all z 2 � (see Lemma 2).

Then,

Q'

�

(t Ou1) D
t p

p
kD Ou1k

p
p �

Z

�

F(z, t Ou1, �) dz (see (12) and (49))

�

t p

p

Z

�

(O�1 � �0(z)) Ou1(z)p dzC
t p

p
" (see (48), (49) and recallkOu1kp D 1).

Since
Z

�

(O�1 � �0(z)) Ou1(z)p dz< 0,

by choosing" > 0 small enough we see that

Q'

�

(u0) � Q'
�

(t Ou1) < 0 (see (13)),

i.e. u0 ¤ 0.
Next we deal with (B). Again we argue indirectly. So, suppose thatu� D 0. Then,

un! 0 in W (see (29) and in fact, using Theorem 1 of Lieberman [18], we show that
un ! 0 in C1

0(�) as n!1 (see the proof of Proposition 8). Therefore we can find
n0 2 N s.t.

0� un(z) � 1 for all n � n0 and z 2 �.

HypothesesH0 (i), (iii) imply that

j f (z, x, �)j � c11jxtp�1
j for a.a. z 2 � and all x 2 [0, 1], � 2 ]0, ��] (c11 > 0),

which implies

j f (z, un(z), �n)j � c11jun(z)jp�1 for a.a. z 2 � and all n � n0.
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So, the sequence
�

N�n
f (un)

kunk
p�1

�

is bounded inL p0(�). Hence, passing if necessary to a subsequence, we may assume that

(50)
N�n

f (un)

kunk
p�1

* h in L p0(�) as n!1.

Set yn D un=kunk for all n 2 N. Then jynj D 1 for all n 2 N and so we may assume
that

(51) yn * y in W and yn ! y in L p(�) as n!1.

Recall that

(52) A(yn) D
N�n

f (un)

kunk
p�1

for all n 2 N (see (20)).

Acting on (52) with yn � y 2 W, passing to the limit asn! 1 and using (50) and
(51), we obtain

lim
n
hA(yn), yn � yi D 0,

henceyn ! y (see Proposition 3). In particular, we have

(53) kyk D 1 and y(z) � 0 for a.a. z 2 �.

Moreover, using hypothesisH0 (iii) and reasoning as in the proof of Theorem 2.8 of
[14] (see also [1], proof of Proposition 31), we show that there existsm 2 L1(�) s.t.

(54) h(z) D m(z)y(z)p�1 and �0(z) � m(z) � �1 for a.a. z 2 �.

So, if in (52) we pass to the limit asn!1 and use (53) and (54), then

A(y) D m(z)yp�1,

i.e., y 2 W solves the Dirichlet problem

(55)

�

�1py D m(z)yp�1 in �,
y D 0 on ��.

But, note that

O

�1(m) < O�1(O�1) D 1 (see (3) and (54)).
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So, from (55) it follows thaty must be nodal, contradicting (53). This proves that
u� ¤ 0.

So, we can state the following bifurcation-type theorem.

Theorem 13. If hypothesesH0 hold, then there exists�� 2 RC0 s.t.
(a) for every� 2 ]0,��[ problem(P

�

) has at least two positive smooth solutions u0, Ou 2
int(C

C

) s.t. u0 � Ou in � and u0 ¤ Ou;
(b) for � D �� problem (P

�

) has at least one positive smooth solution u�

2 int(C
C

);
(c) for every� > �� problem (P

�

) has no positive solution.
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